Question to Audience:

How much time (as a percentage of their day) do you
think programmers spend debugging their code?

Social: @MichaelShah 11:00-12:00, Mon, 12th September 2022

Web : mshah.io

Courses: courses.mshah.io
YouTube: 60 minutes | Introductory Audience
www . youtube.com/c/MikeShah

The C++ Conference 2 2 September 12th-16th

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Back To Basics
Debugging

Social: @MichaelShah
Web : mshah.io

11:00-12:00, Mon, 12th September 2022

Courses: courses.mshah.io
YouTube:
www.vyoutube.com/c/MikeShah

The C++ Conference 2 2 September 12th-16th

60 minutes | Introductory Audience

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

The Answer

e Estimate from 2017 is between
35-50% of our time, and the cost

is 50-75% of the budget!

o (as of 2017 from ACM Queue)
https://queue.acm.org/detail.cfm?id=
3068754#.~:text=Software%20devel
opers%20spend%2035%2D50.more

The Debugging

Mindset

DEVON H. O’DELL

%20than%20%24100%20billion%20

annually.
e Sounds like we need to learn

some tools to save us time!

UNDERSTANDING
THE PSYCHOLOGY
OF LEARNING oftware developers spend 35-50 percent of their
STRATEGIES LEADS time validating and debugging software.' The cost
TO EFFECTIVE of debugging, testing, and verification is estimated
PROBLEM-SOLVING to account for 50-75 percent of the total budget
SKILLS. of software development projects, amounting to
more than $100 billion annually." While tools, languages,
how much of a programmer's time is spent debugging X !, Q

Q Al [News [Images < Shopping

About 3,150,000 results (0.55 seconds)

[Videos i More Settings Tools

than $100 billion annually. mar 22,2017

queue.acm.org > detail

Software developers spend 35-50 percent of their time validating and debugging
software. The cost of debugging, testing, and verification is estimated to account for
50-75 percent of the total budget of software development projects, amounting to more

The Debugging Mindset - ACM Queue

https://queue.acm.org/detail.cfm?id=3068754#:~:text=Software%20developers%20spend%2035%2D50,more%20than%20%24100%20billion%20annually
https://queue.acm.org/detail.cfm?id=3068754#:~:text=Software%20developers%20spend%2035%2D50,more%20than%20%24100%20billion%20annually
https://queue.acm.org/detail.cfm?id=3068754#:~:text=Software%20developers%20spend%2035%2D50,more%20than%20%24100%20billion%20annually
https://queue.acm.org/detail.cfm?id=3068754#:~:text=Software%20developers%20spend%2035%2D50,more%20than%20%24100%20billion%20annually
https://queue.acm.org/detail.cfm?id=3068754#:~:text=Software%20developers%20spend%2035%2D50,more%20than%20%24100%20billion%20annually

Abstract

| always tell my students, the debugger is your 'get out of jail free card' when working on
a project. | say the same thing to professionals, debuggers are your 'get out of free jail
card'. The reality is that programmers spend the majority of their time debugging as
opposed to writing new code. Unfortunately many programmers do not learn how to use
a debugger, or otherwise how they should approach debugging. In this talk | am going to
show you how to debug C++ code, starting from the very basics and then demonstrating
how a debugger like GDB can be used to help you track errors in CPU code. Attendees
at this talk will learn names of debugging techniques (e.g. delta debugging), and | will
demonstrate several debugging tools (stepping through code, capturing backtraces,
conditional breakpoints, scripting, and even time traveling!) to demonstrate the power of
debuggers. This is a beginner friendly talk where we are going to start from the

beginning, but | suspect | may show a trick or two that folks with prior experience will
appreciate.

Please do not redistribute slides without prior
permission.

Goal(s) for today

1. Understand Debugging Strategies
2. Introduction to GDB

What you'll learn today -- the metaphor (1/3)

e For those familiar with the board game
monopoly [wiki], there’s a part of the game
where you can ‘go to jail’

o Generally, that's a bad thing in the game

o Butif you know how to use a debugger, ... (next
slide)

https://en.wikipedia.org/wiki/Monopoly_(game)

For those familiar with the board game
monopoly [wiki], there’s a part of the game
where you can ‘go to jail’

o Generally, that’s a bad thing in the game

o But if you know how to use a debugger, it’s kind
of like having one of these

https://en.wikipedia.org/wiki/Monopoly_(game)

(@)

In fact, if you know how to use your
debugging tools, it’s like having a
lot of these ‘get out of jail free’
cards, that help you get out of tricky
situations!

https://en.wikipedia.org/wiki/Monopoly_(game)

An Introduction to getting yourself out of trouble

e Learn some tools (focusingona MNEIf]] how to gEt you rself

gitg):gger) to find bugs and fix out of trouble by [eaming

o And | would also argue that learning 2 ¥§o{=. ntial debuggi ng Ski uS.

a debugger is just another useful

tool for helping you how to | always tell my students, that understanding how to debug is
understand how a program one way to understand how a program works. Debuggers
allow you to see inside of a program, understand the workflow

executes. the state of a program. If you're on a new project for instance,
what better way to get familiar with the product than to step
through it one line or function at a time. And of course, the
main reason to learn debugging is because some estimate we
spend up to 90% of our programming time debugging -- and
now writing new code. Debugging is an essential skill, and you
should learn at least the basics in this course!

https://courses.mshah.io/ (Shameless self-promotion!)

https://courses.mshah.io/

Your Tour Guide for Today

by Mike Shah (he/him)

Associate Teaching Professor at Northeastern University in

Boston, Massachusetts.
o | teach courses in computer systems, computer graphics, and game
engine development.
o My research in program analysis is related to performance building
static/dynamic analysis and software visualization tools.

| do consulting and technical training on modern C++,

Concurrency, OpenGL, and Vulkan projects
o (Usually graphics or games related)

| like teaching, guitar, running, weight training, and anything
in computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

Contact information and more on: www.mshah.io

More online training at

1

http://www.mshah.io
http://courses.mshah.io

Code for the talk

e |ocated here:
https://github.com/MikeShah/Talks/tree/main/2022 cppcon debugging

Issues 1 Pull requests Actions

falks [2022_cppcon_debugging /

main -

12

https://github.com/MikeShah/Talks/tree/main/2022_cppcon_debugging

What is a bug? et

PIXAR
A good place to start o

Some images today from the wonderful movie ‘A Bug’s Life’ by Disney Pixar.
Apologies for any spoilers! It is a great movie! :)

What is a Software Bug?

e A software bug is a defect in the logic, correctness, or performance of a

software system
o Itis a fault that we want to fix it to match our expectations or a technical specification.

m (logic) Programs that compiles, but does not do at runtime do what the developer
expects

m (correctness) Program executes path as expected but produces the wrong result

m (performance) Performance bugs may be dependent on workload on your system or an
external system (e.g. a server)

m (nondeterministic correctness and logic) Heisenbugs for example are bugs that occur
in concurrent code and are sporadically observable

e Software bugs can sometimes go undetected for long periods of time and be
difficult to find, depending on the class of the bug

o Let's take a moment to look at some infamous software bugs... (next slide)

