Coverage Report

Created: 2020-08-14 21:15

/src/openssl/crypto/lhash/lhash.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
3
 *
4
 * Licensed under the Apache License 2.0 (the "License").  You may not use
5
 * this file except in compliance with the License.  You can obtain a copy
6
 * in the file LICENSE in the source distribution or at
7
 * https://www.openssl.org/source/license.html
8
 */
9
10
#include <stdio.h>
11
#include <string.h>
12
#include <stdlib.h>
13
#include <openssl/crypto.h>
14
#include <openssl/lhash.h>
15
#include <openssl/err.h>
16
#include "crypto/ctype.h"
17
#include "crypto/lhash.h"
18
#include "lhash_local.h"
19
20
/*
21
 * A hashing implementation that appears to be based on the linear hashing
22
 * algorithm:
23
 * https://en.wikipedia.org/wiki/Linear_hashing
24
 *
25
 * Litwin, Witold (1980), "Linear hashing: A new tool for file and table
26
 * addressing", Proc. 6th Conference on Very Large Databases: 212-223
27
 * https://hackthology.com/pdfs/Litwin-1980-Linear_Hashing.pdf
28
 *
29
 * From the Wikipedia article "Linear hashing is used in the BDB Berkeley
30
 * database system, which in turn is used by many software systems such as
31
 * OpenLDAP, using a C implementation derived from the CACM article and first
32
 * published on the Usenet in 1988 by Esmond Pitt."
33
 *
34
 * The CACM paper is available here:
35
 * https://pdfs.semanticscholar.org/ff4d/1c5deca6269cc316bfd952172284dbf610ee.pdf
36
 */
37
38
#undef MIN_NODES
39
72
#define MIN_NODES       16
40
24
#define UP_LOAD         (2*LH_LOAD_MULT) /* load times 256 (default 2) */
41
24
#define DOWN_LOAD       (LH_LOAD_MULT) /* load times 256 (default 1) */
42
43
static int expand(OPENSSL_LHASH *lh);
44
static void contract(OPENSSL_LHASH *lh);
45
static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh, const void *data, unsigned long *rhash);
46
47
OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c)
48
24
{
49
24
    OPENSSL_LHASH *ret;
50
24
51
24
    if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) {
52
0
        /*
53
0
         * Do not set the error code, because the ERR code uses LHASH
54
0
         * and we want to avoid possible endless error loop.
55
0
         * CRYPTOerr(CRYPTO_F_OPENSSL_LH_NEW, ERR_R_MALLOC_FAILURE);
56
0
         */
57
0
        return NULL;
58
0
    }
59
24
    if ((ret->b = OPENSSL_zalloc(sizeof(*ret->b) * MIN_NODES)) == NULL)
60
24
        goto err;
61
24
    ret->comp = ((c == NULL) ? (OPENSSL_LH_COMPFUNC)strcmp : c);
62
24
    ret->hash = ((h == NULL) ? (OPENSSL_LH_HASHFUNC)OPENSSL_LH_strhash : h);
63
24
    ret->num_nodes = MIN_NODES / 2;
64
24
    ret->num_alloc_nodes = MIN_NODES;
65
24
    ret->pmax = MIN_NODES / 2;
66
24
    ret->up_load = UP_LOAD;
67
24
    ret->down_load = DOWN_LOAD;
68
24
    return ret;
69
0
70
0
err:
71
0
    OPENSSL_free(ret->b);
72
0
    OPENSSL_free(ret);
73
0
    return NULL;
74
24
}
75
76
void OPENSSL_LH_free(OPENSSL_LHASH *lh)
77
16
{
78
16
    if (lh == NULL)
79
16
        return;
80
12
81
12
    OPENSSL_LH_flush(lh);
82
12
    OPENSSL_free(lh->b);
83
12
    OPENSSL_free(lh);
84
12
}
85
86
void OPENSSL_LH_flush(OPENSSL_LHASH *lh)
87
12
{
88
12
    unsigned int i;
89
12
    OPENSSL_LH_NODE *n, *nn;
90
12
91
12
