Key Differences Between HFJV and HFOV:

Aspect	High-Frequency Jet Ventilation (HFJV)	High-Frequency Oscillatory Ventilation (HFOV)
Mode of Ventilation	HFJV delivers small, rapid bursts of gas directly into the trachea via a special jet injector.	HFOV uses a diaphragm or piston to deliver oscillatory breaths around a set mean airway pressure.
Mechanism of Gas Delivery	- Jet Pulses: HFJV provides brief, high-pressure bursts of gas directly into the lungs. The exhalation is passive due to the natural recoil of the lungs.	- Oscillations: HFOV generates active oscillations at high frequencies, creating small tidal volumes around a set mean airway pressure, with active inspiration and expiration.
Typical Respiratory Rates	240 - 660 breaths per minute (BPM)	Hertz 8-15= 180 - 900 cycles per minute
Tidal Volume	- Very small tidal volumes, often much smaller than the anatomical dead space.	- Even smaller tidal volumes than HFJV, often around 1-3 mL/kg, significantly less than the anatomical dead space.
Control of Ventilation	- Ventilation is mainly controlled by adjusting PIP and rate.	 Ventilation is controlled by adjusting amplitude (power) and frequency of oscillations.
Control of Oxygenation	- Primarily managed by adjusting FiO ₂ and PEEP. PIP can also influence oxygenation indirectly.	- Managed by adjusting FiO ₂ and mean airway pressure (MAP).
Exhalation Process	- Passive exhalation due to lung recoil after each jet pulse.	 Active exhalation facilitated by the oscillatory mechanism, which actively pulls air out of the lungs.
Typical Clinical Applications	 Used in cases of persistent pulmonary hypertension, air leak syndromes, and post-surgical recovery. 	- Often used for severe respiratory distress syndrome meconium aspiration syndrome
Advantages	- Effective at minimizing lung injury by reducing the likelihood of volutrauma and barotrauma Can be used with a background conventional ventilator to provide PEEP and occasional conventional breaths.	- Provides excellent oxygenation and CO ₂ removal in severe lung disease by maintaining consistent lung volume and reducing atelectrauma.
Disadvantages	- Requires specialized equipment and expertise Monitoring and adjusting can be more complex due to the nature of jet pulses.	 Higher risk of air trapping and volutrauma if not properly managed. Requires careful adjustment of mean airway pressure to avoid overdistension.
Patient Monitoring	- Continuous monitoring of servo pressure, blood gases, and clinical status is crucial.	- Continuous monitoring of amplitude, MAP, blood gases, and chest oscillations is essential.