
11:00-12:00, Mon, 12th September 2022

60 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah

Question to Audience:

How much time (as a percentage of their day) do you
think programmers spend debugging their code?

1

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

11:00-12:00, Mon, 12th September 2022

60 minutes | Introductory Audience

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah

2

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

The Answer

● Estimate from 2017 is between
35-50% of our time, and the cost
is 50-75% of the budget!

○ (as of 2017 from ACM Queue)
○ https://queue.acm.org/detail.cfm?id=

3068754#:~:text=Software%20devel
opers%20spend%2035%2D50,more
%20than%20%24100%20billion%20
annually.

● Sounds like we need to learn
some tools to save us time!

3

https://queue.acm.org/detail.cfm?id=3068754#:~:text=Software%20developers%20spend%2035%2D50,more%20than%20%24100%20billion%20annually
https://queue.acm.org/detail.cfm?id=3068754#:~:text=Software%20developers%20spend%2035%2D50,more%20than%20%24100%20billion%20annually
https://queue.acm.org/detail.cfm?id=3068754#:~:text=Software%20developers%20spend%2035%2D50,more%20than%20%24100%20billion%20annually
https://queue.acm.org/detail.cfm?id=3068754#:~:text=Software%20developers%20spend%2035%2D50,more%20than%20%24100%20billion%20annually
https://queue.acm.org/detail.cfm?id=3068754#:~:text=Software%20developers%20spend%2035%2D50,more%20than%20%24100%20billion%20annually

Abstract

I always tell my students, the debugger is your 'get out of jail free card' when working on
a project. I say the same thing to professionals, debuggers are your 'get out of free jail
card'. The reality is that programmers spend the majority of their time debugging as
opposed to writing new code. Unfortunately many programmers do not learn how to use
a debugger, or otherwise how they should approach debugging. In this talk I am going to
show you how to debug C++ code, starting from the very basics and then demonstrating
how a debugger like GDB can be used to help you track errors in CPU code. Attendees
at this talk will learn names of debugging techniques (e.g. delta debugging), and I will
demonstrate several debugging tools (stepping through code, capturing backtraces,
conditional breakpoints, scripting, and even time traveling!) to demonstrate the power of
debuggers. This is a beginner friendly talk where we are going to start from the
beginning, but I suspect I may show a trick or two that folks with prior experience will
appreciate.

4

Please do not redistribute slides without prior
permission.

5

Goal(s) for today

1. Understand Debugging Strategies
2. Introduction to GDB

6

What you’ll learn today -- the metaphor (1/3)

● For those familiar with the board game
monopoly [wiki], there’s a part of the game
where you can ‘go to jail’

○ Generally, that’s a bad thing in the game
○ But if you know how to use a debugger, ... (next

slide)

7

https://en.wikipedia.org/wiki/Monopoly_(game)

What you’ll learn today -- the metaphor (2/3)

● For those familiar with the board game
monopoly [wiki], there’s a part of the game
where you can ‘go to jail’

○ Generally, that’s a bad thing in the game
○ But if you know how to use a debugger, it’s kind

of like having one of these

8

https://en.wikipedia.org/wiki/Monopoly_(game)

What you’ll learn today -- the metaphor

● For those familiar with the board game
monopoly [wiki], there’s a part of the game
where you can ‘go to jail’

○ Generally, that’s a bad thing in the game
○ But if you know how to use a debugger, it’s kind of

like having one of these
○ In fact, if you know how to use your

debugging tools, it’s like having a
lot of these ‘get out of jail free’
cards, that help you get out of tricky
situations!

9

https://en.wikipedia.org/wiki/Monopoly_(game)

An Introduction to getting yourself out of trouble

● Learn some tools (focusing on a
debugger) to find bugs and fix
bugs

○ And I would also argue that learning
a debugger is just another useful
tool for helping you how to
understand how a program
executes.

10https://courses.mshah.io/ (Shameless self-promotion!)

https://courses.mshah.io/

Your Tour Guide for Today
by Mike Shah (he/him)

● Associate Teaching Professor at Northeastern University in
Boston, Massachusetts.

○ I teach courses in computer systems, computer graphics, and game
engine development.

○ My research in program analysis is related to performance building
static/dynamic analysis and software visualization tools.

