
Abstract
Abstract—When software does not meet performance requirements, difficult decisions are made to change central data 
structures which may be costly financially and increase development time. In addition, monitoring how these data structures 
are used, and trying to understand performance implications of any change may prevent any evolution of the original 
infrastructure. Thus, radical revisions to software may be avoided due to the barriers of time and engineering complexity 
costs. 

Our solution to helping developers make infrastructure changes to improve performance is to provide a refactoring tool 
where developers may swap data structures. Our tool preserves correctness by utilizing the software’s test suite and also 
measures performance automatically of the swapped data structure. We believe there is need for such a tool to help 
encourage more radical revisions and experimentation in large software projects to improve performance.

Our frameworks success will be evaluated based on preserving the correctness of the software within a developer created 
test suite while providing performance information based on modified data structures

1



Lib Metamorphosis: 
A Performance Analysis Framework for Exchanging Data 

Structures in Performance Sensitive Applications

Mike Shah, Ph.D. (@MichaelShah, www.mshah.io)
Assistant Teaching Professor at Northeastern University

Duration ~5-7 minutes + time for questions
2



A Classic Problem (1/2)
● You are writing a piece of software that 

will manipulate some data
● You need to store, access, and modify 

the data
● What data structure do you choose?

3

?



A Classic Problem (2/2)
● You are writing a piece of software that 

will manipulate some data
● You need to store, access, and modify 

the data
● What data structure do you choose?
● An educated guess is the data structure 

with a good average-case complexity?
○ Or the worse-case?

4



A Classic Problem Another problem (1/2)
● You have profiled a program you are 

working on in a large team and determine 
it is running too slowly

○ (You of course did not write the original 
software)

● You want to try changing the data 
structures to improve performance

○ It will take a lot of effort to replace the data 
structure

○ And you do not know if your effort will yield a 
reliable performance improvement

5



A Classic Problem Another problem (2/2)
● You have profiled a program you are 

working on in a large team and determine 
it is running too slowly

○ (You of course did not write the original 
software)

● You want to try changing the data 
structures to improve performance

○ It will take a lot of effort to replace the data 
structure

○ And you do not know if your effort will yield a 
reliable performance improvement

6

Do you try a radical revision 
of your data structures to 
improve performance?



Our Preliminary Solution:

A tool for data structure profiling and 
data structure swapping

7



Part 1 - Data Profiler

8

● Our preliminary work involves gathering information about data structures
○ What data structure are you using?
○ What operations are you calling from it.

Data Structure Time Function Calls ...
std::vector -90.0% 100

vector.push_back()  -99.0% 99
vector.at()  -1.0% 1

std::queue -10.0% 100
queue.enqueue()  -50.0% 50
queue.dequeue()  -50.0% 50



Part 1 - Data Profiler (Implementation)

9

● We are using the LLVM compiler infrastructure to instrument the C++ STL to 
collect this information of metrics like:

○ time, number of functions, cache misses, etc.
○ (BS/MS student Robert Carney currently working on this)

Data Structure Time Function Calls ...
std::vector -90.0% 100

vector.push_back()  -99.0% 99
vector.at()  -1.0% 1

std::queue -10.0% 100
queue.enqueue()  -50.0% 50
queue.dequeue()  -50.0% 50



Part 2 - Data Structure Swap (1/2)
● We then are working on using LLVM to automatically swap a data structure 

with our own implementation
○ Thus avoiding any actual change to the source (we operate on the intermediate 

representation)

10

Data Structure Time Function Calls ...
std::vector -90.0% 100

vector.push_back()  -99.0% 99
vector.at()  -1.0% 1

std::queue -10.0% 100
queue.enqueue()  -50.0% 50
queue.dequeue()  -50.0% 50



Part 2 - Data Structure Swap (2/2)
● We then are working on using LLVM to automatically swap a data structure 

with our own implementation
○ Thus avoiding any actual change to the source (we operate on the intermediate 

representation)

11

Data Structure Time Function Calls ...
std::vector -90.0% 100

vector.push_back()  -99.0% 99
vector.at()  -1.0% 1

std::queue -10.0% 100
queue.enqueue()  -50.0% 50
queue.dequeue()  -50.0% 50

Hmm, lets replace 
this data structure 

and measure 
performance



**Current Progress**
● We have LLVM Infrastructure for 

instrumentation of data structures
● We can instrument parts of the C++ Standard 

Template Library (STL)
○ (The STL is optimized for the general case, so we 

think we can beat performance in specific domains)

● We are working on the data structure swap 
and how to measure if performance was 
increased

○ Likely using tools like Stabilizer by Curtsinger and 
Berger

■ STABILIZER: Statistically Sound Performance 
Evaluation 12



**We think**
● LLVM is the right approach

○ We may need capabilities to perform further static and data flow analysis
○ We might want to have the ability to only change *some instances* of data structures

■ (perhaps based on collection size, data types used, or frequency specific operations 
like adding and removing data)

● At the least
○ We think having a profile of how much time spent in data structures will be useful

● Our challenge
○ Ensuring a swap does not break program correctness
○ **We think** we can rely on program test suites.

13



Related Work
● Brainy: Effective Selection of Data Structures by Jung et al.
● Chameleon: Adaptive Selection of Collections by Shachum et al.

14



Thank you!

Mike Shah, Ph.D. (@MichaelShah, www.mshah.io)
Assistant Teaching Professor at Northeastern University

Duration ~5-7 minutes + time for questions
15


