Formulas

To convert a radical to an exponent with a fraction:

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

To convert an exponent with a fraction to a radical:

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

Examples

1. Convert $\sqrt[3]{x^2}$ to an exponent with a fraction.

Solution: $\sqrt[3]{x^2} = x^{\frac{2}{3}}$

2. Convert $2^{\frac{3}{4}}$ to a radical.

Solution: $2^{\frac{3}{4}} = \sqrt[4]{2^3}$

3. Convert \sqrt{y} to an exponent with a fraction.

Solution: $\sqrt{y} = y^{\frac{1}{2}}$

4. Convert $x^{\frac{5}{2}}$ to a radical.

Solution: $x^{\frac{5}{2}} = \sqrt{x^5}$

Practice

Convert expressions between radicals and exponents

1.
$$\sqrt[4]{x^3}$$

6.
$$4^{\frac{3}{4}}$$

11.
$$\sqrt[3]{x^4}$$

16.
$$9^{\frac{3}{2}}$$

$$2.3^{\frac{2}{5}}$$

7.
$$\sqrt{z^3}$$

12.
$$6^{\frac{2}{5}}$$

17.
$$\sqrt{z^4}$$

3.
$$\sqrt[3]{a^5}$$

$$8. \ 2^{\frac{4}{3}}$$

13.
$$\sqrt{a^6}$$

18.
$$10^{\frac{1}{2}}$$

$$4.5^{\frac{3}{2}}$$

9.
$$\sqrt[6]{y^4}$$

14.
$$8^{\frac{5}{3}}$$

19.
$$\sqrt[6]{x^8}$$

5.
$$\sqrt[5]{x^6}$$

10.
$$7^{\frac{5}{3}}$$

15.
$$\sqrt[5]{y^7}$$

20.
$$11^{\frac{7}{3}}$$

Practice Problems with Detailed Solutions

1. Convert $\sqrt[4]{x^3}$ to an exponent with a fraction.

Solution: We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$.

Substituting $a = x^3$ and n = 4, we get $x^{\frac{3}{4}}$.

Explanation: Taking the fourth root of x^3

is equivalent to raising x^3 to the power of $\frac{1}{4}$.

2. Convert $3^{\frac{2}{5}}$ to a radical.

Solution: We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$

Substituting a = 3, m = 2, and n = 5, we get $\sqrt[5]{3^2}$.

Explanation: Raising 3 to the power of $\frac{2}{5}$

is equivalent to taking the fifth root of 3^2 .

3. Convert $\sqrt[3]{a^5}$ to an exponent with a fraction.

Solution: We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$.

Substituting $a = a^5$ and n = 3, we get $(a^5)^{\frac{1}{3}}$.

Explanation: Taking the cube root of a^5

is equivalent to raising a^5 to the power of $\frac{1}{3}$.

4. Convert $5^{\frac{3}{2}}$ to a radical.

Solution: We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$.

Substituting a = 5, m = 3, and n = 2, we get $\sqrt{5^3}$.

Explanation: Raising 5 to the power of $\frac{3}{2}$ is equivalent to taking the square root of 5^3 .

5. Convert $\sqrt[5]{x^6}$ to an exponent with a fraction.

Solution: We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$.

Substituting $a = x^6$ and n = 5, we get $(x^6)^{\frac{1}{5}}$.

Explanation: Taking the fifth root of x^6 is equivalent to raising x^6 to the power of $\frac{1}{5}$.

6. Convert $4^{\frac{3}{4}}$ to a radical.

Solution: We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$.

Substituting a = 4, m = 3, and n = 4, we get $\sqrt[4]{4^3}$.

Explanation: Raising 4 to the power of $\frac{3}{4}$

is equivalent to taking the fourth root of 4^3 .

7. Convert $\sqrt{z^3}$ to an exponent with a fraction.

Solution: We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$.

Substituting $a = z^3$ and n = 2, we get $(z^3)^{\frac{1}{2}}$.

Explanation: Taking the square root of z^3

is equivalent to raising z^3 to the power of $\frac{1}{2}$.

8. Convert $2^{\frac{4}{3}}$ to a radical.

Solution: We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$.