● I do consulting and technical training on modern C++,
Concurrency, OpenGL, and Vulkan projects

○ (Usually graphics or games related)

● I like teaching, guitar, running, weight training, and anything
in computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

● Contact information and more on: www.mshah.io
● More online training at courses.mshah.io 11

http://www.mshah.io
http://courses.mshah.io

Code for the talk

● Located here:
https://github.com/MikeShah/Talks/tree/main/2022_cppcon_debugging

12

https://github.com/MikeShah/Talks/tree/main/2022_cppcon_debugging

What is a bug?
A good place to start

13

Some images today from the wonderful movie ‘A Bug’s Life’ by Disney Pixar.
Apologies for any spoilers! It is a great movie! :)

What is a Software Bug?

14

● A software bug is a defect in the logic, correctness, or performance of a
software system

○ It is a fault that we want to fix it to match our expectations or a technical specification.
■ (logic) Programs that compiles, but does not do at runtime do what the developer

expects
■ (correctness) Program executes path as expected but produces the wrong result
■ (performance) Performance bugs may be dependent on workload on your system or an

external system (e.g. a server)
■ (nondeterministic correctness and logic) Heisenbugs for example are bugs that occur

in concurrent code and are sporadically observable
● Software bugs can sometimes go undetected for long periods of time and be

difficult to find, depending on the class of the bug
○ Let’s take a moment to look at some infamous software bugs... (next slide)

https://en.wikipedia.org/wiki/Software_bug

15

Infamous Software Bugs

This image is from
the American
game show
“Jeopardy in
which contestants
answer questions
in the form of a
question to earn
money

Famous
Bugs

The First Software Bug - September, 1947

16

● Admiral Grace Murray
Hopper (Ph.D.) logs
the first computer bug
in her book

● “First actual case of
bug being found”

○ The term ‘bug’ was
popularized by Hopper,
but has earlier origins
from radio operators
using the term.

● Link to full story

https://www.nationalgeographic.org/thisday/sep9/worlds-first-computer-bug/

Mars Climate Orbiter - 1998

17

● Did they mean to put
the units in feet or
meters?

○ Software calculations
were in meters...

○ Team controlling entered
parameters in imperial
units

● The probe made an
error of about 100km
and was destroyed

● Link to story

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

Win 98 Blue Screen of Death (~1998)

● This next one is a
correctness bug you can
see in action!

○ This happened in front of a
live audience

○ https://www.youtube.com/watch?v=

yeUyxjLhAxU (41 seconds)
○ (The gentleman to the right

was not a programmer but
in marketing, and later
Chief Marketing Officer)

● Link to story

18

https://www.youtube.com/watch?v=yeUyxjLhAxU
https://www.youtube.com/watch?v=yeUyxjLhAxU
https://www.windowslatest.com/2018/04/25/its-been-20-years-since-windows-98-crashes-live-on-stage-with-bsod/

Win 98 Blue Screen of Death (~1998)

● This next one is a
correctness bug you can
see in action!

○ This happened in front of a
live audience

○ https://www.youtube.com/watch?v=

yeUyxjLhAxU (41 seconds)
○ (The gentleman to the right

was not a programmer but
in marketing, and later
Chief Marketing Officer)

● Link to story

19

And I don’t mean to embarrassed
this gentleman on the right -- we
know developing software can be
tricky!

https://www.youtube.com/watch?v=yeUyxjLhAxU
https://www.youtube.com/watch?v=yeUyxjLhAxU
https://www.windowslatest.com/2018/04/25/its-been-20-years-since-windows-98-crashes-live-on-stage-with-bsod/

Y2K Bug - 1999

20

● Software developers did not
think ahead about code that
would last into the new
millennium, thus abbreviating
1999 to “99”

○ Banks worried ‘00’ would be
interpreted as ‘1900’ and mess up
interest rate calculations

○ Media thought there would be
disasters (and the bug was real),
though we survived.

● Link to story

https://www.nationalgeographic.org/encyclopedia/Y2K-bug/#:~:text=Encyclopedic%20Entry%20Vocabulary-,The%20Y2K%20bug%20was%20a%20computer%20flaw%2C%20or%20bug%2C%20that,dates%20beyond%20December%2031%2C%201999.&text=As%20the%20year%202000%20approached%2C%20computer%20programmers%20realized%20that%20computers,as%202000%2C%20but%20as%201900.

More bugs (Costly bugs!) [source]

● 1962
○ Mariner 1 Spacecraft nearly crashes due to a software error ($18 million 1962 dollars)

■ Missing ‘hyphen’ in data transmitted back was 1 of 2 major errors [source]
● 1988

○ The Morris worm spreads wildly out of control causing an estimated $100 million in damages
■ Error was in the worms ‘replication logic’ [source]

● 1994
○ Intel’s popular pentium processor had a math error in the fdiv operation costing them $475

million in recalls. [source]
● 2010

○ Bitcoin Hack lost about 850,000 bitcoins [source]
● And many more...(the list doesn’t start stop at 2010...)

