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The salivary microbiota in health and disease
Daniel Belstrøm

Section for Periodontology and Microbiology, Department of Odontology, University of Copenhagen, Copenhagen, Denmark

ABSTRACT
The salivary microbiota (SM), comprising bacteria shed from oral surfaces, has been shown to be
individualized, temporally stable and influenced by diet and lifestyle. SM reflects local bacterial
alterations of the supragingival and subgingival microbiota, and periodontitis and dental-caries
associated characteristics of SM have been reported. Also, data suggest an impact of systemic
diseases on SM as demonstrated in patients with a wide variety of systemic diseases including
diabetes, cancer, HIV and rheumatoid arthritis. The presence of systemic diseases seems to
influence salivary levels of specific bacterial species, as well as α- and β-diversity of SM. The
composition of SM might thereby potentially mirror oral and general health status. The con-
tentious development of advanced molecular techniques such as metagenomics, metatranscrip-
tomics and metabolomics has enabled the possibility to address bacterial functions rather than
presence in microbial samples. However, at present only a few studies have employed such
techniques on SM to reveal functional and metabolic characteristics in oral health and disease.
Future studies are thereforewarranted to illuminate the possible impact ofmetabolic functions of
SM on oral and general health status. Ultimately, such an approach has the possibility to reveal
novel and personalized therapeutic avenues in oral and general medicine.
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Introduction

Saliva is the fluid covering the surfaces of the oral
cavity. Being instrumental in physiological processes
such as mastication, swallowing and speech [1], saliva
also harbors essential biological constituents includ-
ing proteins and enzymes, which are essential for
maintenance of oral homeostasis [2]. For example,
salivary mucins and glycoproteins are the sole nutri-
tional source in early plaque development [3], and
salivary antimicrobials are critically involved in main-
taining a symbiotic relationship between host and its
resident microbiota [4]. This relationship is con-
stantly stressed by internal and external ecological
perturbations [5], and while the oral microbiota is
resilient to minor ecological changes [6], prolonged
perturbation can induce dysbiosis of the resident
microbiota, which may lead to the two major oral
diseases, i.e. periodontitis and dental caries [7].

By tradition microbiological analysis of patients
with periodontitis has been performed on the sub-
gingival microbiota, whereas in patients with caries,
research has focused primarily on the supragingival
plaque. In general medicine samples of stools are
usually subject to analysis of the gastrointestinal
microbiota. However, saliva is an easy and non-
invasive alternative to such sampling strategies [8],
and the salivary microbiota (SM) has been shown to
reflect local bacterial alterations in supragingival and
subgingival microbiotas [9,10]. Furthermore, oral

bacterial species are reported in gut microbial sam-
ples [11,12]. Therefore, saliva might be a feasible
alternative to local samples in studies of the micro-
biota in oral and general health and disease [13].

The purpose of the present review is to report
recent research on the bacterial part of SM in oral
and general health and disease, and to discuss future
perspectives for this line of research. The main
focuses of the present review are on the two most
prevalent oral diseases i.e. periodontitis and dental
caries, as well as on diabetes and cancer. The litera-
ture included is limited to studies of the bacterial part
of SM using molecular techniques.

The salivary microbiota in oral health

Saliva is sterile when being secreted into the oral cavity
[14]. However, when sampled a diverse microbiota is
present in saliva [15]. Accordingly, SM has been shown
to be a conglomerate of bacteria shed from oral surfaces
with the throat, the tongue and the tonsils as the main
sites of origin [16]. The SM has been demonstrated to
be individualized [17,18] and temporarily stable [19,20]
in orally healthy individuals. On the other hand, circa-
dian oscillations of SMhave also been documented [21].

The composition of SM in health is to some extent
shaped by environmental factors [22]. Cross-sectional
data suggest that the composition differentiates in
individuals living under different climate conditions
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[23], and a recent longitudinal study showed altera-
tions of SM in members during an Antarctic expedi-
tion [24]. Likewise, several studies have documented
an impact of diet on SM [25–27].

The SM mirrors dentate status. Accordingly, the
composition of SM has been reported to differentiate
between dentate and edentulous individuals [28], and
full-mouth extraction impacts on SM [29].
Furthermore, SM is affected by dental developmental
stages [30,31], and early life development of SM is
a coordinated process, influenced by ecological per-
turbations such as mode of delivery, breastfeeding
length and antibiotic treatment [32].

The salivary microbiota in oral disease

Periodontitis

The SM has been widely compared in patients with
periodontitis and orally healthy controls. A substantial
part of the studies has employed polymerase chain
reaction (PCR)-based techniques with special emphasis
on the applicability of salivary levels of specific bacterial
species as a biomarker of periodontitis.