14

https://en.wikipedia.org/wiki/Software_bug

Infamous Software Bugs

Famous
Bugs

$200
$400
$600
$800
$1000

This image is from
the American
game show
“Jeopardy in
which contestants
answer questions
in the form of a
question to earn
money

BN BN NTU BEN NEpea

The First Software Bug - September, 1947

e Admiral Grace Murray
Hopper (Ph.D.) logs
the first computer bug
in her book

e “First actual case of
bug being found”

o The term ‘bug’ was
popularized by Hopper,
but has earlier origins
from radio operators
using the term.

e Link to full story

49

o gwo
/' Joo

|1/d°

Jye

On Aaan :A‘MMV

: /-2 700
5\9“.} "m(,lam / {
1370, (03 MP -me
033 Pro »
Con b

RInS -r w~ 033 /’JJ‘?"“JMM

{im

{1 3
<:°$£V\e

:)-J;r‘fr—_;l :

oy ted HRETE e

Fiest actua

Leard fprm

2. 130yr6yss
2.1306P0w3

4 R S Ry I
ok

15 Sina ehsck
3oy S

@zl"‘*‘*‘?o ?ﬂf\ n‘

(Mo’ﬂ).n n (2 \qs.\ :

1650 xdw }‘dq\.ca.s.-. o-f bvul Lc.'nx {oqn}\.

-

k

{
7032 sy) 0%
G037 §¥YC 795 comuh

ﬁw}’;ﬁ#ﬂ Y6/5725055(-3)

1

16

https://www.nationalgeographic.org/thisday/sep9/worlds-first-computer-bug/

Mars Climate Orbiter - 1998

e Did they mean to put
the units in feet or
meters?

o Software calculations
were in meters...
o Team controlling entered

parameters in imperial
units

e The probe made an A
error of about 100km :
and was destroyed /

e Linkto story TO EARTH

17

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

Win 98 Blue Screen of Death (~1998)

e Thisnextoneis a
correctness bug you can

see in action!

o This happened in front of a
live audience

o https://www.youtube.com/watch?v=
veUyxiLhAxU (41 seconds)

o (The gentleman to the right
was not a programmer but
in marketing, and later
Chief Marketing Officer)

e Link to story

https://www.youtube.com/watch?v=yeUyxjLhAxU
https://www.youtube.com/watch?v=yeUyxjLhAxU
https://www.windowslatest.com/2018/04/25/its-been-20-years-since-windows-98-crashes-live-on-stage-with-bsod/

And | don’t mean to embarrassed
this gentleman on the right -- we

Win 98 Blue Screen of Death (~1998) know developing software can be
ricky!

e Thisnextoneis a
correctness bug you can

see in action!

o This happened in front of a
live audience

o https://www.youtube.com/watch?v=
veUyxiLhAxU (41 seconds)

o (The gentleman to the right
was not a programmer but
in marketing, and later COURTESY MICROSOFT
Chief Marketing Officer)

e Link to story

19

https://www.youtube.com/watch?v=yeUyxjLhAxU
https://www.youtube.com/watch?v=yeUyxjLhAxU
https://www.windowslatest.com/2018/04/25/its-been-20-years-since-windows-98-crashes-live-on-stage-with-bsod/

Y2K Bug - 1999

Software developers did not
think ahead about code that
would last into the new
millennium, thus abbreviating
1999 to “99”

o Banks worried ‘00’ would be
interpreted as ‘1900’ and mess up
interest rate calculations

o Media thought there would be
disasters (and the bug was real),
though we survived.

Link to story

S pomINO EFFECT Y
2 WORLDWIDE
DEPRESSION!

0

20

https://www.nationalgeographic.org/encyclopedia/Y2K-bug/#:~:text=Encyclopedic%20Entry%20Vocabulary-,The%20Y2K%20bug%20was%20a%20computer%20flaw%2C%20or%20bug%2C%20that,dates%20beyond%20December%2031%2C%201999.&text=As%20the%20year%202000%20approached%2C%20computer%20programmers%20realized%20that%20computers,as%202000%2C%20but%20as%201900.

More bugs (Costly bugs!) [source]

o 1962

o Mariner 1 Spacecraft nearly crashes due to a software error ($18 million 1962 dollars)
m Missing ‘hyphen’ in data transmitted back was 1 of 2 major errors [source]

e 1088
o The Morris worm spreads wildly out of control causing an estimated $100 million in damages
m Error was in the worms ‘replication logic’ [source]

e 1994
o Intel's popular pentium processor had a math error in the fdiv operation costing them $475
million in recalls. [source]

e 2010

o Bitcoin Hack lost about 850,000 bitcoins [source]

e And many more...(the list doesn’t start stop at 2010...)

21

https://raygun.com/blog/costly-software-errors-history/
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=MARIN1
https://en.wikipedia.org/wiki/Morris_worm#Coding_mistake_and_resulting_issues
https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://bitcoinbriefly.com/hacking-bitcoin-history-of-bitcoin-hacks/#:~:text=On%20August%2015th%202010%2C%20Jeff,the%2021%20million%20supply%20cap.

22

https://raygun.com/blog/costly-software-errors-history/
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=MARIN1
https://en.wikipedia.org/wiki/Morris_worm#Coding_mistake_and_resulting_issues
https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://bitcoinbriefly.com/hacking-bitcoin-history-of-bitcoin-hacks/#:~:text=On%20August%2015th%202010%2C%20Jeff,the%2021%20million%20supply%20cap.

Why are we creating bugs?
| What's the difficulty?

Why is it hard to get software correct? (1/2)

o : Why is it hard to write correct software? Your
thoughts?

24

Why is it hard to get software correct? (2/2)

o : Why is it hard to write correct software? Your

thoughts?

o (Some of my thoughts)
m Software changes frequently!
m The C++ Standard language specification is 1841 pages [link].
e It's probably hard to use every feature correctly (or for performance)
m Lots of programmer and managers work on a project
e Programmers rely on building a mental model (some approximation) of the
software to reason about behavior
e Likely this mental model will differ amongst some number of programmers and
managers
m Pressure between meeting tight deadlines and economic costs
e (i.e., technical debt accrues and make sit hard to write correct software)
m Poor documentation of APIs -- and sometimes APIs are broken!
m Lack of testing (unit tests, behavior tests, etc.)
m Unanticipated inputs (bad user input) or unexpected system events (network down)
o The reality is, we are humans and will make mistakes!

25

https://isocpp.org/files/papers/N4860.pdf

Today’s topic unfortunately however...is
too much of a mystery

You might ne not feel Ilk"g
= Mthat S JUSt because YOUre

-—

hafta give yourself some: tume ~You re

Today’s Goal

Learn some debugging techniques

T . v - Em VPR

“Although computer science education devotes a lot of time to
teaching algorithms and fundamentals, it appears that not much of
this time is spent applying them to general problems. Debugging is
not taught as a specific course in universities. Despite decades of
literature suggesting such courses be taught, no strong models

exist for teaching debugging.” [The Debugging
Mindset 2017]

—v-“—ou-v - wwE W W ow W " —rr e - LT W ww whw -y W - — —
Bt J - - -
-

_— -
- o

https://queue.acm.org/detail.cfm?id=3068754#:~:text=Software%20developers%20spend%2035%2D50,more%20than%20%24100%20billion%20annually.