21

https://raygun.com/blog/costly-software-errors-history/
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=MARIN1
https://en.wikipedia.org/wiki/Morris_worm#Coding_mistake_and_resulting_issues
https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://bitcoinbriefly.com/hacking-bitcoin-history-of-bitcoin-hacks/#:~:text=On%20August%2015th%202010%2C%20Jeff,the%2021%20million%20supply%20cap.

More bugs (Costly bugs!) [source]

● 1962
○ Mariner 1 Spacecraft nearly crashes due to a software error ($18 million 1962 dollars)

■ Missing ‘hyphen’ in data transmitted back was 1 of 2 major errors [source]
● 1988

○ The Morris worm spreads wildly out of control causing an estimated $100 million in damages
■ Error was in the worms ‘replication logic’ [source]

● 1994
○ Intel’s popular pentium processor had a math error in the fdiv operation costing them $475

million in recalls. [source]
● 2010

○ Bitcoin Hack lost about 850,000 bitcoins [source]
● And many more...(the list doesn’t start stop at 2010)

22

BUGS!

https://raygun.com/blog/costly-software-errors-history/
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=MARIN1
https://en.wikipedia.org/wiki/Morris_worm#Coding_mistake_and_resulting_issues
https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://bitcoinbriefly.com/hacking-bitcoin-history-of-bitcoin-hacks/#:~:text=On%20August%2015th%202010%2C%20Jeff,the%2021%20million%20supply%20cap.

Why are we creating bugs?
What’s the difficulty?

23

Why is it hard to get software correct? (1/2)

● Question to the audience: Why is it hard to write correct software? Your
thoughts?

24

Why is it hard to get software correct? (2/2)

● Question to the audience: Why is it hard to write correct software? Your
thoughts?

○ (Some of my thoughts)
■ Software changes frequently!
■ The C++ Standard language specification is 1841 pages [link].

● It’s probably hard to use every feature correctly (or for performance)
■ Lots of programmer and managers work on a project

● Programmers rely on building a mental model (some approximation) of the
software to reason about behavior

● Likely this mental model will differ amongst some number of programmers and
managers

■ Pressure between meeting tight deadlines and economic costs
● (i.e., technical debt accrues and make sit hard to write correct software)

■ Poor documentation of APIs -- and sometimes APIs are broken!
■ Lack of testing (unit tests, behavior tests, etc.)
■ Unanticipated inputs (bad user input) or unexpected system events (network down)

○ The reality is, we are humans and will make mistakes!
25

https://isocpp.org/files/papers/N4860.pdf

Today’s topic unfortunately however...is
too much of a mystery

26

Today’s topic unfortunately however...is
too much of a mystery

27

Learn some debugging techniques

Today’s Goal

“Although computer science education devotes a lot of time to
teaching algorithms and fundamentals, it appears that not much of
this time is spent applying them to general problems. Debugging is
not taught as a specific course in universities. Despite decades of
literature suggesting such courses be taught, no strong models
exist for teaching debugging.” [ACM Queue The Debugging
Mindset 2017]

https://queue.acm.org/detail.cfm?id=3068754#:~:text=Software%20developers%20spend%2035%2D50,more%20than%20%24100%20billion%20annually.

Still not enough debugging taught in University

● I dedicate lectures to
debugging in university--
but even one full 100
minute lecture is not
enough!

○ (Even better, some courses
I sprinkle in debugging
tools throughout the
course)

● But I cannot remember a
single lecture during my
time in university on
debugging

28

Some wisdom from Dr. Greg Law

https://www.youtube.com/watch?v=QOo27EmHuu0&feature=youtu.be&t=6

29

https://www.youtube.com/watch?v=QOo27EmHuu0&feature=youtu.be&t=65

Debugging versus testing

30

● Debugging is closely related to testing, and both are necessary skills to learn as
software engineers

○ Testing means we are checking for the presence of a bug (given an input, test an expected output)
○ Debugging is the process of removing an observed fault in our software
○ We might test again after debugging to confirm the bug has been isolated

■ And likely we may add a unit test to a test suite after debugging

● Please see the many talks on testing at the conference throughout the week

Debugging Techniques and Strategies
This is interactive--see if you can spot the bug!

