# Free Radical Biology and Medicine

Volume 50, Issue 6, 15 March 2011, Pages 700-709



**Original Contribution** 

# Protandim attenuates intimal hyperplasia in human saphenous veins cultured ex vivo via a catalase-dependent pathway

Author links open overlay panel

Binata Joddar a b c, Rashmeet K. Reen b d, Michael S. Firstenberg e, Saradhadevi Varadharaj b, Joe M. McCord f, Jay L. Zweier b, Keith J. Gooch a b

Show more

Add to Mendeley

Share

Cite

https://doi.org/10.1016/j.freeradbiomed.2010.12.008Get rights and content

## Abstract

Human saphenous veins (HSVs) are widely used for bypass grafts despite their relatively low long-term <u>patency</u>. To evaluate the role of <u>reactive oxygen species</u> (ROS) signaling in <u>intima hyperplasia</u> (IH), an early stage pathology of vein-graft disease, and to explore the potential therapeutic effects of up-regulating endogenous <u>antioxidant enzymes</u>, we studied segments of HSV cultured ex vivo in an established ex vivo model of HSV IH. Results showed that HSV cultured ex vivo exhibit an  $\sim$  3-fold increase in proliferation and  $\sim$  3.6-fold increase in intimal area relative to freshly isolated HSV. Treatment of HSV during culture with Protandim, a <u>nutritional supplement</u> known to activate Nrf2

and increase the expression of antioxidant enzymes in several in vitro and in vivo models, blocks IH and reduces <u>cellular proliferation</u> to that of freshly isolated HSV. Protandim treatment increased the activity of <u>SOD</u>, HO-1, and <u>catalase</u> 3-, 7-, and 12-fold, respectively, and decreased the levels of superoxide (O2•-) and the <u>lipid peroxidation</u> product 4-HNE. Blocking <u>catalase</u> activity by cotreating with 3-amino-1,2,4-triazole abrogated the protective effect of Protandim on IH and proliferation. In conclusion, these results suggest that ROS-sensitive signaling mediates the observed IH in cultured HSV and that up-regulation of endogenous antioxidant enzymes can have a protective effect.

Section snippets

Human vessel harvest and preparation

The Institutional Review Board at The Ohio State University approved all use of human tissue in this study and all patients provided written informed consent for tissue donation. Segments of the great saphenous vein that were in excess or unused at the end of CABG were obtained from consenting patients. Veins obtained from patients with documented varicosities of the long saphenous vein and communicable diseases such as HIV and hepatitis B or C were excluded. All vessels were removed by an

Protandim inhibits the formation of IH and the increase in cellular proliferation in HSV cultured ex vivo

Elastin staining revealed that HSV cultured ex vivo exhibited IH (Figs. 1B and 2A) and medial thickening (Fig. 2C) accompanied by increased cellular proliferation (Figs. 2B

and D) compared to freshly isolated (uncultured) HSV (Figs. 1A and 2A–D). These changes were attenuated by adding Protandim to HSV cultured ex vivo (Figs. 1C and 2A–D). Supplementation with NAC also inhibited the increase in intimal and medial areas as well as cellular proliferation (Fig. 2). All freshly isolated and

### Discussion

The major findings of these studies are the following. (1) Treatment of HSV with Protandim or NAC blocks both IH and medial thickening as well as the increased cellular proliferation in an established ex vivo model of the early stages of vein-graft disease. (2) Protandim treatment results in a significant increase in activity and/or abundance of catalase, HO-1, and SOD, which is accompanied by a decrease in O2•-levels and the lipid peroxidation product 4-HNE. (3) Blocking catalase activity by

# Acknowledgments

This work was supported by AHA 0555538U and 0655323B to K.J.G. and HL63744, HL65608, and HL38324 to J.L.Z. J.M.M. is a consultant to LifeVantage Corp. and has a financial interest in the company.

# References (50)

W.A. Pryor

Vitamin E and heart disease: basic science to clinical intervention trials

Free Radic. Biol. Med.

(2000)

J.C. Tardif

# Effects of the antioxidant succinobucol (AGI-1067) on human atherosclerosis in a randomized clinical trial

Atherosclerosis

(2008)

S.K. Nelson

The induction of human superoxide dismutase and catalase in vivo: a fundamentally new approach to antioxidant therapy

Free Radic, Biol, Med.

(2006)

## K. Velmurugan

Synergistic induction of heme oxygenase-1 by the components of the antioxidant supplement Protandim

Free Radic, Biol, Med.

(2009)

K.E. Porter

Human saphenous vein organ culture: a useful model of intimal hyperplasia?

Eur. J. Vasc. Endovasc. Surg.