Accordingly, a number of cross-sectional PCR-based
studies have compared salivary levels of putative perio-
pathogens, especially Porphyromonas gingivalis,
Tannerella forsythia, Treponema denticola, Prevotella
intermedia and Aggregatibacter actinomycemtomitans
in saliva from patients with periodontitis to those of
orally healthy controls. A recent study from 2019
reported salivary levels of the JP2 clone of
A. actinomycemtomitans to associate with clinical
attachment loss in Moroccan adolescents [34], whereas
a large-scale study comprising 977 Japanese individuals
showed salivary levels of P. gingivalis to correlate with
percentage of sites with probing pocket depth ≥4 mm
[35]. In addition, a cross-sectional study of a Finnish
population (n = 462) documented that combined sali-
vary levels of P. gingivalis, P. intermedia and T. forsythia
were associated with periodontitis [36]. In addition,
a recent study from 2019 demonstrated higher salivary
levels of two hitherto uncultured bacterial species
(Fretibacterium sp. human oral taxon 360 and
Fretibacterium sp. human oral taxon 356) in patients
with periodontitis as compared to orally healthy con-
trols [37]. However, no comparison of subgingival and
salivary levels of the selected bacteria was performed in
the above-mentioned studies, which is why the origin of
periopathogens in saliva was unknown. Nevertheless,
other studies have used PCR and next-generation
sequencing (NGS) of the 16 rDNA gene to compare
subgingival and salivary levels of putative periodontal
pathogens. Taken together, these studies have demon-
strated a strong correlation of subgingival and salivary
levels of putative periopathogens [38–41].

Moreover, several studies have aimed to differenti-
ate patients with periodontitis from orally healthy
controls by means of salivary levels of putative peri-
opathogens. For example, a recently published NGS-
based study showed that relative abundance of
P. gingivalis could discriminate patients with period-
ontitis from orally healthy controls with an AUC
(area under curve) of 0.80 [42], and a PCR-based
study of 9 selected periopathogens reported that it
was possible to discriminate the severity of period-
ontitis based on salivary levels of the bacteria tested
[43]. Furthermore, salivary levels of periopathogens
have been used in periodontal risk assessment. For
example, in a longitudinal study of 24 months dura-
tion, the combination of salivary levels of P. gingivalis
and serum levels of P. gingivalis’ IgG antibodies was
associated with periodontal disease progression [44].

A few studies have used NGS to characterize the
salivary microbiota in patients with periodontitis, and
compare data with that of orally healthy controls.
Accordingly, a recently published study in a Swedish
cohort showed a significant periodontitis associated-
microbiota with increased levels of T. forsythia,
Filifactor alocis and Parvimonas micra [45].
Furthermore, several interventional studies using NGS
have demonstrated an impact of non-surgical period-
ontal treatment on the composition of SM [9,46–48].
Interestingly, two of these studies showed a positive
correlation of subgingival and salivary levels of putative
periopathogens before and after periodontal treatment
[9,47]. Thus, data suggest that even though periopatho-
gens are occasionally found off the tongue [49], spill-
over of bacteria from the subgingival area are probably
the primary site of origin of periopathogens identified
in saliva. This is why salivary levels of periopathogens
might be used as a biomarker of periodontitis.

Dental caries

The SM has been characterized in patients with
severe early childhood caries (SECC), as well as in
adolescent and adult populations with dental caries.
In all cases, data from patients with caries have been
compared to that of age-matched orally healthy
controls.

Recently, two NGS-based studies performed
a cross-sectional comparison of SM in patients with
SECC and children <5 yrs. Without caries, and both
studies reported caries-associated characteristics of
SM [50,51]. Notably, co-analysis of Candida albicans
demonstrated that carriage of C. albicans in children
with SECC attenuated the differences observed [51].
In 2018 three longitudinal studies on SM in children
with dental caries were published [52–54]. One of
these studies compared their findings in patients
with recurrent caries (n = 7) with those of patients
with a history of caries (n = 6) and caries-free
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controls (n = 15). The main finding was that salivary
levels of Fusobacterium, Prevotella, Leptotrichia and
Capnocytophaga species could predict recurrent car-
ies with an AUC = 0.95 [54]. Likewise, another study
reported that the composition of SM in combination
with information on salivary levels of host defense
peptides could predict caries progression [53].

The SM in adolescents with dental caries has
recently been compared to that of orally healthy
adolescents [55,56]. Accordingly, an NGS-based ret-
rospective cross-sectional study of a Swedish cohort
(n = 62) showed significant caries-associated differ-
ences of SM. Specifically, higher salivary abundance
of bacterial species, such as Scardovia wiggsiae and
Streptococcus mutans, were identified in patients with
caries. Furthermore, patients with salivary presence
of Bifidobacterium longum had an increased caries
risk [56]. In addition, a cross-sectional study of 154
adolescents confirmed distinct differences of SM in
caries patients vs. healthy controls, which were partly
driven by the co-occurrence of S. wiggsiae and
S. mutans [55].