Still not enough debugging taught in University

| dedicate lectures to
debugging in university--
but even one full 100
minute lecture is not

enough!

o (Even better, some courses
| sprinkle in debugging
tools throughout the
course)

But | cannot remember a
single lecture during my
time in university on
debugging

Schedule/Road Map

The following is our tentative syllabus for the course, changes should be expected throughout the semester. | will announce in class, piazza, or
through e-mail any major changes.

Week Date Lecture and Readings Assignments Note(s)

L Tuesday - 24 Module 1 - Course Introduction, C++, and Revision Systems(Git) Al Released Welcome back to
September (Due Sept. 23 | class! (Note: First

14, 2021 in-person class is
) the 14th and 16th
respectively for
Lab 1 Out(Due. |each section)
Sept 23 AOE)

R Tuesday - "2 Module 2 - C++ Object Oriented Programming and how to Structure a C++ Proje il att
September Oct. b)

21, 2021
Lab 2 out (Due
Sept. 30 AOE)

SR Tuesday - Module 3 - Design Considerations and Design Patterns 1 Lab 3 out (Due.
September Oct. 7 AOE)
28, 2021

LI Tuesday - | Module 4 - Software Development Lifecycle A3 Out (Due. | Mike out of town
October 05, Oct. 20 for Thursday.

2021 Anywhere on Thursday's
Earth) section will watch
Tuesday video.
Lab 4 Out (Due

5 Tuesday - Module 5 - Debugging Lab 5 out (Due.
October 12, Oct. 21 AOE)
2021

Some wisdom from Dr. Greg Law

https://www.youtube.com/watch?v=Q0027EmHuuQ&feature=youtu.be&t=6

Debugging - our dirty secret

Most of a developer’s time is spent debugging.

What happened?

29

https://www.youtube.com/watch?v=QOo27EmHuu0&feature=youtu.be&t=65

Debugging versus testing

e Debugging is closely related to testing, and both are necessary skills to learn as

software engineers
o Testing means we are checking for the presence of a bug (given an input, test an expected output)
o Debugging is the process of removing an observed fault in our software
o We might test again after debugging to confirm the bug has been isolated
m And likely we may add a unit test to a test suite after debugging

e Please see the many talks on testing at the conference throughout the week

ONSITE & ONLINE ACCESS
“It's A Bug Hunt”

Armor Plate Your Unit Tests
+ Add to Schedule

ONSITE & ONLINE ACCESS
How to Use Dependency
Injection to Write
Maintainable Software
+ Add to Schedule

ONSITE & ONLINE ACCESS

Back to Basics
Testing

+ Add to Schedule

Debugging & Logging & Testing

Gather Town
12:30 - 13:30
Dave Steffen Phil Nash
Amir Kirsh Fedor Pikus

| Debugging & Logging & Testing

Idioms & Techniques
09:00 - 10:00

' Debugging & Logging & Testing '

09:00 - 10:00 16:45 - 17:45
Amir Kirsh Ben Saks Dave Steffen Francesco Zoffoli

Debugging Techniques and Strategies

This is interactive--see if you can spot the bug!

#1 Scan and Look Debuggmg

Thls Works!|

QJ_ _.\“’A.

Common Strategy - Scan and look (1/4)

e If you're familiar with the software, sometimes you can just find it’

o This is called the ‘scan and look’ strategy for bug finding
o Let’s try it out below

33

Try to find the bug!

mike@mike-MS-7B17: ~/C-SoftwareEngineering/5
File Edit View Search Terminal Help

#include <iostream> (Need a hint--next slide)

int main(){
InkE P ="371415;

std::cout << "The value of pi is:" << PI << std::endl;

0;

34

Try to find the bug!

mike@mike-MS-7B17: ~/C-SoftwareEngineering/5
File Edit View Search Terminal Help

mike:5$ g++ -std=c++17 printfdebug.cpp -o printfdebug
mike:5$% ./printfdebug

#include <iostream> The value of pi is:3
mike:5$ [}

int main(){
InkE P ="371415;

std::cout << "The value of pi is:" << PI << std::endl;

0;

35

File Edit View Search Terminal Help

The bug has been spotted!

Logical error/typo by the programmer.

Did not provide the correct type.
The lesson here--even if code compiles,

: : '

it does not Imply correctness! c++17 printfdebug.cpp -o printfdebug
Mg cbug

The value of pi is:3

mike:5$ [}

int PI = 3.1415;

std::cout <<

<< PI << std::endl;

Tradeoffs - Scan and Look (1/2)

e Pros

o Anyone can use this strategy, and there are no external
tools needed.

‘ N\
. CAMPsy;
P VRSTE

e Cons
o Not reliable, in some sense you are guessing where the
error is

m (See Where’s Waldo image on the right)
o This strategy typically does not scale well
m e.g. Code you did not write is hard to scan
m e.g. This strategy is likely to be tedious on even
small projects (< 1,000 lines of code (LOC)).

Where’s Waldo is a children's book where you try to find the main character
https://images-na.ssl-images-amazon.com/images/I/A1aulg-I7WL j

e
PN

'!"\.

g

. 1R 18
a MARTIN ES
HANDFORD
LT T Mg G :
& o & e p» iJ il

37

https://images-na.ssl-images-amazon.com/images/I/A1auIg-I7WL.jpg

Pros
o Anyone ca

eeemteeee [he good news is, we have a tool
Cons that can help us having to do this
N Strategy automatically for us.

error is

m (See

SRNEEEEEY [he compiler can help!

m eg.

m e.g. This strategy is likely to be tedious on even
small projects (< 1,000 lines of code (LOC)).

38

https://images-na.ssl-images-amazon.com/images/I/A1auIg-I7WL.jpg

Scan and look (with the compilers help) (1/2)

e Using the scan and look strategy can be exhausting
o So we can improve this solution by using our compiler (it sees all of our code!)
o -Wall and -Wextra are flags sent to the compiler that will help catch some of these types of
errors.
m Hmm, looks like the error was not caught with g++ though...

Try to find the bug!

mike@mike-MS-7B17: ~/C-SoftwareEngineering/5

mike:5$ fr+ -Wall -Wextraf|-std=c++17 printfdebug.cpp -o printfdebugl|

mike:5%

int main(){

1RtEPI=F 3115 ;

std::cout << "The value of pi is:" << PI << std::endl;

0;

Scan and look (with the compilers help) (2/2)

e Using the scan and look strategy can be exhausting

o So we can improve this solution by using our compiler (it sees all of our code!)
o -Wall and -Wextra are flags sent to the compiler that will help catch some of these types of
errors.
m Hmm, looks like the error was not caught with g++ though...

