

Preventable Fragility: A Systems Analysis of Declining Human Capacity in Western Societies

John Craig MSc

Gorilla and She Research Facility

Independent Researcher, Nutrition and Human Performance

Scotland, United Kingdom

Date: September 2025

Abstract

Western societies have experienced a sustained rise in mental health diagnoses, psychological distress, and suicide despite unprecedented expansion of mental health awareness, services, and policy interventions (WHO, 2021; OECD, 2023). This divergence presents a paradox: increasing support has not produced improved population-level resilience or reduced vulnerability.

This paper examines whether declining metabolic health, reduced exposure to structured challenge, and cultural shifts toward support-first mental health frameworks have contributed to a population-level reduction in stress tolerance and functional autonomy, independent of increases in clinical mental illness.

Using a narrative systems analysis integrating evidence from public health, psychiatry, metabolic research, education, occupational resilience literature, and suicide prevention models, this paper identifies upstream contributors to mental health vulnerability. Evidence suggests that the convergence of ultra-processed diets, physical inactivity, sleep disruption, reduced exposure to challenge, and identity-based mental health frameworks has coincided with declining metabolic regulation and psychological resilience. These changes align temporally with rising mental health burden and suicide risk, while downstream treatment expansion has not produced commensurate improvements in outcomes.

The findings support a capacity-first preventative model in which metabolic health, structured stress exposure, and resilience-building behaviors function as protective factors against mental health deterioration.

1. Introduction

1.1 The modern mental health paradox

Over the past three decades, Western societies have invested heavily in mental health awareness, early identification, destigmatization, and service provision. Public messaging increasingly encourages emotional expression, diagnostic recognition, and professional support seeking. Despite these efforts, population-level indicators of mental health have continued to deteriorate, with rising prevalence of anxiety, depression, psychological distress, and suicide (WHO, 2021; ONS, 2022; OECD, 2023).

This divergence presents a fundamental paradox: why has increased mental health intervention coincided with declining resilience and worsening outcomes?

Dominant explanations suggest that rising diagnosis rates reflect improved detection and reduced stigma. While these factors likely contribute, they fail to explain the absence of proportional improvements in functional outcomes, quality of life, or suicide reduction. If awareness and treatment alone were sufficient, a measurable reversal in these trends would be expected.

The persistence of adverse outcomes suggests the presence of upstream drivers that remain insufficiently addressed.

1.2 From symptom prevalence to capacity sufficiency

Most contemporary mental health frameworks prioritize symptom identification and mitigation. This paper proposes a complementary but under-examined perspective: mental health vulnerability may arise not only from increased pathology, but from reduced human capacity to tolerate and adapt to stress.

Rather than asking why distress has increased, this analysis asks whether modern environments and policies have reduced the biological and psychological capacity required to cope with normal life demands.

This reframing shifts attention from symptoms to stress tolerance, recovery capacity, and functional autonomy, without denying the existence of severe mental illness or the importance of clinical care.

1.3 Defining fragility as a systems outcome

In this paper, fragility is defined operationally rather than morally:

Fragility refers to reduced stress tolerance, impaired recovery capacity, and increased dependence on external support under conditions of normal life demand.

This construct encompasses biological, psychological, and behavioral dimensions, including metabolic dysregulation, physical deconditioning, heightened emotional reactivity, and diminished agency. Framing fragility as a systems-level outcome allows analysis without attributing blame to individuals.

1.4 Observational motivation

The motivation for this inquiry arises from repeated exposure to high-responsibility environments such as military training and offshore industrial operations, where resilience, responsibility, and adaptive problem-solving are required for safety and performance (Bartone et al., 2016).

Despite extreme demands, these environments do not normalize collapse or identity-based vulnerability frameworks. Capacity is built because failure has consequences.

Parallel observations from health, fitness, and occupational coaching contexts suggest that structured routines, improved nutrition, physical training, and restored purpose often yield functional

improvements across diverse populations, including individuals with diagnosed mental health conditions. Diagnoses may remain unchanged, but capacity increases.

These observations do not constitute empirical proof. Rather, they motivate examination of mechanisms already documented in the literature.

2. Ultra-Processed Foods, Metabolic Dysfunction, and Stress Tolerance

2.1 Nutritional industrialisation

Ultra-processed foods (UPFs), as defined by the NOVA classification, now dominate dietary intake across Western societies (Monteiro et al., 2019). This transition coincides with rising rates of obesity, insulin resistance, metabolic syndrome, and chronic low-grade inflammation (Hall et al., 2019).

While typically discussed in relation to cardiometabolic disease, metabolic dysfunction also exerts profound effects on brain function. The brain is highly sensitive to glucose instability, inflammatory signaling, hormonal dysregulation, and micronutrient sufficiency.

2.2 Metabolism and psychological resilience

Stress tolerance is constrained by physiology. Metabolic dysregulation affects resilience through impaired glucose regulation, hypothalamic-pituitary-adrenal axis disruption, systemic inflammation, sleep disturbance, and altered neurotransmitter synthesis (Milaneschi et al., 2020; Raison et al., 2006).

In metabolically compromised states, individuals experience exaggerated stress responses to otherwise manageable stimuli, slower recovery from adversity, and reduced cognitive flexibility. Psychological vulnerability may therefore reflect biological instability rather than intrinsic mental disorder.

2.3 Protein dilution and neurobiology

Ultra-processed dietary patterns are typically protein-dilute, encouraging overconsumption while failing to meet amino acid requirements essential for neurotransmitter synthesis and neuroplasticity (Fernstrom, 2013; Wolfe, 2017).

Protein insufficiency contributes to both physical frailty and neurochemical instability. In this context, mood dysregulation and emotional volatility may arise from nutritional inadequacy rather than psychopathology.