31

#1 Scan and Look Debugging

32

...kind of

Common Strategy - Scan and look (1/4)

33

● If you’re familiar with the software, sometimes you can just ‘find it’
○ This is called the ‘scan and look’ strategy for bug finding
○ Let’s try it out below

Common Strategy - Scan and look (2/4)

34

● If you’re familiar with the software, sometimes you can just ‘find it’
○ This is called the ‘scan and look’ strategy for bug finding
○ Let’s try it out below

Try to find the bug!

(Need a hint--next slide)

Common Strategy - Scan and look (3/4)

35

● If you’re familiar with the software, sometimes you can just ‘find it’
○ This is called the ‘scan and look’ strategy for bug finding
○ Let’s try it out below

● Try to find the bug!

Common Strategy - Scan and look (4/4)

36

● If you’re familiar with the software, sometimes you can just ‘find it’
○ This is called the ‘scan and look’ strategy for bug finding
○ Let’s try it out below

Try to find the bug!

Try to find the bug!

The bug has been spotted!

Logical error/typo by the programmer.

Did not provide the correct type.
The lesson here--even if code compiles,
it does not imply correctness!

Tradeoffs - Scan and Look (1/2)

● Pros
○ Anyone can use this strategy, and there are no external

tools needed.
● Cons

○ Not reliable, in some sense you are guessing where the
error is

■ (See Where’s Waldo image on the right)
○ This strategy typically does not scale well

■ e.g. Code you did not write is hard to scan
■ e.g. This strategy is likely to be tedious on even

small projects (< 1,000 lines of code (LOC)).

37
Where’s Waldo is a children's book where you try to find the main character
https://images-na.ssl-images-amazon.com/images/I/A1auIg-I7WL.jpg

https://images-na.ssl-images-amazon.com/images/I/A1auIg-I7WL.jpg

Tradeoffs - Scan and Look (2/2)

● Pros
○ Anyone can use this strategy, and there are no external

tools needed.
● Cons

○ Not reliable, in some sense you are guessing where the
error is

■ (See Where’s Waldo image on the right)
○ This strategy typically does not scale well

■ e.g. Code you did not write is hard to scan
■ e.g. This strategy is likely to be tedious on even

small projects (< 1,000 lines of code (LOC)).

38
Where’s Waldo is a children's book where you try to find the main character
https://images-na.ssl-images-amazon.com/images/I/A1auIg-I7WL.jpg

The good news is, we have a tool
that can help us having to do this
strategy automatically for us.

The compiler can help!

https://images-na.ssl-images-amazon.com/images/I/A1auIg-I7WL.jpg

Scan and look (with the compilers help) (1/2)

39

● Using the scan and look strategy can be exhausting
○ So we can improve this solution by using our compiler (it sees all of our code!)
○ -Wall and -Wextra are flags sent to the compiler that will help catch some of these types of

errors.
■ Hmm, looks like the error was not caught with g++ though...

Try to find the bug!

Scan and look (with the compilers help) (2/2)

40

● Using the scan and look strategy can be exhausting
○ So we can improve this solution by using our compiler (it sees all of our code!)
○ -Wall and -Wextra are flags sent to the compiler that will help catch some of these types of

errors.
■ Hmm, looks like the error was not caught with g++ though...

Tip: Switching between clang++ and g++ (and vice versa) may sometimes report different warnings

Tradeoffs - Scan and look (with the compilers help)

41

● Pros
○ Our compiler scales--meaning it can report

on errors at compile-time for large programs
○ Over time, compilers tend to get better at

finding more errors
● Cons

○ Only works at compile-time (no bugs found
at runtime)

○ Only types of warnings we can fix are what
the compiler reports on.

○ What if we don’t have the source code?
■ (i.e., libraries that we link in)
■ We cannot fix those warnings!

#2 printf debugging
A technique for helping us debug and retrieve values at run-time

42

Common Strategy - printf debugging (1/5)

43

● printf is the ‘C’ function for displaying text on the console
○ (The equivalent in C++ is std::cout)

● The idea of printf debugging is that we can print a value at a particular point in
our source code to discover the state of our program.

○ We then have to recompile the program and execute it to observe the change

Common Strategy - printf debugging (2/5)

44

● printf is the ‘C’ function for displaying text on the console
○ (The equivalent in C++ is std::cout)

● The idea of printf debugging is that we can print a value at a particular point in
our source code to discover the state of our program.

Try to find the bug!

No warnings this time

But see if you can spot the
bug (Don’t say anything yet!)