Substituting a = 2, m = 4, and n = 3, we get $\sqrt[3]{2^4}$.

Explanation: Raising 2 to the power of $\frac{4}{3}$

is equivalent to taking the cube root of 2^4 .

9. Convert $\sqrt[6]{y^4}$ to an exponent with a fraction.

Solution: We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$.

Substituting $a = y^4$ and n = 6, we get $(y^4)^{\frac{1}{6}}$.

Explanation: Taking the sixth root of y^4

is equivalent to raising y^4 to the power of $\frac{1}{6}$.

10. Convert $7^{\frac{5}{3}}$ to a radical.

Solution: We use the formula $a^{\frac{n}{n}} = \sqrt[n]{a^m}$.

Substituting a = 7, m = 5, and n = 3, we get $\sqrt[3]{7^5}$.

Explanation: Raising 7 to the power of $\frac{5}{3}$

is equivalent to taking the cube root of 7^5 .

11. Convert $\sqrt[3]{x^4}$ to an exponent with a fraction.

Solution: We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$.

Substituting $a = x^4$ and n = 3, we get $(x^4)^{\frac{1}{3}}$.

Explanation: Taking the cube root of x^4 is equivalent to raising x^4 to the power of $\frac{1}{3}$.

12. Convert $6^{\frac{2}{5}}$ to a radical.

Solution: We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$.

Substituting a = 6, m = 2, and n = 5, we get $\sqrt[5]{6^2}$.

Explanation: Raising 6 to the power of $\frac{2}{5}$

is equivalent to taking the fifth root of 6^2 .

13. Convert $\sqrt{a^6}$ to an exponent with a fraction.

Solution: We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$.

Substituting $a = a^6$ and n = 2, we get $(a^6)^{\frac{1}{2}}$.

Explanation: Taking the square root of a^6

is equivalent to raising a^6 to the power of $\frac{1}{2}$.

14. Convert $8^{\frac{5}{3}}$ to a radical.

Solution: We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$.

Substituting a = 8, m = 5, and n = 3, we get $\sqrt[3]{8^5}$.

Explanation: Raising 8 to the power of $\frac{5}{3}$

is equivalent to taking the cube root of 8^5 .

15. Convert $\sqrt[5]{y^7}$ to an exponent with a fraction.

Solution: We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$.

Substituting $a = y^7$ and n = 5, we get $(y^7)^{\frac{1}{5}}$.

Explanation: Taking the fifth root of y^7

is equivalent to raising y^7 to the power of $\frac{1}{5}$.

16. Convert $9^{\frac{3}{2}}$ to a radical.

Solution: We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$.

Substituting a = 9, m = 3, and n = 2, we get $\sqrt{9^3}$.

Explanation: Raising 9 to the power of $\frac{3}{2}$

is equivalent to taking the square root of 9^3 .

17. Convert $\sqrt{z^4}$ to an exponent with a fraction.

Solution: We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$.

Substituting $a = z^4$ and n = 2, we get $(z^4)^{\frac{1}{2}}$.

Explanation: Taking the square root of z^4

is equivalent to raising z^4 to the power of $\frac{1}{2}$.

18. Convert $10^{\frac{1}{2}}$ to a radical.

Solution: We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$.

Substituting a = 10, m = 1, and n = 2, we get $\sqrt{10}$.

Explanation: Raising 10 to the power of $\frac{1}{2}$

is equivalent to taking the square root of 10^{1} .

19. Convert $\sqrt[6]{x^8}$ to an exponent with a fraction.

Solution: We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$.

Substituting $a = x^8$ and n = 6, we get $(x^8)^{\frac{1}{6}}$.

Explanation: Taking the sixth root of x^8

is equivalent to raising x^8 to the power of $\frac{1}{6}$.

20. Convert $11^{\frac{7}{3}}$ to a radical.

Solution: We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$.

Substituting a = 11, m = 7, and n = 3, we get $\sqrt[3]{11^7}$.

Explanation: Raising 11 to the power of $\frac{7}{3}$

is equivalent to taking the cube root of 11^7 .