2.4 Inflammation and emotional reactivity

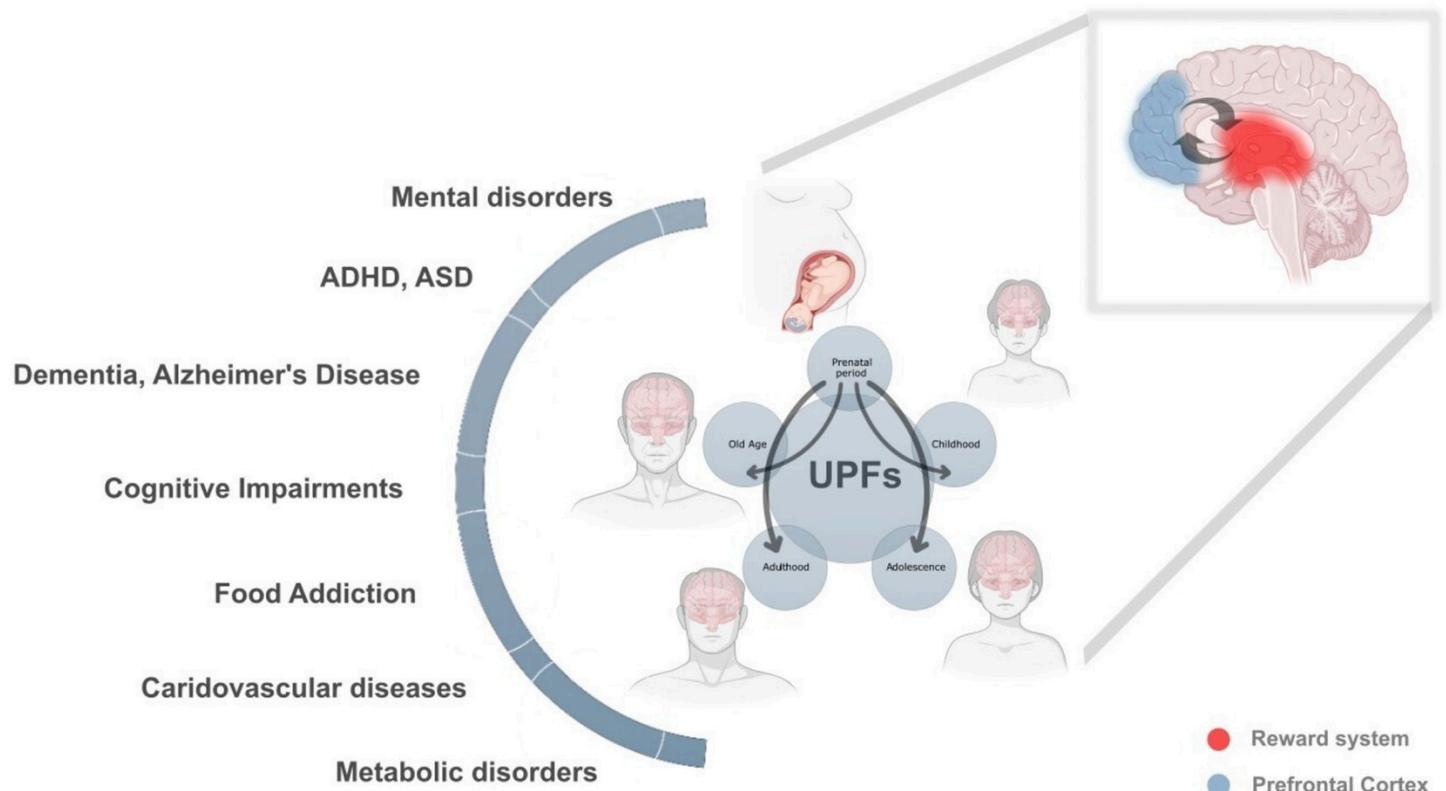
Chronic low-grade inflammation, strongly associated with UPF consumption, has been consistently linked to depressive symptoms, anxiety, fatigue, and cognitive impairment (Raison et al., 2006). Subclinical inflammatory states may manifest psychologically and are frequently misattributed to psychosocial stress alone.

2.5 Physical deconditioning and loss of stress buffering

Physical robustness historically functioned as a buffer against psychological stress. Declines in daily movement and strength exacerbate insulin resistance, impair sleep quality, and reduce stress tolerance, creating feedback loops of vulnerability (Schuch et al., 2016).

Physical deconditioning should therefore be understood not merely as a fitness issue, but as a resilience issue.

2.6 Nutritional substitution and unintended consequences


Public health emphasis on dietary substitution, including reliance on industrial plant-based alternatives, introduces additional metabolic complexity. While ethical and environmental motivations vary, the nutritional consequences of replacing whole foods with ultra-processed substitutes remain under-examined (Scrinis, 2013).

Systems optimized for efficiency and emissions may inadvertently undermine biological robustness.

2.7 Summary

The convergence of UPFs, protein dilution, chronic inflammation, inactivity, and sleep disruption has produced a biologically compromised baseline in many Western populations. In such conditions, psychological stressors exert amplified effects.