(1996)

#### T. Schachner

Pharmacologic inhibition of vein graft neointimal hyperplasia

J. Thorac. Cardiovasc. Surg.

(2006)

## A. Mekontso-Dessap

Vascular-wall remodeling of 3 human bypass vessels: organ culture and smooth muscle cell properties

J. Thorac. Cardiovasc. Surg.

(2006)

#### R.J. Gusic

Shear stress and pressure modulate saphenous vein remodeling ex vivo

J. Biomech.

(2005)

#### R.J. Gusic

Mechanical properties of native and ex vivo remodeled porcine saphenous veins

J. Biomech.

(2005)

N.G. Stephens

Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS)

Lancet

(1996)

J.C. Tardif

Antioxidants: the good, the bad and the ugly

Can. J. Cardiol.

(2006)

N.G.N. Milton

Inhibition of catalase activity with 3-amino-triazole enhances the cytotoxicity of the Alzheimer's amyloid- $\beta$  peptide

NeuroToxicology

(2001)

H.J. Martin et al.

Role of human aldo-keto-reductase AKR1B10 in the protection against toxic aldehydes

Chem. Biol. Interact.

(2009)

L. Zhong

Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived  $\alpha,\beta$ -unsaturated carbonyls at physiological levels

Biochem. Biophys. Res. Commun.

(2009)

G. Leonarduzzi et al.

Signaling kinases modulated by 4-hydroxynonenal

Free Radic, Biol, Med.

(2004)

G. Konig

Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery

**Biomaterials** 

(2009)

J.G. Motwani et al.

Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention

Circulation

(1998)

## S. Muhammad Anees

N-acetylcysteine does not improve the endothelial and smooth muscle function in the human saphenous vein

Vasc. Endovasc. Surg.

(2007)

### S. Goldman

Improvement in early saphenous vein graft patency after coronary artery bypass surgery with antiplatelet therapy: results of a Veterans Administration cooperative study

Circulation

(1988)

### S. Goldman

Saphenous vein graft patency 1 year after coronary artery bypass surgery and effects of antiplatelet therapy: results of a Veterans Administration cooperative study

Circulation

(1989)

## D.T. Mangano

Aspirin and mortality from coronary bypass surgery

N. Engl. J. Med.

(2002)

### K.E. Porter et al.

Statins for the prevention of vein graft stenosis: a role for inhibition of matrix metalloproteinase-9

Biochem. Soc. Trans.

(2002)

### A. Briasoulis

The oxidative stress menace to coronary vasculature: any place for antioxidants?

Curr. Pharm. Des.

(2009)

#### J.M. Onorato et al.

Immunohistochemical and ELISA assays for biomarkers of oxidative stress in aging and disease

Ann. N. Y. Acad. Sci.

(1998)

G.D. Mark

Lazaroid therapy (methylaminochroman: U83836E) reduces vein graft intimal hyperplasia

J. Surg. Res. (1996)

There are more references available in the full text version of this article.

# Cited by (21)

# Withaferin A induces heme oxygenase (HO-1) expression in endothelial cells via activation of the Keap1/Nrf2 pathway

2016, Biochemical Pharmacology

Citation Excerpt:

Some Nrf2 activating compounds have already been tested in animal models or even human clinical trials and were demonstrated to protect against moderate pulmonary hypertension, chronic kidney disease and multiple sclerosis [71–73]. Probably one of the best known Nrf2 activators is the dietary supplement Protandim®, also termed the Nrf2 synergizer, which by different laboratories was validated to activate Nrf2 and to reduce oxidative stress [71,74,75]. Interestingly, Ashwaganda extract is one of its ingredients suggesting that Nrf2 activation by Protandim® might be dependent on the presence of WA.

Show abstract

Nrf2 activation: A potential strategy for the prevention of acute mountain sickness

2013, Free Radical Biology and Medicine

Citation Excerpt:

All compounds were tested in a dose–response fashion (1–300  $\mu$ g/ml) in the presence or absence of the PI<sub>3</sub>K inhibitor LY294002 (Cell Signaling Technologies, Cat. No. 9901) and evaluated with the Nrf2 activator Protandim [11,14–19]. Results are shown in Table 1.

Show abstract

Elucidating the Role of Protandim and 6-Gingerol in Protection Against Osteoarthritis

2017, Journal of Cellular Biochemistry

MFAP4 Promotes Vascular Smooth Muscle Migration, Proliferation and Accelerates Neointima Formation

2016, Arteriosclerosis, Thrombosis, and Vascular Biology

The clinical potential of influencing Nrf2 signaling in degenerative and immunological disorders

2014, Clinical Pharmacology: Advances and Applications

# Phytochemical activation of Nrf2 protects human coronary artery endothelial cells against an oxidative challenge

2012, Oxidative Medicine and Cellular Longevity