Common Strategy - printf debugging (3/5)

45

● printf is the ‘C’ function for displaying text on the console
○ (The equivalent in C++ is std::cout)

● The idea of printf debugging is that we can print a value at a particular point in
our source code to discover the state of our program.

Try to find the bug!

Depending on how much code I put on the
screen--this bug can be harder to find!

Let’s try to help ourselves out with some output
(i.e. printf) statements

(Bug shown on the next slide)

No warnings this time

But see if you can spot the
bug (Don’t say anything yet!)

● printf is the ‘C’ function for displaying text on the console
○ (The equivalent in C++ is std::cout)

● The idea of printf debugging is that we can print a value at a particular point in
our source code to discover the state of our program.

Common Strategy - printf debugging (4/5)

46

Some well placed output statements
anywhere state can change (i.e. a value can
be generated or a variable mutated) reveal
the value of square(5).

We observe the incorrect value, and confirm
we never enter the branch and see ‘output 2’

● printf is the ‘C’ function for displaying text on the console
○ (The equivalent in C++ is std::cout)

● The idea of printf debugging is that we can print a value at a particular point in
our source code to discover the state of our program.

Common Strategy - printf debugging (5/5)

47

oops, an error in our
functions return
value--should be (a*a)

Tradeoffs - printf Debugging

● Pros
○ Can help narrow down where bugs occur
○ You can observe values at run-time
○ You get an idea of where execution is.
○ Can ‘pretty print’ or otherwise format your data output.

● Cons
○ You may need to make many educated guesses in long running programs
○ You are also modifying the source code directly, and need to remember to remove your output

statements
○ It requires you to rebuild your software

■ Recompilation for every small change can be expensive in terms of time
○ It requires you to build additional infrastructure which may or may not be needed

■ Meaning: Not every object has or needs to be printed out, but you will need to see a
textual representation of that object

48

#3 Delta Debugging
(A technique to help us narrow our search space for where a bug occurs)

49

Strategy for debugging - Delta Debugging (1/3)

● With the printf debugging strategy, you are trying to shrink your delta of where
an error could occur.

○ This is called Delta debugging

50

Strategy for debugging - Delta Debugging (2/3)

● With the printf debugging strategy, you are trying to shrink your delta of where
an error could occur.

○ This is called Delta debugging

51

Potential bug
could be
anywhere

Strategy for debugging - Delta Debugging (3/3)

● With the printf debugging strategy, you are trying to shrink your delta of where
an error could occur.

○ This is called Delta debugging

52

Bug is somewhere in this range

(Note square function is included in our delta
because it is in our search space of where we
put the std::cout statements.)

Tradeoffs - Delta Debugging

● Pros
○ Can help narrow down search space

(thus saving you time)
○ Even if you don’t have the source

code--you can still isolate where the error
may be occurring.

● Cons
○ It relies on you to have knowledge of

your software, and pick a good delta (i.e.
search space)

■ You may have to spend more time
picking a delta.

53

#4 printf debugging revisited
Improving our printf debugging using our programming language

54

printf Debugging - Slightly enhanced

● There are some programming techniques
you can use to help you find and report
bugs

● The C++ language allows us to utilize
something called ‘the preprocessor’ which
does textual replacement before compiling
our code

○ The preprocessor allows us to:
■ Choose to conditionally have our printf

statements show up at compile-time
■ Write a Macro (a textual replacement

function)
● (Some of you are shuddering at the

word ‘Macro’ -- but everything has
tradeoffs!)

55

Watch this to understand our compiler and where macros come
into place! In 54 Minutes, Understand the whole C and C++
compilation process

https://www.youtube.com/watch?v=ksJ9bdSX5Yo&list=PLvv0ScY6vfd8YRjgGvXKJRAMZQAxNypcH&index=4
https://www.youtube.com/watch?v=ksJ9bdSX5Yo&list=PLvv0ScY6vfd8YRjgGvXKJRAMZQAxNypcH&index=4

printf Debugging using the preprocessor

● Here’s an example where I use
#ifdef to check if a symbol has
been defined.

○ Observe in the first compilation below
there is no output

○ Observe in the second compilation:
■ I pass in -D _DEBUG to the

compiler
■ You will observe the output is

different based on the
conditional compilation in the
preprocessor.

56

1

2

printf Debugging using macros

● Here is an example of writing a
Macro function

○ You can wrap statements or functions
with Macros

■ This saves typing, and provides
an opportunity to report
information like file and line
information.