Figure 1. Capacity-First Causal Model of Mental Health Vulnerability

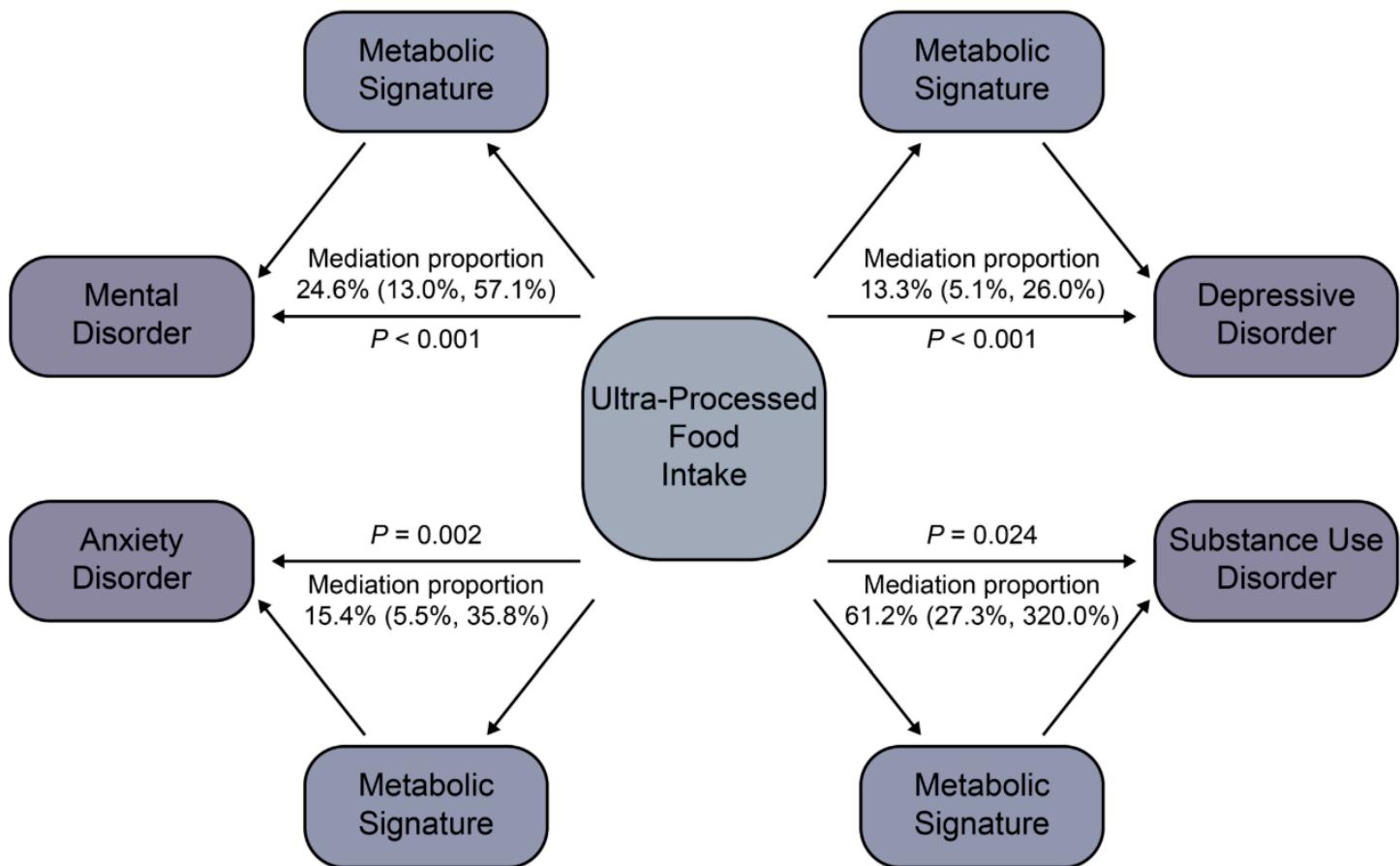
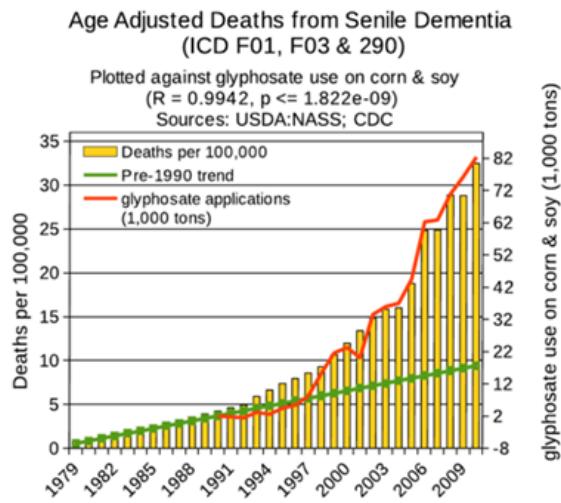
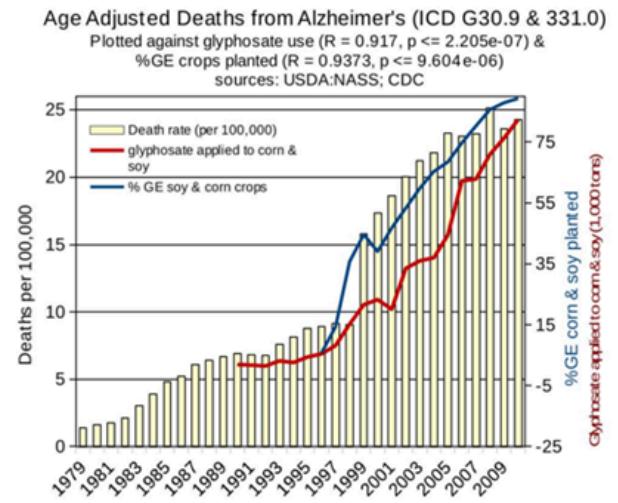




Figure 1 illustrates a systems-based causal pathway linking environmental and lifestyle factors to mental health vulnerability. Ultra-processed diets, physical inactivity, sleep disruption, excessive screen exposure, and reduced exposure to structured challenge contribute to metabolic dysregulation and chronic low-grade inflammation. These biological changes reduce stress tolerance, emotional regulation, and recovery capacity, increasing vulnerability to psychological distress. Downstream reliance on support-first mental health frameworks may fail to address these upstream determinants, contributing to persistent distress and elevated suicide risk. The model does not imply direct causation for specific diagnoses, but illustrates how metabolic and lifestyle factors may influence vulnerability, severity, and functional impact across conditions.

