
AWS IAM

Organization
Optional

Root User

Full Control over

🛑Do not use for day2day
tasks🛑

Contains

Manages

Cannot use

Email &
Password Not a regional service

Principals
Person or application

Principals include federated users
and assumed roles

IAM Resources

Policies
(Permission Policy)

Identity Based
Policies

SCP

Role

Contains & Manage

🛑Don't create long-​term
access keys for your root user.
If malicious user gains access

to your root user access keys =
game over🛑

Root can close account
AWS Account

Security credentials are
account-​specific

Can use AWS Organizations
service control policy (SCP)

to limit the permissions of root
user

AWS account is a container for your AWS resources.
You create / manage your AWS resources in an AWS account, & provides
administrative capabilities for access and billing

AWS Organizations helps you centrally govern your
environment as you scale your workloads in AWS

Contains

Manage

Root is also a Principal

User
Account ID / alias

user name

Group

Contains

Type

Type

Manage

Resources
(Service)

Type

Policies that are embedded
directly into a single user,
group, or role OR Resource

Control what actions the
identity can perform,

on which resources, and
under what conditions

Managed Policies

AWS Managed Customer Managed

Resource Based
Policy

Type

Inline Policies

Are always of type

Type

Types

~998 Policies Exist

Sometimes called Identities

Authentication happens here

IAM Entities / Identities (User or Role)

User Groups

Access Keys
Access key ID +
Secret Access Key

AKIA

🛑Humans can
authenticate with these

keys🛑

🛑 Key known to the creator of the key and
consumer (if used by 3rd party).

Do not expire🛑
Max two access keys per

user (for rotation)

Policies are attached to Principlas

API based access
using access keys

Authorization

Have their own ARN e.g.
arn:aws:iam::aws:policy/IAMReadOnlyAccess

⚠️ Doesn't have to represent
an actual person; you can

create an IAM user in order to
generate an access key for an
application that runs in your
corporate network and needs

AWS access⚠️

🛑 Careful with
"FullAccess" Policies 🛑

⚠️ AWS managed policies don't grant
least privilege permissions. (this is what
AWS says in their documentation. Take

note other CSPs ⚠️

Type

⚠️ Not recommended by
AWS for Users⚠️

Policies that are attached
to a single user, group, or role

Permission
Boundaries

SCP - Service
Control Policy

Access control lists
(ACLs)

🛑 Some service. You can
specify ANY user or even

whole other AWS accounts to
access /edit/ use resources
here! This is not a Role! 🛑

Ro
le

s
ar

e
bo

th
 a

 P
ri

nc
ip

al
s

&
 R

es
ou

rc
es

Trust Policy

Special Type of Policies

A role is intended to be assumable
by anyone who needs it

Access Keys
Access key ID +
Secret Access Key
+ expire time

ASIA

🛑Humans can
authenticate with these

keys🛑

Permission Policy

🛑You can allow Roles to assume
other Roles. Role Chaining🛑

AWS Service Role
For AWS services to use to
do their function

EC2 Service Role
For apps running on EC2

AWS Service
Linked Role

Subtypes

Federation

predefined by the service
 include all the permissions

Oauth, SAML 2.0
(external IDP)

Principal
(who can assume role!) 🛑 You can specify ANY

user or even whole other
AWS accounts to access

resources here! 🛑
Type

🛑Cross Account and Cross
Service is possible and Confused

Deputy Problem🛑

What can role do

These temporary credentials
are called via AWS STS (right?)

AssumeRole

AssumeRole

Requires Policy

Manage & Use Organization policy to manage permissions in your organization.
SCPs offer central control over the maximum available permissions
for all accounts in your organization.

Can use
Similar to resource-​based policies,
although they do not use the JSON format.
Amazon S3, AWS WAF, and
Amazon VPC key services that support ACLs.

Cannot be used to control
access for a principal

within the same account.

All JSON policy

🛑 Signed (authenticated) or
unsigned (anonymous) you can
configure and not just read. Full

control & write to a storage bucket
for example are possible. depends on

service🛑

Manage
EC2, S3 etc.

Authorization 2

Adding a cross-​account
principal to a resource-​based

policy is only half of
establishing the trust

relationship.

Attached to an Identity

For Services/Resources

⚠️ Use Groups to
assign permissions not

individual users⚠️

You specify who has access to
the resource and what actions
 they can perform on
the resource

You can specify who has access to the resource
and what actions they can perform on it

Not Policies managed in
Policies but under Roles

but "same"

Support

⚠️ For Users or Roles.
NOT Groups! ⚠️

A policy that sets the maximum
permissions an IAM entities
can have

IAM JSON Policy

Not the same

You define

Attached here for Roles

Unless Inline

Used throughout AWS IAM policies.
Over ~13 000 permissions (actions) exist for the

services. Action is allow statement but NotAction
(deny) also exist. This can be combined with 'Effect'
Deny. E.g. Deny IAM* except Multifactor was done.

Scope can be defined on resources.
Wildcards are possible throughout.

Conditions can use Boolean expressions.
Can include things like "must MFA before allow"

who (identity) has what access (role) for which resource
AWS IAM Concepts

⚠️If a single permissions policy includes a denied action, AWS denies the entire
request and stops evaluating. This is called an explicit deny. Because requests
are denied by default ⚠️

Session Policies
(for Roles)

Create distinctive role session permissions or to further restrict session permissions,
users or systems can set a session policy when assuming a role on the fly.
Session policy are inline permissions policy which users pass, or your identity-​broker,
 when they assume the role.
 The effective permissions of the session are the intersection of the role’s identity-​
based policies and the session policy. You can pass a single inline session policy
programmatically by using the policy parameter with the AssumeRole,
AssumeRoleWithSAML, AssumeRoleWithWebIdentity, and GetFederationToken API
operations.

No more space but AWS
best practice when using

federation

Policy evaluation logic
This is key

Created by Julian Wiegmann - November 2022 V1
Creative Commons License. Contact me for questions
I tried to make it not too complicated nor make mistakes
Notes:
Terminology used is official AWS terminology.
For IAM concept details see official AWS documentation
This is not an exhaustive list of security tips/risks around IAM!
Nor covers all Identity features/services in AWS

🛑Often abused with IMDS v1 SSRF.
E.g. vuln webapp can call role creds

and attacker can use🛑