57

Tradeoffs - Using Preprocessor to Debug

● Pros
○ Can make the code slightly cleaner
○ Having error macros available may encourage quick error

checking
■ This could be enforced in a style guide

○ Can more easily turn macros on and off
● Cons

○ Still requires source modification
○ Macros can quickly expand generate lots of code which may be

hard to debug
○ Using Macros will increase compilation time
○ Macros left in the final build can be expensive for build time, or

accidentally logging sensitive information
○ Can add ‘clutter’ to the programmers mental model of how code

actually executes
○ Some debuggers will not easily expand Macros (i.e. need to use

-ggdb3 option with gdb)
58

Breaking Old Habits

● Here are some techniques we have seen:
○ 1. scan and look
○ 2. utilizing our compilers
○ 3. delta debugging
○ 4. printf debugging
○ 5. printf with conditional compilation
○ 6. printf with macros

● However, while in practice they are valid--I want to break some old habits
● **I want your first resource to be to use an interactive debugger the next

time you encounter a bug.**
○ (i.e. not scatter little print statements in your program)

59

Interactive Debuggers
Tools that allow introspection into code at run-time e.g., GDB

60

Yes....you will
have a part of
this -- debuggers
save you time!

Interactive Debugger

61

● Interactive debuggers allows us to
inspect our program without source
modification

○ (They can sometimes however be a form
of dynamic binary instrumentation)

● Today I want to show you how to
use an interactive debugger so you
can resolve your C++ bugs

○ Using GDB (or the debugger associated
with your operating system/IDE) will be
your first line of defense!

How Debuggers Work

● Debuggers work by attaching to a running process
○ (This means we debug at run-time)
○ Typically debuggers use special system calls in the operating

system to handle events that take place within the specific
process they are attached to.

● For linux users, you can investigate ptrace
○ For other operating systems there is an equivalent system

call you can further look at.

62

https://www.man7.org/linux/man-pages/man2/ptrace.2.html

Compiling with Debugging Symbols to help GDB

● Adding debugging symbols when compiling your program, provides more
information to the debuggers when you execute your program

○ Information like source file and line number become more clear
○ Typically you can recover symbols for variable and function names in your source files as well
○ (Extra debugging information is stored typically in a ‘symbol table’ or other auxiliary data

structure)
● Takeaway:

○ When compiling, use ‘-g’ to get debugging symbols
■ (There are a few other options like : -ggdb or -g1,-g2,-g3)
■ (-g0 provides no debug information)

63

Running your program with GDB

● Most often, when you execute your program, you are going to execute it
within gdb.

○ GDB provides you a command-line interface to interactively explore and execute your program
● Starting GDB

○ From within GDB you can type ‘run’ or ‘r’ to start executing your program
○ Or alternatively ‘start’ which will pause your program (using a breakpoint) at the main function.

64

GDB Live Code
Sample code available at:

https://github.com/MikeShah/Talks/tree/main/2022_cppcon_debugging

65

https://github.com/MikeShah/Talks/tree/main/2022_cppcon_debugging

GNU Debugger GDB (1/2)

66

● I am going to teach you
how to use the GNU
GDB Debugger today

● This is a free debugger
available on Windows,
linux, and Mac

GNU Debugger GDB (2/2)

67

● I am going to teach you
how to use the GNU
GDB Debugger today

● This is a free debugger
available on Windows,
linux, and Mac

You can use whatever debugger you
like, but I will show examples in GDB
for you to follow along with.

Most IDEs have the same functionality
and methodology that I will show,
perhaps a different workflow

Let’s dive in

● I want to spend some time looking at a simple
piece of code

● Starting with a simple example is a good way to
start!

○ (Here’s what we’ll cover)
■ Compiling with debug symbols
■ Running GDB
■ Starting a program
■ Executing each line one at a time
■ Listing the source code
■ Setting some breakpoints

68

Round 2 -GDB TUI (Text User Interface)

● Many folks do not know--GDB provides a
textual user interface

● You can use Control-x 1 (or Control-x 2) to
enable it.

○ Note: It can take a little practice to switch into the
TUI Mode

○ I prefer to just launch with tui: gdb ./prog
--tui

● Ctrl-x o will cycle you through the windows
in the tui mode

● You can additionally type ‘list’ if you want to
see the source code you are looking at.

○ list linenumber (e.g. list 10)

69

Breakpoints and stepping through code

● The basic workflow when debugging is to set a
‘breakpoint’ ‘br’ at a specific function or line in
your program.