Tip: Switching between clang++ and g++ (and vice versa) may sometimes report different warnings

mike@mike-MS-7B17: ~/C-SoftwareEngineering/5
File Edit View Search Terminal Help

#include <iostr

printfdebug.cpp:7:14: warning: implicit conversion from 'float' to
int main(){ 'int' changes value from 3.1415 to 3 [-Wliteral-conversion]
int PI = 3.1415f;

Int PI =-3:1415;

std::cout << "The value " << PI << std::endl;

Tradeoffs - Scan and look (with the compilers help)

e Pros
© Our Compller ScaIeS--meanlng it can report rintfdgbug.cpp:7:14: warning: implicit convers@on from 'ﬂoat.:' to
on errors at Compile-time for Iarge programs intlg; ;?r{gigf\{alue from 3.1415 to 3 [-Wliteral-conversion]

° Overlime, compllers tend to get befter at
mike:5%

finding more errors

e Cons
o Only works at compile-time (no bugs found
at runtime)

o Only types of warnings we can fix are what
the compiler reports on.
o What if we don'’t have the source code?
m (i.e., libraries that we link in)
m We cannot fix those warnings!

41

#2 printf debugging

A technique for helping us debug and retrieve values at run-time

Common Strategy - printf debugging (1/5)

e printf isthe ‘C’ function for displaying text on the console
o (The equivalent in C++ is std::cout)

e The idea of printf debugging is that we can print a value at a particular point in

our source code to discover the state of our program.
o We then have to recompile the program and execute it to observe the change

43

Try to find the bug!

mike@mike-MS-7B17: ~/C-SoftwareEngineering/5
File Edit View Search Terminal Help
mike:5$ g++ -Wall -Wextra -std=c++17 printfdebug2.cpp -o printfdebu
g2
mike:5$./printfdebug2
|

int square(int a){

CH
}

LR No warnings this time
(%léuare(5)==25){
exit(1);

- But see if you can spot the
std::cout << "Exiting program\n"; bug (DOn,t Say anything yet')

44

Depending on how much code | put on the
screen--this bug can be harder to find!

Let’s try to help ourselves out with some output
(i.e. printf) statements

(Bug shown on the next slide)

Pomike-MS-7B17: ~/C-SoftwareEngineering/s
File Edit View Search Terminal Help

mike:5$ g++ -Wall -Wextra -std=c++17 printfdebug2.cpp -o printfdebu
g2
Eike:5$./printfdebug2

int square(int a){
a,

}

int main(){

(1){
(square(5)==25){
exit(1);
}
}

std::cout << "Exiting program\n";

OH

File Edit View Search Terminal Help

int square(int a){
a;
}

int main(){

Some well placed output statements
anywhere state can change (i.e. a value can
be generated or a variable mutated) reveal
the value of square(5).

We observe the incorrect value, and confirm
we never enter the branch and see ‘output 2

5
5
5
5
5
)
5
5
5
5
5
5
5
5
5
5
5
5
2 L

46

00pS, an error in our
functions return
value--should be (a*a)

File Edit View Search Terminal Help

" << square(5) << std::endl;

" << square(5) << std::endl;

std::cout << "output 3: " << square(5) << std::endl;

}

std::cout << "Exiting program\n";
47

;5
3: 5
15
38
1= 5
3: 5
12 5
3:°5
125
3: 5
1: 5
3: 8
1= 5
3: 5
iz 5§
3: 5
15
395
e 5

Tradeoffs - printf Debugging

e Pros

o Can help narrow down where bugs occur

o You can observe values at run-time

o You get an idea of where execution is.

o Can ‘pretty print’ or otherwise format your data output.

e Cons

o You may need to make many educated guesses in long running programs
o You are also modifying the source code directly, and need to remember to remove your output
statements
o It requires you to rebuild your software
m Recompilation for every small change can be expensive in terms of time
o It requires you to build additional infrastructure which may or may not be needed
m Meaning: Not every object has or needs to be printed out, but you will need to see a

textual representation of that object
48

#3 Delta Debugging

(A technique to help us narrow our search space for where a bug occurs)

Strategy for debugging - Delta Debugging (1/3)

e \With the printf debugging strategy, you are trying to shrink your delta of where

an error could occur.
o This is called Delta debugging

mike@mike-MS-7B17: ~/C-SoftwareEngineering/5
File Edit View Search Terminal Help
output
output
output
output
output
int square(int a){ output
a; output
} output
output
int main(){ output
output
(1){ output
output
std::cout << U) << square(5) << std::endl; output
(square(5 25 output
std::cout < output 2: " << square(5) << std::endl; output
exit(1); output
output
std::cout << "output 3: " << square(5) << std::endl; output
} output
output
std::cout << "Exiting ram\n"; output
output
output
output

15
3-8
13 5
3.5
1z 5
3205
1l: 5
3205
152
35
1: 5
35
1z 5
3t 5
1l: 5
3: 5
e &
35
1: 5
3: 5
18 5
3: 5
1: 5
32 5
1: 5

File Edit View Search Terminal Help

int square(int a){
} ”
int main(){

(14

std::cout <<

(square(B)—:li){rr
std::cout << "¢

exit(1);

std::cout << "o

}

std::cout << "E

square(5) << std::endl;

" << square(5) << std::endl;

square(5) << std::endl;

Potential bug
could be
anywhere

output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output
output

(S RO, RO, RO, G, RO, G, O, O R C, R O, RO, R, R, R0, R0, R0, O, G, O, RO, R G, R, R,

51

Bug is somewhere in this range

(Note square function is included in our delta
because it is in our search space of where we
put the std::cout statements.)

File Edit View Search Terminal Help

Lud L > output
output

int square(int a){ output
a; output

} output
output

int main(){ output
output

(1){ output

output

std::cout << t 1: " << square(5) << std::endl; output
(square(5)= output

std::cout << "output 2: " << square(5) << std::endl; output

exit(1); output

output

std::cout << "output 3: " << square(5) << std::endl; output

} output
output

std::cout << "Exiting program\n"; output
output

output

output

HFWHRWHRWFRFWFRFWHFRFWHRFWRWRWRWRW
(O RO, RO, RO, RO, RO, G, G, O R C, RO, R, RO, R0, RO, RO, U, C, O, RO, R, e,

Tradeoffs - Delta Debugging

e Pros
o Can help narrow down search space
(thus saving you time)
o Even if you don’t have the source
code--you can still isolate where the error
may be occurring.

e Cons
o lItrelies on you to have knowledge of
your software, and pick a good delta (i.e.
search space)
m You may have to spend more time
picking a delta.

iew Search Terminal Help

t square(int a){
a;

main(){

(1){

std::cout <<
(square(5)==25){
std::cout <<
exit(1l);
}
std::cout <<

}

std::cout <<

’

" << square(5) << std::endl;

" << square(5) << std::endl;

<< square(5) << std::endl;

53

#4 printf debugging revisited

Improving our printf debugging using our programming language

54

printf Debugging - Slightly enhanced

e There are some programming techniques
you can use to help you find and report
bugs

e The C++ language allows us to utilize
something called ‘the preprocessor’ which
does textual replacement before compiling

our code
o The preprocessor allows us to:
m Choose to conditionally have our printf
statements show up at compile-time
m Write a Macro (a textual replacement
function)
e (Some of you are shuddering at the
word ‘Macro’ -- but everything has
tradeoffs!)