Correlation between age-adjusted dementia deaths and glyphosate applications. Reproduced from Swanson, et al., 2014.

Correlation between age-adjusted Alzheimer's disease deaths and glyphosate applications and percentage of US corn and soy crops that are GE. Reproduced from Swanson, et al., 2014.

Figure 2. Temporal Alignment of Lifestyle Change and Mental Health Burden

Figure 2 presents a conceptual timeline illustrating the temporal overlap between increased ultra-processed food consumption, reduced physical activity, increased screen exposure, declining sleep duration, rising mental health diagnoses, and suicide trends in Western societies. While causality cannot be inferred, the convergence of these trajectories suggests shared upstream influences contributing to population-level vulnerability.

Table 1. Population-Level Shifts Relevant to Capacity Sufficiency in Western Societies

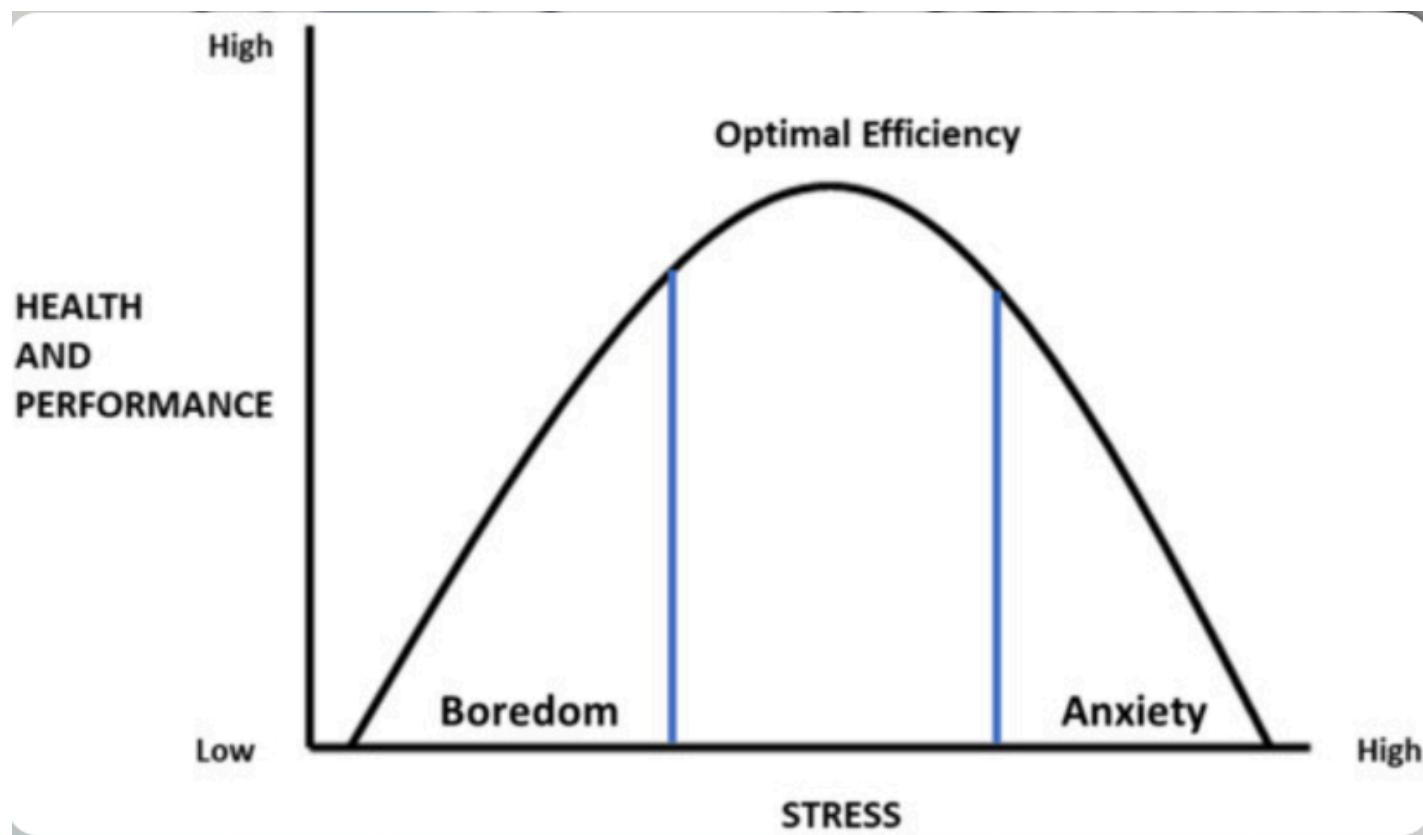
Variable	Approx. 1990s	Present
Ultra-processed food intake	Lower	Dominant
Daily physical activity	Higher	Lower
Youth sport participation	Higher	Declining
Average sleep duration	Higher	Lower
Screen exposure	Minimal	High
Metabolic syndrome prevalence	Lower	Higher
Mental health diagnoses	Lower	Higher
Suicide risk	Lower or stable	Rising

Table 1 summarizes key population-level shifts associated with reduced biological and psychological capacity in Western societies. These trends align temporally with rising mental health burden and increased reliance on downstream intervention. Data sources include OECD, WHO, FAO, CDC, ONS, and peer-reviewed population studies (see references below).

