Lib Metamorphosis: A Performance Analysis
Framework for Exchanging Data Structures in
Performance Sensitive Applications

Michael D. Shah
Khoury College of Computer Sciences
Northeastern University
Boston, United States
mikeshah @northeastern.edu

Abstract—When software does not meet performance require-
ments, difficult decisions are made to change central data struc-
tures which may be costly financially and increase development
time. In addition, monitoring how these data structures are used,
and trying to understand performance implications of any change
may prevent any evolution of the original infrastructure. Thus,
radical revisions to software may be avoided due to the barriers
of time and engineering complexity costs.

Our solution to helping developers make infrastructure
changes to improve performance is to provide a refactoring tool
where developers may swap data structures. OQur tool preserves
correctness by utilizing the software’s test suite and also measures
performance automatically of the swapped data structure. We
believe there is need for such a tool to help encourage more
radical revisions and experimentation in large software projects
to improve performance.

Our frameworks success will be evaluated based on preserving
the correctness of the software within a developer created test
suite while providing performance information based on modified
data structures.

Index Terms—Performance, Instrumentation, Data Structures,
Algorithms

I. INTRODUCTION

Most popular compilers (e.g. clang, gnu gcc) are distributed
with standard libraries for each respective language they sup-
port. These foundational data structures and algorithms equip
programmers with a quick way to begin building software.
The standard libraries provided (e.g. libc++) are optimized in
a way that performance is good enough for a selection of
general purpose use cases, and great lengths are often taken
to build these libraries. However, a programmer choosing a
data structure may not fully understand the trade offs when
using a data structure other than “it worked correctly” for a
given task. Data structures that have been chosen early in the
development of a project, are now embedded into the core
of the software, and programmers may be very hesitant to
refactor them. As software evolves, the original data structures
chosen may need to change or become more specialized to
meet runtime performance requirements.

Developers may commit a great deal of time by building
data structures or otherwise searching for a free or paid
implementation that they speculate will improve performance.

As an example, a custom implementation of a string may
need to be created if profiling the standard libraries shows
performance problems as the data structure scales. Once a
developer finds another implementation, they must manually
swap the implementation of a std: :string (e.g. in C++)
with their custom data implementation. This manual ’swap’
even for a simple data structure has a cost in developer
time, and developers would want to preemptively know if this
exchange of data structure indeed results in an increase in
performance. Kim et al. surveyed challenges of refactoring
at Microsoft in a large survey, reporting developer hesitation
to refactor given issues of: What if new bugs occur, what if
corner cases are missed, or how long will the refactoring take
[6]?

This paper presents our preliminary approach and design for
a tool that swaps data structures automatically in large projects.
The impact of this tool is to encourage development of more
aggressive refactoring tools, with an emphasis on measuring
the performance gain of a specific refactoring.

II. RELATED WORK

The difficulty in choosing data structure collections has
previously been investigated by Shacham et al. in a tool called
Chameleon [10]. Chameleon attempts to assist developers
in languages like C# and Java which are distributed with
large prebuilt collections of data structures. This shows that
choosing a correct data structure becomes a problem for
programmers especially when considering performance.

De Wael et al have proposed just-in-time data structures
which allow programmers to create a swap rule for when to use
a data structure during run-time [2]. The argument presented
is that finding the ’right’ data structure is not enough, but a
developer must find the right sequence of data representations
for a variety of use cases. The swap rules specified allow data
structures to change their representation (e.g. utilizing a sparse
matrix when data is sparse). We believe this work is closer to
our proposed approach. While monitoring which data structure
to use has some cost, domains like graphics and games have
more fixed resources, providing developers potential cues on
the data representation at compile-time.

NelNeLEEN e NNV N O N S

typedef struct queue({
intx data;
int front, back,
}queue_t;

capacity,size;

void enqueue (queue_t+* g, int data) {
g->data[g->front] = data;

g->front++; // Additional queue code ...

NelNeLIEN o NV, BN NSO I SR

Listing 1. A portion of a simple queue data structure written in C”

Generate IR Representation of Standard Libraries
Data Structures and Functions

< =

Compare IR to custom data structure
implementation

= =

Determine if a swap can be made if function
signatures match all used functions in the code

=

Perform swap, or otherwise report back to
developer incompatibles

Compile code, and measure performance of
program with the data structure exchange

Fig. 1. The pipeline for exchanging data structures using LLVM’s IR

Demsky and Rinard present a system that can enforce data
structure consistency as well as automatically repair any viola-
tions regarding how data structures execute [3]. Our proposed
work does not suggest repairing errors as a contribution, but
does emphasize that the same unit tests should pass when any
new data structure is swapped.