Increased levels of Veillonella and Bifidobacterium
species were found in SM of adult patients with caries
compared to that of healthy controls [57]. Likewise,
a recently published study demonstrated caries-
associated characteristics of SM in elderly patients
with caries as compared to healthy controls [58].

Collectively, data from various NGS-based studies
of the 16S rRNA gene have reported SM to differenti-
ate patients with periodontitis and dental caries from
that of orally healthy controls. Furthermore, SM dif-
fers in patients with periodontitis vs. patients with
caries [59,60]. Thus, it seems that the presence of
treatment requiring oral disease associates with char-
acteristics of SM. The breakthrough of more advanced
molecular techniques such as metagenomics, meta-
transcriptomics and metabolomics has enabled the
possibility to add bacterial functions such as carbohy-
drate metabolism and proteolytic activity to their pre-
sence in microbial samples [61]. Accordingly, a few
studies have described functional and metabolic char-
acteristics of SM in oral health and disease [62,63].
Thus, future studies will have the possibility to focus
on the possible impact of metabolic functions of the
salivary microbiota as an etiological agent in period-
ontitis and dental caries. Such an approach may be
important for the development of novel personalized
therapeutic avenues.

The salivary microbiota in systemic disease

Diabetes and obesity

Poor oral health status associates with increased risk
of systemic disease, and especially the bidirectional
relationship of periodontitis and type 2 diabetes

(T2DM) have been described in detail [64]. Much
focus has been paid on the role of low-grade inflam-
mation as the link between oral and systemic diseases
[65]. However, the potential impact of systemic dis-
ease on SM has also been addressed.

Several studies have compared SM in patients with
diabetes to that of healthy controls by means of NGS,
and in general, data show that diabetes associates
with a decrease in bacterial diversity of SM [66–68].
In addition, higher salivary levels of P. gingivalis,
T. forsythia and F. alocis were reported in patients
with gestational diabetes [69], whereas only minor
differences were identified in children with T2DM,
when compared to obese and healthy controls,
respectively [70].

Also, SM in obese individuals has been compared
to that of lean controls. A metagenomic study from
2018 showed decreased bacterial diversity and rich-
ness in saliva from obese individuals. Furthermore,
functional analysis documented higher bacterial
expression of immune disease-related genes in obese
individuals [71]. Likewise, obesity was reported to
modify salivary bacterial diversity in patients with
T2DM [72]. In addition, a PCR-based analysis
demonstrated higher salivary levels of P. gingivalis,
T. forsythia and Fusobacterium nuclatum in obese
patients with and without T2DM, as compared to
lean controls [73].

Finally, a potential impact of salivary glucose con-
centration on SM has been investigated. Specifically,
DNA-DNA hybridization of >2500 saliva samples
collected from Kuwaiti children showed high salivary
glucose concentration to associate with a decrease in
bacterial diversity [74], and NGS of SM revealed
increased abundance of Leptotrichia, Staphylococcus,
Catonella and Bulledia species in individuals with
impaired fasting glucose [75].

Thus, data suggest that T2DM, obesity and poorly
controlled clearance of glucose i.e. impaired fasting
glucose is associated with comparable impacts on SM.

Cancer

The SM has been studied in patients with oral squa-
mous cell carcinoma (OSCC). One large-scale report
characterized SM in 138 patients with OSCC by means
of NGS and compared data with that of saliva from 151
matched healthy controls. The main finding was higher
salivary abundance of periodontitis-associated species,
such as Prevotella tannerae, F. nucleatum, and
P. intermedia in patients with OSCC [76]. Likewise,
two studies have reported SM to differentiate in patients
with oral leukoplakia [77] and patients with other
epithelial precursor lesions to OSCC [78], when com-
pared to that of orally healthy controls. It is, however,
more interesting that specific alterations of SM were
present in samples from OSCC patients versus patients
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with leukoplakia and epithelial precursor lesions.
Specifically, higher salivary levels of Solobacterium spe-
cies and lower levels of Streptotoccus species were
recorded in OSCC patients compared to leukoplakia
patients [77], whereas salivary abundance of Bacillus,
Enterococcus, Parvimonas, Peptostreptococcus and
Slackia species discriminated patients with OSCC
from patients with epithelial precursor lesions [78].
Thus, cross-sectional data suggest that SM might be
used in screening of OSCC. However, one study has
shown that the microbiota identified in OSCC lesions is
different from the concomitant SM in patients with
OSCC [79]. Thus, prospective data are warranted to
evaluate if the specific strains of SM are causally
involved in the development of OSCC.