In 54 Minutes, Understand the whole C and C++ compilation process

Watch this to understand our compiler and where macros come
into place! In 54 Minutes, Understand the whole C and C++

compilation process

55

https://www.youtube.com/watch?v=ksJ9bdSX5Yo&list=PLvv0ScY6vfd8YRjgGvXKJRAMZQAxNypcH&index=4
https://www.youtube.com/watch?v=ksJ9bdSX5Yo&list=PLvv0ScY6vfd8YRjgGvXKJRAMZQAxNypcH&index=4

printf Debugging using the preprocessor

mike @system76-pc: ~/C-SoftwareEngineering/5
File Edit View Search Terminal Help

e Here's an example where | use
#ifdef to check if a symbol has

been defined.
o Observe in the first compilation below
there is no output
o Observe in the second compilation:
m |passin -D _DEBUG to the
compiler return o;
m You will observe the output is
different based on the
conditional compilation in the ike@system76-pc:~/C-SoftwareEngineering/5$ g++ -std=c++17 prepro
essor.cpp -o preprocessor
preprocessor. ik ft

1
2
3
4
5
6
)
8
9

PI =

std::cout << << PI <<

' :~/C- SoftwareEng1neer1ng/5$ g++ -D DEBUG -std=c+
17 preprocessor.cpp -0 preprocessor
ike@system76-pc:~/C-SoftwareEngineering/5$./preprocessor
Pi 1s5:3.1415

ike@system76-pc:~/C-SoftwareEngineering/5$%

printf Debugging using macros

e Here is an example of writing a

Macro function
o You can wrap statements or functions
with Macros
m This saves typing, and provides
an opportunity to report
information like file and line
information.

File Edit View Search Terminal Help

1
2
3
4
5
6
7
8
9

PRINT(PI,

return 0;

mike@system76-pc:~/C-SoftwareEngineering/5$ g++ -std=c++17 macro.
Cpp -0 macro

mike@system76-pc:~/C-SoftwareEngineering/5$./macro

macro.cpp:16: value is: 3.1415
mike@system76-pc:~/C-SoftwareEngineering/5$ |}

Tradeoffs - Using Preprocessor to Debug

e Pros

(@)
(@)

(@)

Can make the code slightly cleaner
Having error macros available may encourage quick error
checking
m This could be enforced in a style guide
Can more easily turn macros on and off

e Cons

(@)
(@)

Still requires source modification

Macros can quickly expand generate lots of code which may be
hard to debug

Using Macros will increase compilation time

Macros left in the final build can be expensive for build time, or
accidentally logging sensitive information

Can add ‘clutter’ to the programmers mental model of how code
actually executes

Some debuggers will not easily expand Macros (i.e. need to use
-ggdb3 option with gdb)

PI =

std::cout <<

11,17 All

ike@system76-pc:~/C-SoftwareEngineering/5$ g++ -std=c++17 prepro

essor.cpp -0 preprocessor
nike@system76-pc:~/C-SoftwareEngineering/5$./preprocessor
ike@system76-pc:~/C-SoftwareEngineering/5$ g++ -D _DEBUG -std=c+
17 preprocessor.cpp -0 preprocessor
nike@system76-pc:~/C-SoftwareEngineering/5$./preprocessor

Pi is:3.1415

nike@system76-pc:~/C-SoftwareEngineering/5$

main(){
PI =
PRINT(PI,

return 0;

ike@system76-pc:~/C-SoftwareEngineering/5$ g++ -std=c++17 macro.
cpp -0 macro
Inike@system76-pc:~/C-SoftwareEngineering/5$./macro
macro.cpp:16: value is: 3.1415
ike@system76-pc:~/C-SoftwareEngineering/5s ||

Breaking Old Habits

e Here are some techniques we have seen:

. scan and look

. utilizing our compilers

. delta debugging

. printf debugging

. printf with conditional compilation
6. printf with macros

e However, while in practice they are valid--l want to break some old habits
e **| want your first resource to be to use an interactive debugger the next

time you encounter a bug.**
o (i.e. not scatter little print statements in your program)

O b WODN -

o o0 O O O O

59

Interactive Debuggers

Tools that allow introspection into code at run-time e.g., GDB

Yes....you will
have a part of
this -- debuggers
save you time!

60

Interactive Debugger

e Interactive debuggers allows us to
inspect our program without source

modification

o (They can sometimes however be a form
of dynamic binary instrumentation)

e Today | want to show you how to
use an interactive debugger so you

can resolve your C++ bugs
o Using GDB (or the debugger associated
with your operating system/IDE) will be
your first line of defense!

61

How Debuggers Work

e Debuggers work by attaching to a running process
o (This means we debug at run-time) How Debuggers Work
o Typically debuggers use special system calls in the operating ool Dats Sicinos: aad Axchiectans
system to handle events that take place within the specific
process they are attached to.
e Forlinux users, you can investigate ptrace
o For other operating systems there is an equivalent system
call you can further look at.

Jonathan B. Rosenberg

62

https://www.man7.org/linux/man-pages/man2/ptrace.2.html

Compiling with Debugging Symboils to help GDB

e Adding debugging symbols when compiling your program, provides more

information to the debuggers when you execute your program
o Information like source file and line number become more clear
o Typically you can recover symbols for variable and function names in your source files as well
o (Extra debugging information is stored typically in a ‘symbol table’ or other auxiliary data
structure)

e Takeaway:
o When compiling, use ‘-g’ to get debugging symbols
m (There are a few other options like : -ggdb or -g1,-g2,-g3)
m (-g0@ provides no debug information)

63

Running your program with GDB

e Most often, when you execute your program, you are going to execute it
within gdb.
o GDB provides you a command-line interface to interactively explore and execute your program

e Starting GDB

o From within GDB you can type ‘run’ or ‘r’ to start executing your program
o Or alternatively ‘start’ which will pause your program (using a breakpoint) at the main function.

64

GDB Live Code

Sample code available at:
https://github.com/MikeShah/Talks/tree/main/2022 cppcon debugaqging

65

https://github.com/MikeShah/Talks/tree/main/2022_cppcon_debugging

GNU Debugger GDB (1/2)

GNU Development Tools

e | am going to teach you

how to use the GNU gdb - The GNU Debugger
SYNOPSIS
GDB Debugger today gdb [-help] [-nh] [-nx] [-q] [-batch] [-cd=dir] [-f] [-b bps]
[-tty=dev] [-s symfile] [-e prog] [-se prog] [-c core] [-p procID]
e Thisis a free debugger [-x cmds] [-d dir] [prog|prog procID|prog core] et

DESCRIPTION

Ei\/Eﬂ'lEit)lEE on \/\/|r](j()\A/55, Thg purpoig of a"debugger such as GDB is.to allow you to see what is
going on "inside" another program while it executes -- or what another
linux, and Mac

program was doing at the moment it crashed.

GDB can do four main kinds of things (plus other things in support of
these) to help you catch bugs in the act:

Start your program, specifying anything that might affect its
behavior.