III. OUR ToOL AND EXPERIMENTAL METHODOLOGY

The fundamental question we are trying to solve is: ”Can we
automatically exchange data structures in large projects and
improve runtime performance?” Our approach, preliminary
design and experimental methodology follows.

A. Basic Approach - LLVM Compiler Infrastructure

The preliminary tool we are are building uses LLVM, a
compiler framework for building compilers and supporting
tooling infrastructure [7]. Code that is compiled using the
Clang frontend (for C-family languages like C and C++) is
transformed into an intermediate representation (IR) which
can be manipulated. Code listing 1 is an example queue data
structure in the C-language and code listing 2 is the IR of the
same data structure generated from LLVM. The struct and the
associated enqueue function roughly preserves the structure
and fully preserves the type information of the C queue code.
At the IR level we can then exchange data structures as
illustrated in Figure 1. Because we are modifying only the
intermediate representation, none of the original source code
changes, and we may add instrumention at the IR level to
measure performance.

; Data structure implementation

$struct.queue = type { 132, 132, i32, i32, i32 }

; Function definition with type information

define wvoid @enqueue ($struct.queuex %q, 132 %data) #0

; Body omitted
}
Listing 2. “The generated LLVM Intermediate Representation of struct queue”

B. Preliminary Design

LLVM instrumentation provides an alternative technique to
interpositioning. Interpositioning also allows the replacement
of functions at compile-time, link-time, or run-time. However,
we have two potential advantages.

1) We can embed performance measurement without using
wrapper functions which may introduce additional over-
head. This includes at different granularities such as the
function, basic block, or instruction level.

We can statically analyze the IR for metrics like allo-
cations, branches, or call graph size, understanding data
structure swap potential.

2)

C. Experimental Methodology

In order to measure the effectiveness of our system we
plan on using several large open source projects that are
performance sensitive including: Blender3D, Quake 2 RTX,
and Pixar OpenSubdiv [5], [8], [9]. Each benchmark will have
a lightweight instrumentation layer, injecting timers to the start
and end of any data structure functions that are exchanged.

IV. DISCUSSION AND OPEN QUESTIONS

We believe our system will work for addressing issues of
performance while still maintaining correctness. The mea-
surement of correctness relies on projects having quality and
correct unit tests. Thus correctness is captured by Dijkstra’s
quote program testing can be used very effectively to show the
presence of bugs but never to show their absence [4]. A data
structure in our system thus cannot be swapped unless it at
the least passes the same unit tests for a program.

A second potential flaw with our system is if the software
is engineered with an explicit focus on resilience to errors
as opposed run-time performance. However, we speculate a
user may use our infrastructure to intentionally inject buggy
data structures which is best explored in other works such as
by Coman [1]. Our worked first focuses on applications in
the graphics and games domain where performance is the key
evaluation metric.

V. CONCLUSION

In this paper, we have presented our preliminary design for
a LLVM-based system to swap out data structures and measure
performance of the change. Our tool enforces correctness
based on developer written unit tests, and we hope will
encourage more aggressive revisions of software to improve
performance.

{

[1]

[2]

[3]

[4]
[5]

[7]

[8]
[9]
(10]

REFERENCES

I. D. Coman, A. Sillitti, and G. Succi. An initial characterization of bug-
injecting development sessions. In Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings, ICSE
’18, pages 129-130, New York, NY, USA, 2018. ACM.

M. De Wael. Just-in-time data structures: Towards declarative swap
rules. In Proceedings of the 13th International Workshop on Dynamic
Analysis, WODA 2015, pages 33-34, New York, NY, USA, 2015. ACM.
B. Demsky and M. Rinard. Automatic detection and repair of errors
in data structures. In Proceedings of the 18th Annual ACM SIGPLAN
Conference on Object-oriented Programing, Systems, Languages, and
Applications, OOPSLA 03, pages 78-95, New York, NY, USA, 2003.
ACM.

E. Dijkstra. On the reliability of programs. Jun 2005.

B. Foundation. Blender foundation - blender.org.
https://www.blender.org/, 2019.

M. Kim, T. Zimmermann, and N. Nagappan. A field study of refactoring
challenges and benefits. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
FSE 12, pages 50:1-50:11, New York, NY, USA, 2012. ACM.

C. Lattner and V. Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization, CGO ’04, pages 75—, Washington, DC, USA,
2004. IEEE Computer Society.

NVIDIA. Nvidias implementation of rtx ray-tracing in quake ii.
https://github.com/NVIDIA/Q2RTX, 2019.

PIXAR. Opensubdiv =~ - pixar graphics technologies.
http://graphics.pixar.com/opensubdiv/docs/intro.html, 2019.

O. Shacham, M. Vechev, and E. Yahav. Chameleon: Adaptive selection
of collections. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 09, pages
408-418, New York, NY, USA, 2009. ACM.