The effect of OSCC treatment i.e. radiotherapy and
chemotherapy on SM has been longitudinally evalu-
ated. One study showed that radiotherapy was asso-
ciated with an increase in salivary levels of
Lactobacillus species, which was reversed to baseline
levels 1 year after radiotherapy. Interestingly, strong
correlation was observed in salivary levels of
Lactobacillus species and fluctuations of saliva flow
rates and salivary pH levels during radiotherapy [80].
Another report demonstrated that chemotherapy-
induced oral mucositis was associated with
a decrease in salivary levels of health-associated bac-
terial genera, including Streptococcus, Actinomyces
and Veillonella in combination with an increase of
the periodontitis-associated genera Fusobacterium
and Prevotella, and increased transcription of genes
related to innate immunity and apoptosis in oral
epithelial cells from patients with oral mucositis [81].

Cross-sectional studies have evaluated SM in
patients with cancers outside the oral cavity.
Accordingly, high salivary levels of T. forsythia and
A. actinomycetemcomitans and low bacterial diversity
were reported in patients with precancerous gastric
lesions [82]. On the other hand, gastrointestinal can-
cers of various origins were associated with an
increased salivary bacterial diversity and high levels
of P. gingivalis as compared to matched healthy con-
trols [83]. In line, a study from 2019 used NGS of SM
to discriminate patients with throat cancer from
healthy controls and patients with vocal cord polyps
with an AUC = 0.87 [84]. Finally, two cross-sectional
studies have compared SM in patients with lung
cancer to healthy controls. The main findings were
higher levels of Streptococcus and Veillonella species
in saliva from patients with non-small cell lung can-
cer [85], and lower salivary levels of Streptococcus
species in combination with low bacterial diversity
in female non-smokers with lung cancer as compared
to matched healthy controls [86].

Therefore, data suggest that various non-oral can-
cers are associated with different alterations of SM.
Data is, however, based solely on cross-sectional

studies, which hampers the possibility to draw any
conclusions on causality at present.

Other systemic diseases

Periodontitis has several important comorbidities such
as rheumatoid arthritis and atherosclerosis [65].
Interestingly, SM has been reported to differ in patients
with such comorbidities as compared to healthy con-
trols. For example, rheumatoid arthritis associated with
dysbiosis of SM with depletion of Haemophilus species
in saliva, dental plaque and fecal samples, which was
partly normalized by treatment of rheumatoid arthritis
[87]. In addition, salivary levels of four periopathogens,
i.e. P. gingivalis, T. denticola, T. forsythia and
P. intermedia, have been suggested to be independently
involved in lowering serum levels of high-density lipo-
proteins, which may be associated with an increased
risk of atherosclerosis [88].

Immune defects have an impact on SM. Accordingly,
immune deficiency as expressed by the manifest human
immunodeficiency virus (HIV) has been reported to
influence α- and β-diversity of SM [89]. Furthermore,
increased salivary levels of periopathogenic species
including Prevotella melanogenica and Rothia mucilagi-
nosa were shown to correlate with the extent of CD4 +
T cell depletion in patients with HIV [90].

In several of the above-mentioned studies, correla-
tion changes to the salivary and fecal microbiotas
were evident [87,89], which highlight the possibility
to use saliva-based screening as a substitute to fecal
samples in microbiologic studies of systemic diseases.
An example of such an approach was published in
a recent longitudinal study, which linked dysbiosis of
SM during the first 7 years of life with development
of allergy [32].

Future perspectives

The accumulated evidence suggests that SM is indi-
vidualized and relatively stable over time as long as
oral and general health is maintained. In addition,
local bacterial changes associated with periodontitis
and dental caries are reflected by alterations of SM.
Furthermore, presence of systemic disease appears to
have an impact on SM. Thus, SM seems to reflect oral
and general health status. However, future studies are
needed to reveal if changes of SM precede clinical
signs of disease, which would enable the possibility to
use SM in the prediction of future disease risk.
Ideally, this could be performed targeting subtypes
or strains of specific bacterial species in SM such as
P. gingivalis or A. actinomycemcomitans [91] in per-
iodontits or S. mutans in caires. An elegant example
of such an approach was recently published in a study
showing that analysis of S. mutans in saliva based on
adhesion subtypes could be used for future caries risk
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prediction [92]. It is also interesting that in a recent
cross-sectional study from 2017 data showed that
orally healthy individuals can be divided into five
ecotypes based on characteristics of SM, the salivary
metabolome and host-related biochemical salivary
parameters [93]. In addition, a recent longitudinal
study in hospitalized cancer patients demonstrated
that increased variability of SM was associated with
adverse clinical outcomes [94]. Notably, these studies
demonstrate the possibility to use SM in risk assess-
ment and treatment evaluation of oral and systemic
disease. Accordingly, prospective longitudinal studies
are urgently needed to reveal the full potential of
using SM in the field of precision medicine.
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