66

GNU Debugger GDB (2/2)

You can use whatever debugger you
like, but | will show examples in GDB
for you to follow along with. [re toral 1w BEGEID)

[
re]

v you to see what is

Most IDEs have the same functionality -« e oot
and methOdOIOQy that I Wi” ShOW, things in support of
perhaps a different workflow

67

Let’'s dive in

e | want to spend some time looking at a simple
piece of code
e Starting with a simple example is a good way to

start!

o (Here’s what we'll cover)

Compiling with debug symbols
Running GDB

Starting a program

Executing each line one at a time
Listing the source code

Setting some breakpoints

Round 2 -GDB TUI (Text User Interface

e Many folks do not know--GDB provides a
textual user interface
e You can use Control-x 1 (or Control-x 2) to

enable it.
o Note: It can take a little practice to switch into the
TUIl Mode
o | prefer to just launch with tui: gdb . /prog
--tui

e Cirl-x o will cycle you through the windows
in the tui mode
e You can additionally type ‘list’ if you want to

see the source code you are looking at.
o list linenumber (e.g. list 10)

Breakpoints and stepping through code

mike@system76-pc:~/C-SoftwareEngineering/5$

e The basic workflow when debugging is to set a
‘breakpoint’ ‘br’ at a specific function or line in
your program.

e This pauses execution until you decide to resume.

o You can
m ‘continue’ - Continues execution until the next
breakpoint

m ‘step’ - step to the next line of code that will execute
m ‘next’ - execute the next instruction

e After you set a breakpoint you can:
o display them: ‘info breakpoints’
o remove them ‘delete breakpoint 1’ (e.g. deletes first
breakpoint)
o save breakpoints filename
m source filename (loads the breakpoints)

70

print

e \When you are at a breakpoint,

you want to observe a value
o From now on--you do not have to
litter your code with ‘std::cout’
statements.

e The ‘print’ command allows you
to do that.

o print variable
m (orinhex: print/x
variable)
o And you can also ‘dereference if it's a
pointer’
m eg., print *variable
o And you can also print the address of
a variable
m print &variable

mike@system76-pc:~/C-SoftwareEngineering/5$

3

71

Watchpoints

e You can use a ‘watch’ to interrupt
your program and set a break every
time that a variables value is

modified.
o e.Jg.,
m ‘watchi’in aloop
m (Then use ‘continue’ to continue
execution)

mike@system76-pc:~/C-SoftwareEngineering/5$ gdb ./gdbexample l

72

Conditional Breakpoints

e If you want to monitor variables in a
loop, you can set conditional
breakpoints that watch for a
particular condition

e eg.
o break main.cpp:20 if i > 5
o break main.cpp:20 if i > j

mike@system76-pc:~/C-SoftwareEngineering/5$% I

73

Backtrace (retrieving the call stack)

mike@system76-pc:~/C-SoftwareEngineering/5$ [

e Segmentation faults can be one of
the more common errors you
encounter, and often you’ll have to
changes of state over time.

e You can use the ‘backtrace’
command to see ‘how’ or otherwise
what functions were called to get

you in that location.
o You can use the command ‘bt’ to review
where the program crashed by retrieving
a program stack
o Then ‘info args’ or ‘info frame’ to

74

GDB - Attach to a running process

|mike@system76-pc:~/C-SoftwareEngineering/5$./gdbexample2 |

e (using gdb2.cpp) »

e Graphics applications like we have
been working on run in infinite loops

e If you have already started executing
a program, you can attach a
debugger to it

ps -elf | grep program_name
o look for the Process ID (PID)
o sudo gdb attach {PID number}
m Usually you'll need root privileges
o Helpful hint: Use ‘finish’ to execute until a
function is finished in case you are in
some library of code when you attach to a
process.
m (Or otherwise use ‘up’ to move up
the call stack)

mike@system76-pc:~/C-SoftwareEngineering/5$ ps -elf | grep gdbexample2

75

Slightly More Advanced Example (time travel)

e (gdb3.cpp example)

e More advanced
debuggers allow for
‘time travel’ and reverse
debugging

o target record-full
m next

m reverse-next
m reverse-step

76

Slightly More Advanced Example (polymorphism)

File Edit View Search Terminal Help

Dog (){

(gdb3.cpp example) Lo <

action(){

Many IDEs do not oy e

support some of the ot
more advanced T
features

genericAnimal = Animal;
genericAnimal->action();

How do we know object [
types?

o whatis object_name
How do we know how
an object is behaving?

o info vtbl
object_name

gdb3. cpp:
int main(){

Animal* genericAnimal;
genericAnimal = new Dog;

// What will happen here?
genericAnimal->action();

// How about after this
delete genericAnimal;

// Try 'whatis' in gdb
genericAnimal = new Animal;
genericAnimal->action();

return 0;

hative process 28637 In: main L29 PC: 0x555555554b6e
[0]: <error: Cannot access memory at address 0x89485ed18949ed31>
[1]: <error: Cannot access memory at address 0x89485ed18949ed39>
[2]: <error: Cannot access memory at address 0x89485ed18949ed41>
(gdb) n

(gdb) info vtbl genericAnimal

vtable for 'Animal' @ 0x555555755d10 (subobject @ 0x555555768e70) :

[6]: ©x555555554d90 <Dog::~Dog()>
[1]: 0x555555554dba <Dog::~Dog()>
[2]: 0x555555554d6e <Dog::action()>

77

Debugging Summary

Debugging Techniques

(@)

(@)

(@)

Use your debugging tools!

Compile with ‘' -g’ while developing

Treat warnings as errors that need to be fixed
(-Werror).

Use -Wall and -Wextra

Use two compilers

GDB will help you solve your problems much
quicker than guessing and recompiling.

Debug and Release Builds

Other considerations to be careful of when distributing software to the masses

Debug and release builds (1/2)

e Recall that we did define a symbol

previously DEBUG (or sometimes
DEBUG)

e Just a note that we typically call this a Pr -
‘debug build’ 5 a Pt 4O
e When we do not include debug symbols, hiaen B
we call that the release build. ’ . "
@ : Why might we not want to ike@systen76-pc:~/C-SoftwareEngineering/5$ g+ -std=c++17 prepro
give to consumers a ‘debug build’ i hol & o et s iR, o JlirEieessu

ike@system76-pc:~/C-SoftwareEngineering/5$ g++ -D DEBUG -std=c+
17 preprocessor.cpp -0 preprocessor
ike@system76-pc:~/C-SoftwareEngineering/5$./preprocessor

Pi is:3.1415

ike@system76-pc:~/C-SoftwareEngineering/5$

80

Debug and release builds (2/2)

mike@system76-pc: ~/C-SoftwareEngineering/5

e Recall that we did define a symbol
previously DEBUG (or sometimes

DEBUG)
e Just a note that we typically call this a 9 PI =
‘debug bUIId, g std::cout <<
e When we do not include debug symbols, hiaen B
we call that the release build. a1 .
o . Why mlght we nOt Want tO ike@system76-pc:~/C-SoftwareEngineering/5$ g++ -std=c++17 prepro
. . - €ssor.cpp -0 preprocessor
give to consumers a debug build ike@system76-pc:~/C-SoftwareEngineering/5$./preprocessor
. . ike@system76-pc:~/C-SoftwareEngineering/5$ g++ -D DEBUG -std=c+
[] Hackers can see extra information! 17 preprocessor.cpp -0 preprocessor
. i ike@system76-pc:~/C-SoftwareEngineering/5$./preprocessor
m Note: You can use various tools (strip on Pi i5:3.1415

ike@system76-pc:~/C-SoftwareEngineering/5$

linux for example) to remove debugging
information. 81

Some General Tips
on Code Writing and
Debugging

82

List of Tips to write better software and ease debugging

e Use defensive programming techniques to strengthen your code

o use assert and static_assert
o Break your program into smaller pieces (modularize as necessary)

e Do write tests

e Do think a little bit before writing code
o Explain to someone else, draw a picture, etc.

e Make very small changes to programs, then proceed to add more

e Take breaks
o Walk away, and revisit the problem a little later when your mind is fresh

83

Closing Thoughts (1/2)

o . Are there any weaknesses to debugging?