● This pauses execution until you decide to resume.
○ You can

■ ‘continue’ - Continues execution until the next
breakpoint

■ ‘step’ - step to the next line of code that will execute
■ ‘next’ - execute the next instruction

● After you set a breakpoint you can:
○ display them: ‘info breakpoints’
○ remove them ‘delete breakpoint 1’ (e.g. deletes first

breakpoint)
○ save breakpoints filename

■ source filename (loads the breakpoints) 70

print

● When you are at a breakpoint,
you want to observe a value

○ From now on--you do not have to
litter your code with ‘std::cout’
statements.

● The ‘print’ command allows you
to do that.

○ print variable
■ (or in hex: print/x

variable)
○ And you can also ‘dereference if it’s a

pointer’
■ e.g., print *variable

○ And you can also print the address of
a variable

■ print &variable
71

Watchpoints

● You can use a ‘watch’ to interrupt
your program and set a break every
time that a variables value is
modified.

○ e.g.,
■ ‘watch i’ in a loop
■ (Then use ‘continue’ to continue

execution)

72

Conditional Breakpoints

● If you want to monitor variables in a
loop, you can set conditional
breakpoints that watch for a
particular condition

● e.g.
○ break main.cpp:20 if i > 5
○ break main.cpp:20 if i > j

73

Backtrace (retrieving the call stack)

● Segmentation faults can be one of
the more common errors you
encounter, and often you’ll have to
changes of state over time.

● You can use the ‘backtrace’
command to see ‘how’ or otherwise
what functions were called to get
you in that location.

○ You can use the command ‘bt’ to review
where the program crashed by retrieving
a program stack

○ Then ‘info args’ or ‘info frame’ to
74

GDB - Attach to a running process

● (using gdb2.cpp)
● Graphics applications like we have

been working on run in infinite loops
● If you have already started executing

a program, you can attach a
debugger to it

○ ps -elf | grep program_name
○ look for the Process ID (PID)
○ sudo gdb attach {PID number}

■ Usually you’ll need root privileges
○ Helpful hint: Use ‘finish’ to execute until a

function is finished in case you are in
some library of code when you attach to a
process.

■ (Or otherwise use ‘up’ to move up
the call stack)

75

Slightly More Advanced Example (time travel)

● (gdb3.cpp example)
● More advanced

debuggers allow for
‘time travel’ and reverse
debugging

○ target record-full
■ next
■ reverse-next
■ reverse-step

76

Slightly More Advanced Example (polymorphism)

● (gdb3.cpp example)
● Many IDEs do not

support some of the
more advanced
features

● How do we know object
types?

○ whatis object_name

● How do we know how
an object is behaving?

○ info vtbl
object_name

77

Debugging Summary

● Debugging Techniques
○ Use your debugging tools!
○ Compile with ‘-g’ while developing
○ Treat warnings as errors that need to be fixed

(-Werror).
○ Use -Wall and -Wextra
○ Use two compilers
○ GDB will help you solve your problems much

quicker than guessing and recompiling.

78

Debug and Release Builds
Other considerations to be careful of when distributing software to the masses

79

Debug and release builds (1/2)

● Recall that we did define a symbol
previously _DEBUG (or sometimes
DEBUG)

● Just a note that we typically call this a
‘debug build’

● When we do not include debug symbols,
we call that the release build.

○ Question to audience: Why might we not want to
give to consumers a ‘debug build’

80

Debug and release builds (2/2)

● Recall that we did define a symbol
previously _DEBUG (or sometimes
DEBUG)

● Just a note that we typically call this a
‘debug build’

● When we do not include debug symbols,
we call that the release build.

○ Question to audience: Why might we not want to
give to consumers a ‘debug build’

■ Hackers can see extra information!
■ Note: You can use various tools (strip on

linux for example) to remove debugging
information. 81

Some General Tips
on Code Writing and

Debugging

82

List of Tips to write better software and ease debugging

● Use defensive programming techniques to strengthen your code
○ use assert and static_assert
○ Break your program into smaller pieces (modularize as necessary)

● Do write tests
● Do think a little bit before writing code

○ Explain to someone else, draw a picture, etc.
● Make very small changes to programs, then proceed to add more
● Take breaks

○ Walk away, and revisit the problem a little later when your mind is fresh

83

Closing Thoughts (1/2)

● Question to audience: Are there any weaknesses to debugging?

