Formulas To convert a radical to an exponent with a fraction: $$\sqrt[n]{a} = a^{\frac{1}{n}}$$ To convert an exponent with a fraction to a radical: $$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$ #### Examples 1. Convert $\sqrt[3]{x^2}$ to an exponent with a fraction. Solution: $\sqrt[3]{x^2} = x^{\frac{2}{3}}$ 2. Convert $2^{\frac{3}{4}}$ to a radical. Solution: $2^{\frac{3}{4}} = \sqrt[4]{2^3}$ 3. Convert \sqrt{y} to an exponent with a fraction. Solution: $\sqrt{y} = y^{\frac{1}{2}}$ 4. Convert $x^{\frac{5}{2}}$ to a radical. Solution: $x^{\frac{5}{2}} = \sqrt{x^5}$ #### Practice Convert expressions between radicals and exponents 1. $$\sqrt[4]{x^3}$$ 6. $$4^{\frac{3}{4}}$$ 11. $$\sqrt[3]{x^4}$$ 16. $$9^{\frac{3}{2}}$$ $$2.3^{\frac{2}{5}}$$ 7. $$\sqrt{z^3}$$ 12. $$6^{\frac{2}{5}}$$ 17. $$\sqrt{z^4}$$ 3. $$\sqrt[3]{a^5}$$ $$8. \ 2^{\frac{4}{3}}$$ 13. $$\sqrt{a^6}$$ 18. $$10^{\frac{1}{2}}$$ $$4.5^{\frac{3}{2}}$$ 9. $$\sqrt[6]{y^4}$$ 14. $$8^{\frac{5}{3}}$$ 19. $$\sqrt[6]{x^8}$$ 5. $$\sqrt[5]{x^6}$$ 10. $$7^{\frac{5}{3}}$$ 15. $$\sqrt[5]{y^7}$$ 20. $$11^{\frac{7}{3}}$$ #### Practice Problems with Detailed Solutions # 1. Convert $\sqrt[4]{x^3}$ to an exponent with a fraction. **Solution:** We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$. Substituting $a = x^3$ and n = 4, we get $x^{\frac{3}{4}}$. **Explanation:** Taking the fourth root of x^3 is equivalent to raising x^3 to the power of $\frac{1}{4}$. ### 2. Convert $3^{\frac{2}{5}}$ to a radical. **Solution:** We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$ Substituting a = 3, m = 2, and n = 5, we get $\sqrt[5]{3^2}$. **Explanation:** Raising 3 to the power of $\frac{2}{5}$ is equivalent to taking the fifth root of 3^2 . ### 3. Convert $\sqrt[3]{a^5}$ to an exponent with a fraction. **Solution:** We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$. Substituting $a = a^5$ and n = 3, we get $(a^5)^{\frac{1}{3}}$. **Explanation:** Taking the cube root of a^5 is equivalent to raising a^5 to the power of $\frac{1}{3}$. ### 4. Convert $5^{\frac{3}{2}}$ to a radical. **Solution:** We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$. Substituting a = 5, m = 3, and n = 2, we get $\sqrt{5^3}$. **Explanation:** Raising 5 to the power of $\frac{3}{2}$ is equivalent to taking the square root of 5^3 . # 5. Convert $\sqrt[5]{x^6}$ to an exponent with a fraction. **Solution:** We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$. Substituting $a = x^6$ and n = 5, we get $(x^6)^{\frac{1}{5}}$. **Explanation:** Taking the fifth root of x^6 is equivalent to raising x^6 to the power of $\frac{1}{5}$. # 6. Convert $4^{\frac{3}{4}}$ to a radical. **Solution:** We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$. Substituting a = 4, m = 3, and n = 4, we get $\sqrt[4]{4^3}$. **Explanation:** Raising 4 to the power of $\frac{3}{4}$ is equivalent to taking the fourth root of 4^3 . ## 7. Convert $\sqrt{z^3}$ to an exponent with a fraction. **Solution:** We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$. Substituting $a = z^3$ and n = 2, we get $(z^3)^{\frac{1}{2}}$. **Explanation:** Taking the square root of z^3 is equivalent to raising z^3 to the power of $\frac{1}{2}$. # 8. Convert $2^{\frac{4}{3}}$ to a radical. **Solution:** We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$. Substituting a = 2, m = 4, and n = 3, we get $\sqrt[3]{2^4}$. **Explanation:** Raising 2 to the power of $\frac{4}{3}$ is equivalent to taking the cube root of 2^4 . # 9. Convert $\sqrt[6]{y^4}$ to an exponent with a fraction. **Solution:** We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$. Substituting $a = y^4$ and n = 6, we get $(y^4)^{\frac{1}{6}}$. **Explanation:** Taking the sixth root of y^4 is equivalent to raising y^4 to the power of $\frac{1}{6}$. # 10. Convert $7^{\frac{5}{3}}$ to a radical. **Solution:** We use the formula $a^{\frac{n}{n}} = \sqrt[n]{a^m}$. Substituting a = 7, m = 5, and n = 3, we get $\sqrt[3]{7^5}$. **Explanation:** Raising 7 to the power of $\frac{5}{3}$ is equivalent to taking the cube root of 7^5 . # 11. Convert $\sqrt[3]{x^4}$ to an exponent with a fraction. **Solution:** We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$. Substituting $a = x^4$ and n = 3, we get $(x^4)^{\frac{1}{3}}$. **Explanation:** Taking the cube root of x^4 is equivalent to raising x^4 to the power of $\frac{1}{3}$. ### 12. Convert $6^{\frac{2}{5}}$ to a radical. **Solution:** We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$. Substituting a = 6, m = 2, and n = 5, we get $\sqrt[5]{6^2}$. **Explanation:** Raising 6 to the power of $\frac{2}{5}$ is equivalent to taking the fifth root of 6^2 . # 13. Convert $\sqrt{a^6}$ to an exponent with a fraction. **Solution:** We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$. Substituting $a = a^6$ and n = 2, we get $(a^6)^{\frac{1}{2}}$. **Explanation:** Taking the square root of a^6 is equivalent to raising a^6 to the power of $\frac{1}{2}$. ## 14. Convert $8^{\frac{5}{3}}$ to a radical. **Solution:** We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$. Substituting a = 8, m = 5, and n = 3, we get $\sqrt[3]{8^5}$. **Explanation:** Raising 8 to the power of $\frac{5}{3}$ is equivalent to taking the cube root of 8^5 . # 15. Convert $\sqrt[5]{y^7}$ to an exponent with a fraction. **Solution:** We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$. Substituting $a = y^7$ and n = 5, we get $(y^7)^{\frac{1}{5}}$. **Explanation:** Taking the fifth root of y^7 is equivalent to raising y^7 to the power of $\frac{1}{5}$. ## 16. Convert $9^{\frac{3}{2}}$ to a radical. **Solution:** We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$. Substituting a = 9, m = 3, and n = 2, we get $\sqrt{9^3}$. **Explanation:** Raising 9 to the power of $\frac{3}{2}$ is equivalent to taking the square root of 9^3 . # 17. Convert $\sqrt{z^4}$ to an exponent with a fraction. **Solution:** We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$. Substituting $a = z^4$ and n = 2, we get $(z^4)^{\frac{1}{2}}$. **Explanation:** Taking the square root of z^4 is equivalent to raising z^4 to the power of $\frac{1}{2}$. ### 18. Convert $10^{\frac{1}{2}}$ to a radical. **Solution:** We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$. Substituting a = 10, m = 1, and n = 2, we get $\sqrt{10}$. **Explanation:** Raising 10 to the power of $\frac{1}{2}$ is equivalent to taking the square root of 10^{1} . # 19. Convert $\sqrt[6]{x^8}$ to an exponent with a fraction. **Solution:** We use the formula $\sqrt[n]{a} = a^{\frac{1}{n}}$. Substituting $a = x^8$ and n = 6, we get $(x^8)^{\frac{1}{6}}$. **Explanation:** Taking the sixth root of x^8 is equivalent to raising x^8 to the power of $\frac{1}{6}$. ### 20. Convert $11^{\frac{7}{3}}$ to a radical. **Solution:** We use the formula $a^{\frac{m}{n}} = \sqrt[n]{a^m}$. Substituting a = 11, m = 7, and n = 3, we get $\sqrt[3]{11^7}$. **Explanation:** Raising 11 to the power of $\frac{7}{3}$ is equivalent to taking the cube root of 11^7 .