84

Closing Thoughts (2/2)

o . Are there any weaknesses to debugging?
o One thing to consider is ‘code coverage’ and this comes hand-in hand with testing
m We'll only be able to use our debugging skills on portions of the code that actually
executes
o There’s also some difficulty of debugging optimized builds
m Some debuggers support this better than others

85

A ‘general list’ of tools for debugging

(Somewhat bias towards Linux)

86

Debugging Tools List

e Debuggers
o GDB
o LLDB
e Profilers
o perf

o Intel VTune

e Systems tools
o strace
o ltrace
o dtrace (mac)
e Binary Analysis Tools
o objdump (linux)
o otool (mac)
o Dependency Walker (win)
e Static Analysis Tools
o See ‘sanitizers’ for your compiler (e.g. asan, tsan)
o cppcheck

87

More debugging resources - DDD (1/2)

E=2ll DDD: /public/source/programming/ddd-3.2/ddd/cxxtest.C

-8 X
You are welcome to explore more tools and use fe &t vev eogn conmenss st sce oo £ |

" L 0:'”St_>SE]ﬂ ,Lo’:?un Fﬁ: Bﬁkv I;Jca.x(:zl'\v Pztv %: “:Fa[;: f!:ale- Pj(::t; :et Uf?érr
them in this course 7777777 PP
i - ';ame';ss' — L el L)
: : (st +) owsoadroo] | ENMERTEMED =) “ol C Oxsosdean
e Avisual debuggers like (DDD) may be |——— L=—=m L=
list—>next = new List(a_globa] + start+); &
helpful. e D iREER SRS &
o This debugger visualizes data structures © (i) 1idks /1 visplay this R
P delete 1'ist MM
o https://www.gnu.org/software/ddd/ il i ——
} Intil nis|
. . t=4 DDD Tip of the Day #5 X Ki
e Tools like source trail or other tools may /s =
i Tist % lfyoutrr&a?]eamistake, trydEditd—»ucr‘ldoi Tr::]s will undo the most = gd_aJ
A H H recent debugger command and redisplay the previous program state.
additionally help you investigate and learn o] | |
void ref
about your codebase. {) s | prou | e To|
dates
3
Vi
(gdb) graph display *(1ist—>next—>next—>self) dependent on 4 '\
(gdb) { 5
A list= CList *) 0x804df80 +

88

https://www.gnu.org/software/ddd/

More debugging resources - DDD (2/2)

Here’s an example of DDD in practice

O

Launched with: ddd ./gdbexample2

Uses the same gdb commands we
learned, but also a GUI interface

O

O

This tool works on Linux

The point of me showing you this, is other
IDEs you use (CLion, Visual Studio,
XCode) provide nice interfaces as well.

mike@system76-pc:~/C-SoftwareEngineering/5$ [sllciWAls[soNClIIoQNW

Warning:

Fontstr File Edit VYiew Progran Connands Status Source Data &bl

P TN N A W VA e -

Lookup Find» Break Watch Print Display Plot SHowE = Botate Set Undiso
£

77 ge+
inclu

-g -Hall -Hextra -std=c++17 gdb2.cpp -o gdbexanple2
1lude <iostrean>

Run
Interrupt
Step | Stepi
Hext | Nexti

std:scout << “running " << counter << " times\n"; Until |Finish
4 counter++; Cont | Kill
return 03 4’“P 4‘“‘”‘“
3 Undo | Redo
Edit | Hake

>

;}GNU DDD 3.3.12 (x86_64-pc-linux-gnu), by Dorothea LReading synbols fron ./gdbexanple2...done.
{gdb) ;

A Helcone to DDD 3,3.12 "Dale Head" (x86_64-pc-linux-gnu} "F

89

iebugging Specific Talks

CppCon 2015: Greg Law " Give me 15 minutes & I'll change vour view of GDB"

e [fyou have 15
minutes
(which you
do), watch this
talk

Line: 7 PC: 0x40058c GREG LAW

Give me fifteen
minutes and I'll
change your
view of GDB

91

https://www.youtube.com/watch?v=PorfLSr3DDI

My minimal subset of skills for students (and cheatsheet for you today)

° gdb ./prog to start the program Using the

e gdb and the file ./prog to reload a program Free GNU Debugger
after changes

° ‘'n'" or 'next' to move to next line :gZithrz;?(u%?nigde

° "l" or 'list' to list source code. P

- Set Values
- Print Information
- Retrieve Arguments

° 'Ctrl+x 1' to enter the TUI mode.
o or ‘layout src’ (‘help layout’ for more)

° 'Ctrl+x o' to shift between windows - Retrieve CalllSt o
o or ‘focus cmd’ and ’'focus src’ - Find andEia
° 's' or 'step' to step into the source code. Segmentation Fault
° "br' or 'break' to set a breakpoint followed by
a line number or function name
° 'c' or 'continue' to continue from a breakpoint.
° 'set var=value' to set a variable value.
° 'p' or 'print' followed by a variable.
o Note: You can also dereference a variable > b M) 02/20
(e.g. print *px) to see the dereferenced
value.
e 'bt’ or ‘backtrace’ to get the stack frame. e GDB Beginner Masterclass (23 minutes on
° '"f' or 'finish' to execute a function to
completion. YOUTUbe)
e ‘'info args' to get information about the e Nearly all of my students see and practice

i ing f i '
incoming function arguments this at a minimum in every applicable course |

teach

https://www.youtube.com/watch?v=MTkDTjdDP3c

CppCon 2016: Greqg Law “GDB - A Lot More Than You Knew"

Using GDB more in-depth

cppcon | 2016

THE C++ CONFERENCE + BELLEVUE, WASHINGTON

printf("Hello, world\n");
printf("i is %d\n", i);
i++;
printf("i is now %d\n", i);
return 0;

~/gdb_pro$
~/gdb_pro$ gcc -g hello.c
~/gdb_pro$
~/gdb_pro$ gdb a.out
NU gdb (GDB) 7.7
ICopyright (C) 2014 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
his is free software: you are free to change and redistribute it.
here is NO WARRANTY, to the extent permitted by law. Type "show copying”
land “show warranty" for details.
his GDB was configured as "x86_64-unknown-linux-gnu".
ype "show configuration" for configuration details.
For bug reporting instructions, please see:

1= http://www.gnu.org/software/gdb/bugs/>.
. - Find the GDB manual and other documentation resources online at:
GREG LAW http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

ype "apropos word" to search for commands related to "word"...
Reading symbols from a.out...done.

(gdb) start
[Temporary breakpoint 1 at 0x40056e: file hello.c, line 6.