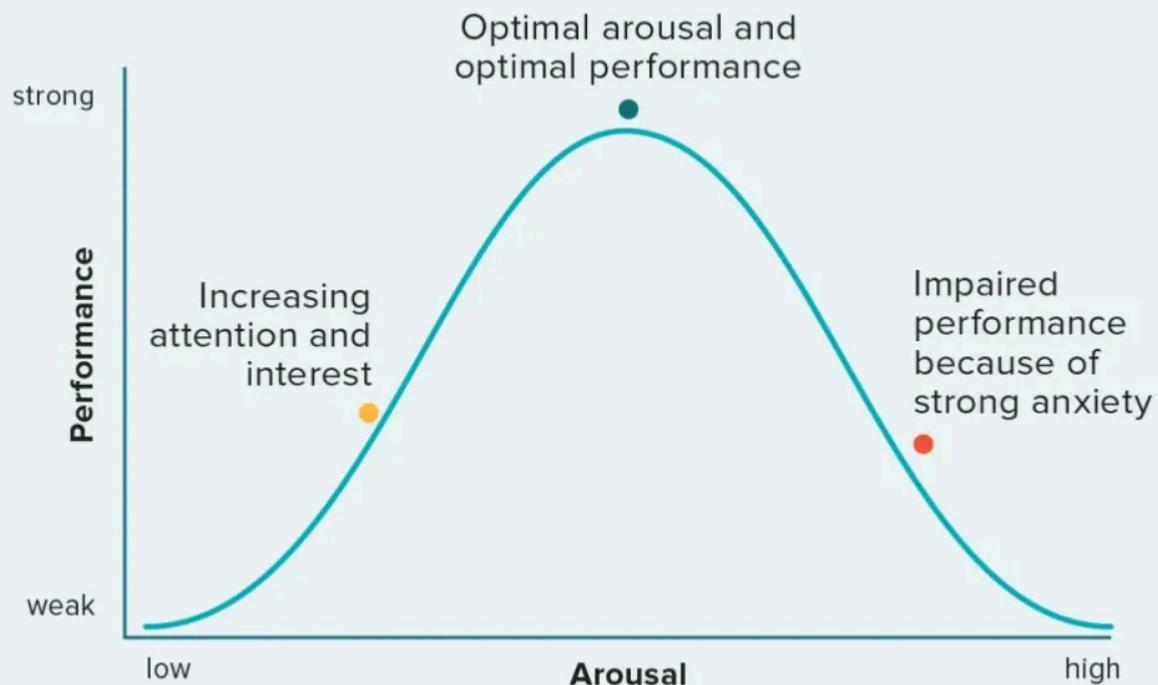
3. Education, Challenge Exposure, and Resilience Development

Resilience develops through repeated exposure to manageable stressors followed by recovery and adaptation, consistent with stress inoculation and hormetic models (Meichenbaum, 2007; Mattson, 2008).

Longitudinal and developmental research supports the role of structured challenge and effort in building later stress tolerance. Exposure to controllable stressors during childhood and adolescence is associated with improved emotional regulation, problem-solving capacity, and resilience under pressure in adulthood (Seery et al., 2010; Masten, 2014). Conversely, environments that systematically minimize challenge and failure may impair the development of adaptive coping mechanisms, increasing vulnerability when stress becomes unavoidable.


Historically, educational systems provided structured exposure to discipline, competition, evaluation, and consequence. Over recent decades, many Western systems have shifted toward prioritizing emotional safety and discomfort avoidance. This shift coincides with declining academic performance in international comparisons (OECD, 2022) and reduced youth physical activity (WHO, 2020).

These shifts coincide with declining academic performance in international assessments, including sustained drops in mathematics, reading, and science outcomes across multiple Western nations (OECD, 2022).


Competition and consequence function as resilience-building mechanisms. Eliminating them may protect short-term comfort while impairing long-term coping capacity. The removal of challenge does not eliminate stress; it postpones it.

Private educational institutions often retain clearer behavioral standards, structured routines, and mandatory extracurricular participation, suggesting that structure rather than funding alone may support resilience development.

This analysis does not argue for excessive or harmful stress exposure, but for developmentally appropriate challenge sufficient to build adaptive capacity.

YERKES-DODSON LAW BELL CURVE

healthline

Figure 5. Developmental Challenge and Resilience Formation

X-axis: Challenge exposure during development

Y-axis: Adult stress tolerance

Curve: Low challenge → low resilience | Moderate challenge → high resilience | Excessive trauma → impaired resilience

Figure 5 illustrates the relationship between developmental challenge exposure and adult stress tolerance. Insufficient challenge may impair resilience development, while excessive trauma may overwhelm adaptive capacity. Optimal resilience emerges from repeated exposure to manageable stressors followed by recovery.


4. Talking-Based Frameworks Versus Capacity-Building Models

Public mental health strategies increasingly emphasize expression, validation, and access to support. While these approaches reduce stigma and improve care access, they are insufficient as standalone strategies for chronic non-clinical distress.

When verbal expression is decoupled from action, it can reinforce rumination and consolidate distress into identity (Nolen-Hoeksema et al., 2008). Diagnostic emphasis may reduce perceived agency and delay adaptive skill development (Haslam et al., 2018).