84

Closing Thoughts (2/2)

● Question to audience: Are there any weaknesses to debugging?
○ One thing to consider is ‘code coverage’ and this comes hand-in hand with testing

■ We’ll only be able to use our debugging skills on portions of the code that actually
executes

○ There’s also some difficulty of debugging optimized builds
■ Some debuggers support this better than others

85

A ‘general list’ of tools for debugging
(Somewhat bias towards Linux)

86

Debugging Tools List

87

● Debuggers
○ GDB
○ LLDB

● Profilers
○ perf
○ Intel VTune

● Systems tools
○ strace
○ ltrace
○ dtrace (mac)

● Binary Analysis Tools
○ objdump (linux)
○ otool (mac)
○ Dependency Walker (win)

● Static Analysis Tools
○ See ‘sanitizers’ for your compiler (e.g. asan, tsan)
○ cppcheck

More debugging resources - DDD (1/2)

You are welcome to explore more tools and use
them in this course

● A visual debuggers like (DDD) may be
helpful.

○ This debugger visualizes data structures
○ https://www.gnu.org/software/ddd/

● Tools like source trail or other tools may
additionally help you investigate and learn
about your codebase.

88

https://www.gnu.org/software/ddd/

More debugging resources - DDD (2/2)

● Here’s an example of DDD in practice
○ Launched with: ddd ./gdbexample2

● Uses the same gdb commands we
learned, but also a GUI interface

○ This tool works on Linux
○ The point of me showing you this, is other

IDEs you use (CLion, Visual Studio,
XCode) provide nice interfaces as well.

89

Debugging Specific Talks

90

CppCon 2015: Greg Law " Give me 15 minutes & I'll change your view of GDB"

● If you have 15
minutes
(which you
do), watch this
talk

91

https://www.youtube.com/watch?v=PorfLSr3DDI

My minimal subset of skills for students (and cheatsheet for you today)

● gdb ./prog to start the program
● gdb and the file ./prog to reload a program

after changes
● 'n' or 'next' to move to next line
● 'l' or 'list' to list source code.
● 'Ctrl+x 1' to enter the TUI mode.

○ or ‘layout src’ (‘help layout’ for more)
● 'Ctrl+x o' to shift between windows

○ or ‘focus cmd’ and ’focus src’
● 's' or 'step' to step into the source code.
● 'br' or 'break' to set a breakpoint followed by

a line number or function name
● 'c' or 'continue' to continue from a breakpoint.
● 'set var=value' to set a variable value.
● 'p' or 'print' followed by a variable.

○ Note: You can also dereference a variable
(e.g. print *px) to see the dereferenced
value.

● 'bt' or 'backtrace' to get the stack frame.
● 'f' or 'finish' to execute a function to

completion.
● 'info args' to get information about the

incoming function arguments'

92

● GDB Beginner Masterclass (23 minutes on
YouTube)

● Nearly all of my students see and practice
this at a minimum in every applicable course I
teach

https://www.youtube.com/watch?v=MTkDTjdDP3c

CppCon 2016: Greg Law “GDB - A Lot More Than You Knew"

● Using GDB more in-depth

93

https://www.youtube.com/watch?v=-n9Fkq1e6sg

CppCon 2018: Greg Law “Debugging Linux C++”

● GDB and other
various tools
(strace, asan,
etc.)

94

https://www.youtube.com/watch?v=V1t6faOKjuQ&

Cool New Stuff in Gdb 9 and Gdb 10 - Greg Law - CppCon 2021

● No code, but ways
to better approach
the task of
debugging

95

https://www.youtube.com/watch?v=xSnetY3eoIk

Back To Basics: Debugging Techniques - Bob Steagall - CppCon 2021

● No code,
but ways
to better
approach
the task of
debugging

96

https://www.youtube.com/watch?v=M7fV-eQwxrY

Outside the scope of this lecture

● GPU Debugging
○ NVidia Nsight

■ One example -- most vendors (i.e. AMD,
Intel, etc. have their own debuggers as
well)

○ Renderdoc GPU debugger
■ https://renderdoc.org/

● More on Time Travel debugging
○ https://rr-project.org/ -- time travel debugger

(next step after gdb!)
○ https://undo.io/solutions/products/udb/ --

UndoDB debuggers
● Greg Laws resources on more

debugging
○ https://undo.io/resources/gdb-watchpoint/

97

https://renderdoc.org/
https://rr-project.org/
https://undo.io/solutions/products/udb/
https://undo.io/resources/gdb-watchpoint/

Thank you!

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io
YouTube:
www.youtube.com/c/MikeShah

98

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

99