IStarting program: /home/gel/gdb_pro/a.out
GDB-ALlLo

emporary breakpoint 1, main () at hello.c:6
int i

More Than PR :
You Knew printf(“Hello, world\n");

b pro-gdb

93

https://www.youtube.com/watch?v=-n9Fkq1e6sg

CppCon 2018: Greg Law “Debugging Linux C++"

GDB and other cppcon | 2018
various tools —

Jbreso/
here is NO WARRANTY, to the extent permitted by law. Type "show copying"
nd “show warranty" for details.
his GDB was configured as "x86_64-unknown-linux-gnu".
S race asan ype "show configuration" for configuration details.
J I or bug reporting instructions, please see:

http://www.gnu.org/software/gdb/bugs/>.
ind the GDB manual and other documentation resources online at:

etC http://www.gnu.org/software/gdb/documentation/>.
. or help, type "help".

ype "apropos word" to search for commands related to "word"...
eading symbols from a.out...done.

gdb) target remote | /usr/lib/valgrind/../../bin/vgdb --pid=24893
emote debugging using | /usr/lib/valgrind/../../bin/vgdb --pid=24893
elaying data between gdb and process 24893

eading symbols from /1ib64/1d-1linux-x86-64.50.2...Reading symbols from /usr/lib/debug//1ib/x86 64-linux-gnu/1d-2.27.so0
one.

oaded symbols for /1ib64/1d-1linux-x86-64.50.2

x0000000004001090 in start () from /1ib64/1d-1linux-x86-64.50.2

gdb) ¢

ontinuing.

rogram received signal SIGTRAP, Trace/breakpoint trap.

x000000000509f8da in IO vfprintf internal (s=0x542f760 < I0 2 1 stdout >, format=0x108784 "array[1l] is %d, x=0x%x\n", ap=ap@

ntry=0x1ffefffoee0) at vfprintf.c:1642

642 vfprintf.c: No such file or directory.

gdb) bt

0 0x000000000509f8da in IO vfprintf internal (s=0x542f760 < I0 2 1 stdout >, format=0x108784 "array[1] is %d, x=0x%x\n", ap

ap@entry=0x1ffefffo00) at vfprintf.c:1642 |

1 0x00000000050a7f26 in rintf (format=<optimised out>) at printf.c:33 =

2 0X0000000000108665 in main (argc-l, arguebxlfferffacs) at upinit.c:o Undo - DEbUgglng

db) frame 2 .

g 0x00000000001086e5 in main (argc=1, argv=0x1ffefffae8) at uninit.c:9 LII"IUX C++
printf("array[1] is %d, x=0x%x\n", array[1l], X);

gdb) il

EESEEENEEREEREEEN g ccessing this uninitialized memory,

94

https://www.youtube.com/watch?v=V1t6faOKjuQ&

Cool New Stuff in Gdb 9 and Gdb 10 - Greqg Law - CppCon 2021

No code, but ways
to better approach

the task of
debugging

The C++ Conference

Cppcon ‘ Cool New Stuff in Gdb 9, Gdb 10 and Gdb 11

Greg Law

[Thu 28 O
[Thu 28 Oct 2

08:35 GMT] (1289275/1289278) :
08:35 GMT] (1289275/1289278) :
08:35 GMT] (1289275/1289278) :
08:35 GMT] (1289275/1289278;

08:35 GMT] (1289275/1289278) :
08:35 GMT] (1289275/1289278) :
:08:35 GMT] (1289275/1289278) :
08:35 GMT] (1289275/1289278!

08:35 GMT] (1289275/1289278) :
08:35 GMT] (1289275/1289278) :
08:35 GMT] (1289275/1289278) :
08:35 GMT] (1289275/1289278) :
08:59 GMT] (1289275/1289383) :
:08:50 GMT] (1289275/1289383):

[Thu 28 Oct
[Thu 28 Oct 20;
1.04 XFF: GET /bu
49 oms

[Thu 28 Oct 20,
[Thu 28 Oct 2

4:08:59 GMT] (1289275/1289389) :
08:59 GMT] (1289275/1289389) :

08:59 GMT] (1289275/1289391
:08:59 GMT] (1289275/1289391) :

(1289275/1289393) :
(1289275/1289393)

debuginfod

database record counts:

e d/e 0

files @

archive d/e ©

archive sref 0

archive sdef 0

buildids ©

filenames 30

files scanned (#) 0

files scanned (mb) ©
index db size (mb

d1d/4455ad5bd9874ae5¢dde936793891359¢ 154158/ source/home/ge

not found

) @
groomed database in 6.800651222s

7.0.0.1:43862 UA:elfutils/0.183,Linux/x86 64,ubuntu/2

lem0s/cppcon2021/hello. ¢

127.0.0.1:43864 UA:elfutils/0.183,Linux/x86 64,ubuntu/2
1.64 XFF: GET /buildid/2238045eb12263c1ealdd2bb6042dff799d0d127/debuginfo 464 9 Bms

: not found

127.6.0.1:43866 UA:elfutil

not found
27.6.0.1:43868 UA:elfutil
8, ce/home,

/6.183,Linux/x86_64,ubuntu/2

349028¢ fee13f473222ed28ec4Bad9c7e/debuginfo 404 9 Om

9.183, Linux/.

x86_64,ubuntu/2
0n2 11

HTTP

DEBUGINFOD_URLS=localhost:8002 gdb a.out

95

https://www.youtube.com/watch?v=xSnetY3eoIk

Back To Basics: Debugqing Technigues - Bob Steagall - CppCon 2021

e No code,
but ways
to better The Cost of Software Failures
- January 2018, Tricentis’ Software Fail Watch documents 606 software
approaCh failures in CY 2017

- 3.6 billion people affected

the task of
debugging

- $1.7 trillion lost revenue
- Software failures resulted in 268 years of downtime
- The number of reported failures was 10 percent higher in 2017 than in 2016

- Retail and consumer technology industries experienced the most software failures of any
industry analyzed

Bob Steagall

Back to Basics:
Debugging Techniques

96

https://www.youtube.com/watch?v=M7fV-eQwxrY

Outside the scope of this lecture

e GPU Debugging
o NVidia Nsight

m One example -- most vendors (i.e. AMD,

Intel, etc. have their own debuggers as
well)

o Renderdoc GPU debugger
m https://renderdoc.org/
e More on Time Travel debugging

o https://rr-project.org/ -- time travel debugger
(next step after gdb!)

o https://undo.io/solutions/products/udb/ --
UndoDB debuggers

e Greg Laws resources on more
debugging

o https://undo.io/resources/gdb-watchpoint/

.
i '||!

i
Il

0l

i

nl
'
III|||

|

i g |
||| TR

ll
l| A

NVIDIA Nsight Systems

NVIDIA® Nsight™ Systems is a system-wide performance
analysis tool designed to visualize application’s algorithm, help
you select the largest opportunities to optimize, and tune to scale

efficiently across any quantity of CPUs and GPUs in your
computer; from laptops to DGX servers.

https://renderdoc.org/
https://rr-project.org/
https://undo.io/solutions/products/udb/
https://undo.io/resources/gdb-watchpoint/

Thank you!

S
W
C
Y
w

Back To Baslcs
Debugging

ocial: @MichaelShah

eb: mshah.io

ourses: courses.mshah.io
ouTube:
ww.youtube.com/c/MikeShah

Cppcon

The C++ Conference

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

99