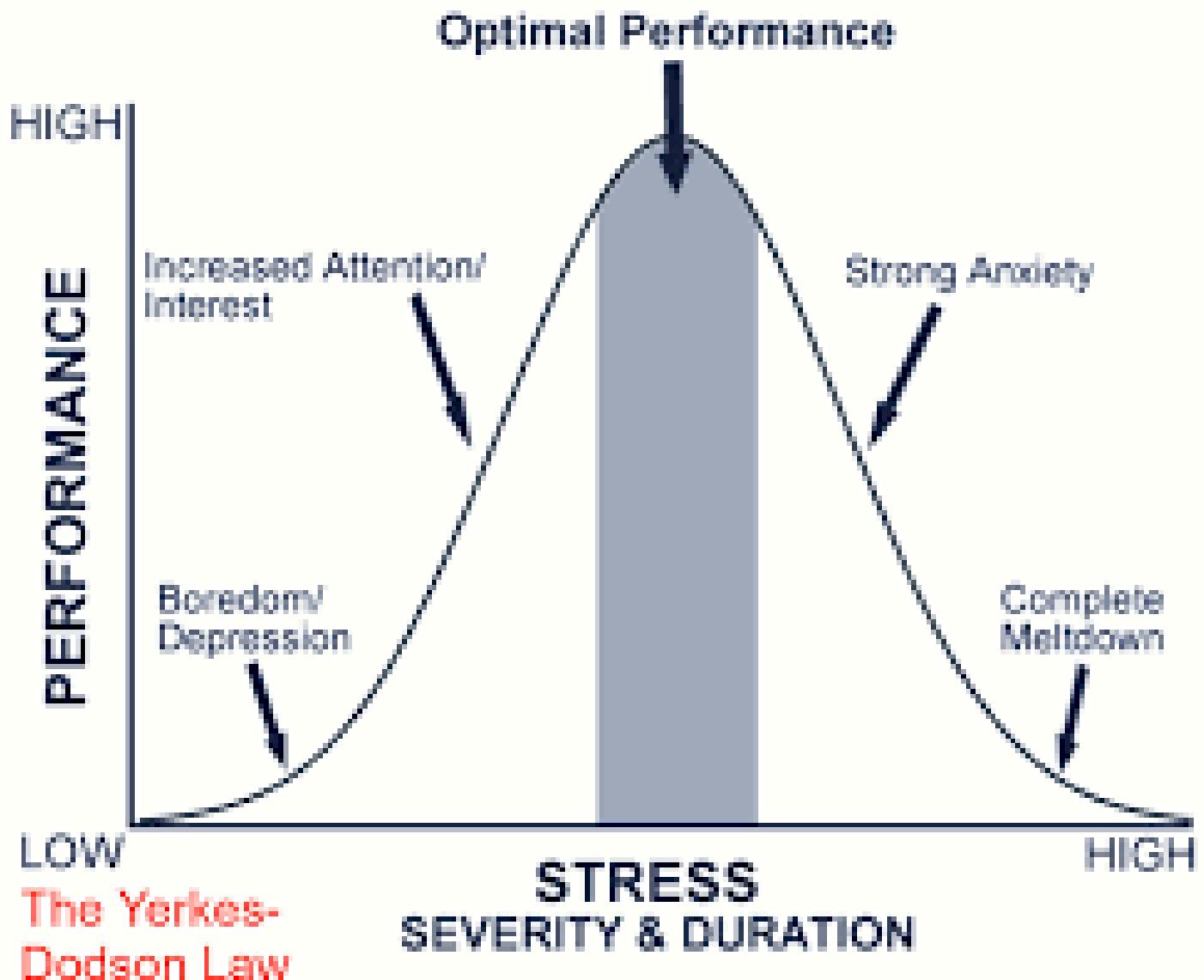
By contrast, capacity-building interventions targeting sleep, nutrition, physical activity, routine, responsibility, and purpose consistently improve functional outcomes, even when diagnoses remain unchanged (Firth et al., 2020).

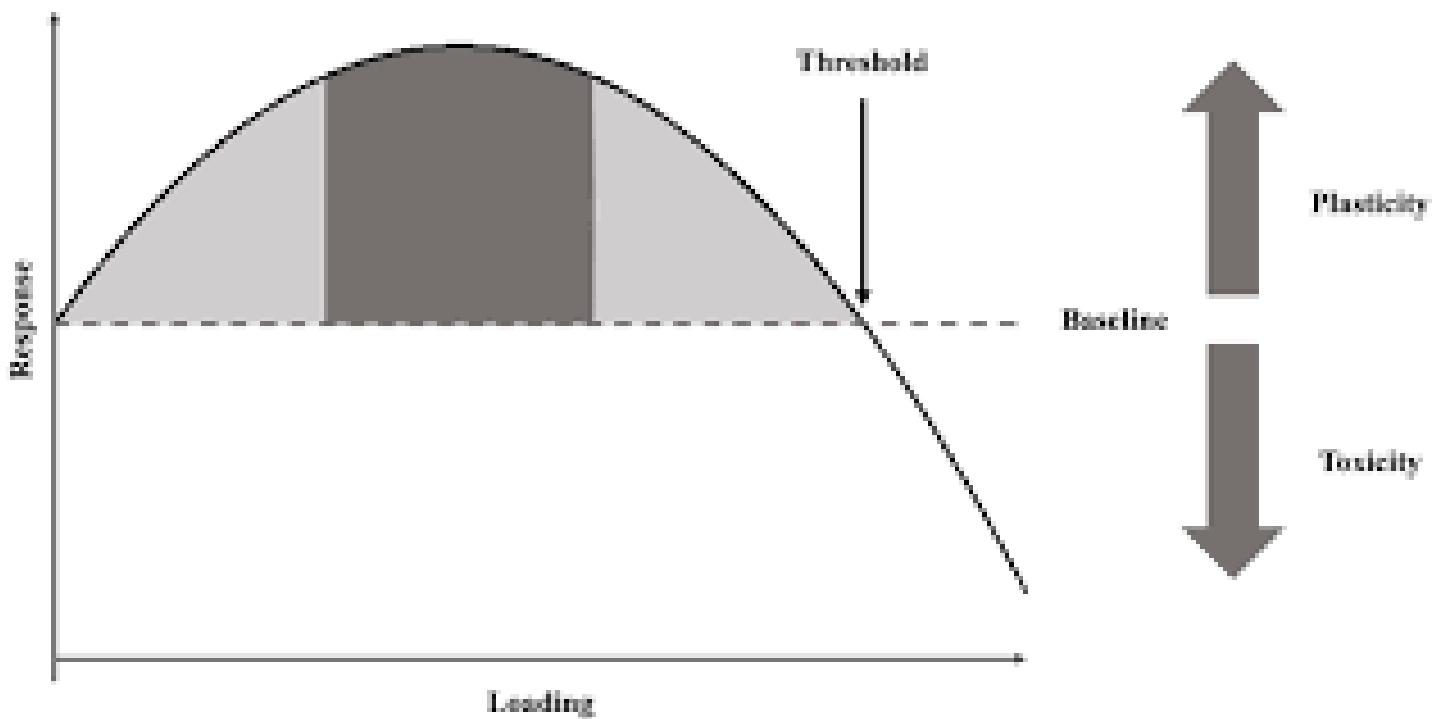
Support and capacity are not opposites. However, modern systems often prioritize support while under-investing in capacity.

