Classical Conversations ~ Challenge B Intermediate Logic Appendices

"Self-Talk" while copying

Appendix A ~ Defining Truth Tables for the Five Logical Operators

Learning just ONE key for each table gives you the entire table (yay!):

Negation: negation always gives the opposite truth value

Conjunction: the only way a conjunction can be true is when both p and q are true bisjunction: the only way a disjunction can be false is when both p and q are false conditional: the only way a conditional can be false is when p is true and q is false

Biconditional: a biconditional is true whenever the truth values of p and q match

Quicker way to recreate Appendix A:

Neg	ation			Conjunction	Disjunction	Conditional	Biconditional
р	~p	р	q	<u>p • q</u>	<u>p ∨ q</u>	$p \supset q$	<u>p ≡ q</u>
T	F	T	T	T	T	T	T
F	T	T	F	F	T	F	F
		F	T	F	T	T	F
		F	F	F	F	T	T

Appendix B ~ Rules of Replacement

10. De Morgan's Theorems:

1st line: conjunction is false whenever either statement is false (see AppA) 2nd line: disjunction is false only when both statements are false (see AppA)

- 11. Commutation (= commutative law): for or \lor , order doesn't matter
- 12. Association (= associative law): for or ∨, grouping doesn't matter
- 13. Distribution (= distributive law but works both ways): distribute over \lor or \lor over •
- 14. Double Negation (= double negative): 2 negatives makes a positive
- 15. Transposition: when the conditional is true, then if q is false, p must be false OR: when the conditional is true, you can switch the stmts if you negate both (like contrapositive in 1st semester)
- 16. Material Impl: when the conditional is true, either p is false or q is true (or both)
- 17. Material Equivalence:

1st line: when the biconditional is true, then the conditional is true in both

directions $(p \supset q \text{ and } q \supset p)$ – from the definition of biconditional

2nd line: when the biconditional is true, then the truth values of p and q MATCH--EITHER p and q are both true OR p and q are both false – from the truth table

- 18. Exportation: when the truth of both p and q together makes r true, then you can make a chain of conditionals (not very helpful, I know; but neither is the description in the book; I don't remember it being used very often so don't worry about it ©)
- 19. Tautology:

1st line: when p is true then $p \lor p$ is true (because disj. is true when both parts are true)

 2^{nd} line: when p is true then p • p is true (because conj. is true when both parts are true)

Classical Conversations ~ Challenge B

Intermediate Logic Appendices

"Self-Talk" while copying ~ continued

Appendix C ~ Decomposition Rules

NOTES before you begin:

Appendix A starts with what you know about the truth values of PARTS of a compound statement and tells you what you can figure out (deduce) about the truth value of the WHOLE.

Appendix C starts with knowing the truth of the WHOLE compound statement and tells you what you can figure out (deduce) about the PARTS.

You "**decompose**" the whole statement into its component parts by starting with the last column from App A and "working backwards" to the p and q values. Several of these also remind us of some Rules of Replacement from App B ~ can you find DeM, Impl., and Equiv.?

Also, notice that when you need to consider two options (**either... or...**), the truth tree "**branches**" and you have to follow both as you continue analyzing within a longer argument (see Lesson 24 for some examples). By the way, our trees branch *down*, so they look more like a root system. ©

Add these **symbols** (used in Unit 3) with the names at first and as shortcuts once the names are learned. These should sound familiar if you've learned the "self-talk" for App A:

~ ~ D	Double Negation Decomp:	the opposite of a false statement is a true statement
• D ~ • D	Conjunction Decomp: Neg. Conjunction Decomp:	when p•q is true, both p and q are true when p•q is false, either p or q is false (or both)
∨ D	Disjunction Decomp:	when pvq is true, either p or q is true (or both)
~ \ D	Neg. Disjunction Decomp:	when pvq is false, both p and q are false
$\supset \mathcal{D}$	Conditional Decomp:	when p⊃q is true, either p is false or q is true
~ ⊃ D	Neg. Conditional Decomp:	when p⊃q is false, p is true and q is false
$\equiv \mathcal{D}$	Biconditional Decomp:	p≡q is true when p and q are either both true or both false
~≡⊅	Neg. Biconditional Decomp:	p≡q is false when p and q have diff. truth values (2 options)