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Motivation

> We can process multiple modalities & solve many tasks.
Our machines should too!

» Masked Autoencoders
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modality.

> We propose to use multi-modal masking to learn strong
cross-modal predictive coding abilities and shared scene
representations.

MultiMAE pre-training

Pre-training objective: Reconstruct masked-out patches
of multiple modalities
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Key properties:

> Applicable to any RGB dataset: To avoid needing a large
multi-task dataset, additional modalities are entirely
pseudo labeled

> Joint training: Only a single pre-training run is needed to
obtain a model that accepts any combination of input
modalities
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# Pre-training modalities
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Masked multi-modal reconstructions
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> Any-to-any cross-modal predictive coding learns shared representations.

No matter the inputs given, predictions are semantically stable.
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Cross-modal predictive coding

> MultiMAE learns to effectively integrate information from different modalities, as
shown here through through input modification.
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Color editing @ Semantic prediction

Semantic editing @ RGB reconstruction
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RGB-only transfer
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> Significantly outperforms ImageNet-supervised baseline
(DeiT) & is competitive with MAE

Classification Semantic Segmentation Depth
Method Arch. (Top 1 acc. 1) (mloU 4) (81 +)
ImageNet-1K ADE20K Hypersim NYUv2 NYUv2
Supervised (DeiT) ViT-B 81.8 45.8 33.9 50.1 80.7
MAE ViT-B 83.3 46.2 36.5 50.8 85.1
MultiMAE ViT-B 83.3 46.2 37.0 52.0 85.4
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> Supports any subset of the modalities used in pre-training

> |f ground-truth modalities are unavailable, can also accept
pseudo labels for improved performance over RGB-only
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Summary

MultiMAE: a simple and efficient multi-modal pre-training
strategy for Vision Transformers

> Relies on masking to learn strong @ e of 32 @
cross-modal predictive coding abilities ‘:f:

> Retains the benefits of MAE for e T :
RGB-only transfer

> Notable performance gains for @ s
multi-modal transfer multlmae.e fl.ch
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