Figure 3. Support-First Versus Capacity-First Mental Health Intervention Models

Figure 3 contrasts support-first and capacity-first mental health intervention models. Support-first approaches emphasize expression, validation, and accommodation, which may reduce stigma and improve access but risk reinforcing dependency when decoupled from action. Capacity-first approaches prioritize metabolic health, physical robustness, skill acquisition, responsibility, and purpose, aiming to increase stress tolerance and functional autonomy alongside appropriate support.

Capacity-building does not negate the reality of mental illness; it increases functional autonomy regardless of diagnostic status.


5. A Capacity-First Causal Model


A systems-based causal pathway is proposed (see Figure 1):

1. Environmental and lifestyle shifts (UPFs, inactivity, screens, reduced challenge)
2. Biological consequences (metabolic dysregulation, inflammation)
3. Reduced stress tolerance and agency
4. Support-first systemic response
5. Persistent distress and elevated suicide risk

5.1 The Resilience Inversion Hypothesis

Beyond an optimal threshold, further reductions in stress exposure reduce resilience rather than enhance it. This principle aligns with established models of hormesis and adaptive stress conditioning (Mattson, 2008).

Figure 4. The Resilience Inversion Hypothesis

Figure 4 illustrates the Resilience Inversion Hypothesis. Psychological resilience increases with reduced hardship up to an optimal threshold of manageable challenge. Beyond this threshold, further reductions in stress exposure and discomfort may lead to deconditioning, reduced adaptive capacity, and increased vulnerability to distress. This pattern aligns with established principles of hormesis and stress inoculation.

5.2 Falsification criteria

The model would be weakened if populations with high UPF intake, low physical activity, minimal challenge exposure, and high screen use demonstrated superior mental health outcomes, or if capacity-building interventions failed to improve functional outcomes across diverse populations.

6. Prevention, Policy, and Ethics

Capacity-building is preventative care, not moral judgment. Responsibility lies upstream with systems shaping environments long before individual choice becomes meaningful.

Education, food systems, physical activity infrastructure, and mental health policy should rebalance toward resilience development while preserving clinical care for severe illness.

Failure to address capacity erosion risks increasing dependency and long-term vulnerability (see Table 1).

7. Discussion and Conclusion

The evidence reviewed suggests that deteriorating mental health outcomes in Western societies reflect preventable capacity erosion, not increased pathology alone.

Downstream interventions cannot fully compensate for upstream degradation of metabolic, physical, and psychological resilience. Treating distress without restoring capacity resembles managing physical deconditioning with analgesia alone.

Restoring metabolic health, physical robustness, structured challenge, and agency represents not regression, but an essential evolution in mental health prevention.

A society that optimizes comfort and protection while neglecting capacity should not be surprised when resilience collapses.

Methods Appendix

A1. Study Design

This work employed a narrative systems analysis and conceptual synthesis approach. The objective was not to test a single causal hypothesis experimentally, but to integrate evidence across biological, psychological, behavioral, educational, and policy domains to identify upstream contributors to population-level mental health vulnerability.

A systems-based approach was selected to account for interacting variables that cannot be meaningfully isolated within single-discipline frameworks.

A2. Scope and Population

The analysis focused on Western high-income societies, including North America, Western Europe, Australia, and New Zealand. These regions were selected due to:

- Comparable economic development
- Similar dietary and lifestyle transitions
- Shared mental health policy trajectories
- Availability of long-term population-level datasets

A3. Conceptual Framework

Mental health vulnerability was operationalized as a function of:

- Stress tolerance
- Recovery capacity
- Functional autonomy

rather than symptom prevalence alone. This framing allowed examination of capacity sufficiency as a determinant of mental health outcomes.

A4. Literature Search Strategy

A structured literature search was conducted using the following databases:

- PubMed
- Scopus

- Web of Science
- Google Scholar (supplementary searches)

Search terms included combinations of:

- “mental health trends”
- “suicide risk”
- “resilience”
- “stress tolerance”
- “ultra-processed foods”
- “metabolic health”
- “physical activity and mental health”
- “education and resilience”
- “stress inoculation”
- “hormesis”

Only English-language sources were included.

A5. Inclusion Criteria

Sources were included if they:

- Were peer-reviewed empirical studies, meta-analyses, or systematic reviews
- Provided longitudinal or population-level data
- Examined biological, behavioral, or environmental determinants of mental health
- Included authoritative institutional datasets (e.g., WHO, OECD, ONS)

Priority was given to high-quality reviews and large cohort studies.

A6. Exclusion Criteria

Sources were excluded if they:

- Relied solely on anecdotal evidence
- Presented advocacy-driven or ideological framing without empirical support
- Focused exclusively on acute trauma without relevance to population-level vulnerability
- Lacked methodological transparency

A7. Data Synthesis

Findings were synthesized narratively to:

- Identify converging mechanisms across domains
- Examine temporal alignment between lifestyle transitions and mental health outcomes
- Map intervention focus relative to proposed causal pathways

Conceptual figures were developed iteratively based on recurring mechanisms identified across the literature.

A8. Use of Observational Experience

Author observations from military training environments, offshore industrial operations, and health-related coaching contexts were used only to inform hypothesis generation and interpretive discussion.

These observations were not treated as empirical evidence. All substantive claims were supported by external sources.

A9. Ethical Considerations

This study involved no human participants, patient data, or identifiable information and therefore did not require ethical approval.

The analysis explicitly avoided individual blame attribution and distinguished non-clinical distress from diagnosed mental illness.

A10. Methodological Limitations

As a narrative systems analysis:

- Causal inference is limited by reliance on correlational data
- Cultural heterogeneity within Western societies limits generalization
- Quantitative effect sizes were not estimated

These limitations are balanced by the integrative scope of the analysis and the generation of testable hypotheses for future research.

References

Bartone, P. T., Eid, J., Johnsen, B. H., Laberg, J. C., & Snook, S. A. (2016). Big five personality factors, hardiness, and social judgment as predictors of leader performance. *Leadership & Organization Development Journal*, 30(6), 498–521.

Centers for Disease Control and Prevention (CDC). (2023). *Suicide data and statistics*. National Center for Injury Prevention and Control.

Fernstrom, J. D. (2013). Large neutral amino acids: Dietary effects on brain neurochemistry and function. *Journal of Nutrition*, 143(10), 1598–1601.

Firth, J., et al. (2020). The efficacy and safety of exercise as an intervention for mental health disorders: A meta-review of meta-analyses. *World Psychiatry*, 19(3), 360–380.

Food and Agriculture Organization of the United Nations (FAO). (2019). *Ultra-processed foods, diet quality, and human health*. FAO.

Guthold, R., Stevens, G. A., Riley, L. M., & Bull, F. C. (2018). Worldwide trends in insufficient physical activity from 2001 to 2016. *The Lancet Global Health*, 6(10), e1077–e1086.

Hall, K. D., et al. (2019). Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial. *Cell Metabolism*, 30(1), 67–77.

Haslam, N., et al. (2018). The dangers of diagnostic inflation in mental health. *Journal of Mental Health*, 27(4), 297–300.

Masten, A. S. (2014). *Ordinary magic: Resilience in development*. Guilford Press.

Matricciani, L., Bin, Y. S., & Olds, T. (2012). Children's sleep duration: A systematic review of trends over the past century. *Sleep Medicine Reviews*, 16(6), 491–500.

Mattson, M. P. (2008). Hormesis defined. *Ageing Research Reviews*, 7(1), 1–7.

Meichenbaum, D. (2007). *Stress inoculation training: A preventative and treatment approach*. Springer.

Milaneschi, Y., Simmons, W. K., van Rossum, E. F. C., & Penninx, B. W. J. H. (2020). Depression and obesity: Evidence of shared biological mechanisms. *Molecular Psychiatry*, 25, 238–250.

Monteiro, C. A., et al. (2019). Ultra-processed foods, diet quality, and health using the NOVA classification system. *Public Health Nutrition*, 22(5), 936–941.

Nolen-Hoeksema, S., Wisco, B. E., & Lyubomirsky, S. (2008). Rethinking rumination. *Perspectives on Psychological Science*, 3(5), 400–424.

OECD. (2022). *PISA 2022 results*. OECD Publishing.

OECD. (2023). *Mental health and well-being*. OECD Publishing.

Office for National Statistics (ONS). (2022). *Suicides in the UK*. UK Government.

Raison, C. L., Capuron, L., & Miller, A. H. (2006). Cytokines sing the blues: Inflammation and the pathogenesis of depression. *Trends in Immunology*, 27(1), 24–31.

Saklayen, M. G. (2018). The global epidemic of the metabolic syndrome. *Current Hypertension Reports*, 20(2), 12.

Schuch, F. B., et al. (2016). Exercise as a protective factor against depression: A meta-analysis. *American Journal of Psychiatry*, 173(3), 244–252.

Scrinis, G. (2013). *Nutritionism: The science and politics of dietary advice*. Columbia University Press.

Seery, M. D., Holman, E. A., & Silver, R. C. (2010). Whatever does not kill us: Cumulative lifetime adversity, vulnerability, and resilience. *Journal of Personality and Social Psychology*, 99(6), 1025–1041.

Twenge, J. M., Joiner, T. E., Rogers, M. L., & Martin, G. N. (2019). Increases in depressive symptoms, suicide-related outcomes, and suicide rates among U.S. adolescents after 2010 and links to increased screen time. *Journal of Abnormal Psychology*, 128(2), 119–133.

World Health Organization (WHO). (2020). *Guidelines on physical activity and sedentary behaviour*. World Health Organization.

World Health Organization (WHO). (2021). *Suicide worldwide in the 21st century*. World Health Organization.

Wolfe, R. R. (2017). Branched-chain amino acids and muscle protein synthesis in humans: Myth or reality? *Journal of the International Society of Sports Nutrition*, 14, 30.

This paper represents an independent systems analysis conducted by the author and does not reflect the views of any institution or governing body.