    if (lh == NULL)
92
12
        return;
93
12
94
2.68k
    for (i = 0; i < lh->num_nodes; i++) {
95
2.67k
        n = lh->b[i];
96
7.94k
        while (n != NULL) {
97
5.26k
            nn = n->next;
98
5.26k
            OPENSSL_free(n);
99
5.26k
            n = nn;
100
5.26k
        }
101
2.67k
        lh->b[i] = NULL;
102
2.67k
    }
103
12
}
104
105
void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data)
106
29.5k
{
107
29.5k
    unsigned long hash;
108
29.5k
    OPENSSL_LH_NODE *nn, **rn;
109
29.5k
    void *ret;
110
29.5k
111
29.5k
    lh->error = 0;
112
29.5k
    if ((lh->up_load <= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)) && !expand(lh))
113
0
        return NULL;        /* 'lh->error++' already done in 'expand' */
114
29.5k
115
29.5k
    rn = getrn(lh, data, &hash);
116
29.5k
117
29.5k
    if (*rn == NULL) {
118
10.5k
        if ((nn = OPENSSL_malloc(sizeof(*nn))) == NULL) {
119
0
            lh->error++;
120
0
            return NULL;
121
0
        }
122
10.5k
        nn->data = data;
123
10.5k
        nn->next = NULL;
124
10.5k
        nn->hash = hash;
125
10.5k
        *rn = nn;
126
10.5k
        ret = NULL;
127
10.5k
        lh->num_insert++;
128
10.5k
        lh->num_items++;
129
19.0k
    } else {                    /* replace same key */
130
19.0k
        ret = (*rn)->data;
131
19.0k
        (*rn)->data = data;
132
19.0k
        lh->num_replace++;
133
19.0k
    }
134
29.5k
    return ret;
135
29.5k
}
136
137
void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data)
138
0
{
139
0
    unsigned long hash;
140
0
    OPENSSL_LH_NODE *nn, **rn;
141
0
    void *ret;
142
0
143
0
    lh->error = 0;
144
0
    rn = getrn(lh, data, &hash);
145
0
146
0
    if (*rn == NULL) {
147
0
        lh->num_no_delete++;
148
0
        return NULL;
149
0
    } else {
150
0
        nn = *rn;
151
0
        *rn = nn->next;
152
0
        ret = nn->data;
153
0
        OPENSSL_free(nn);
154
0
        lh->num_delete++;
155
0
    }
156
0
157
0
    lh->num_items--;
158
0
    if ((lh->num_nodes > MIN_NODES) &&
159
0
        (lh->down_load >= (lh->num_items * LH_LOAD_MULT / lh->num_nodes)))
160
0
        contract(lh);
161
0
162
0
    return ret;
163
0
}
164
165
void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data)
166
20.0k
{
167
20.0k
    unsigned long hash;
168
20.0k
    OPENSSL_LH_NODE **rn;
169
20.0k
    void *ret;
170
20.0k
171
20.0k
    tsan_store((TSAN_QUALIFIER int *)&lh->error, 0);
172
20.0k
173
20.0k
    rn = getrn(lh, data, &hash);
174
20.0k
175
20.0k
    if (*rn == NULL) {
176
2.92k
        tsan_counter(&lh->num_retrieve_miss);
177
2.92k
        return NULL;
178
17.1k
    } else {
179
17.1k
        ret = (*rn)->data;
180
17.1k
        tsan_counter(&lh->num_retrieve);
181
17.1k
    }
182
20.0k
183
20.0k
    return ret;
184
20.0k
}
185
186
static void doall_util_fn(OPENSSL_LHASH *lh, int use_arg,
187
                          OPENSSL_LH_DOALL_FUNC func,
188
                          OPENSSL_LH_DOALL_FUNCARG func_arg, void *arg)
189
8
{
190
8
    int i;
191
8
    OPENSSL_LH_NODE *a, *n;
192
8
193
8
    if (lh == NULL)
194
8
        return;
195
8
196
8
    /*
197
8
     * reverse the order so we search from 'top to bottom' We were having
198
8
     * memory leaks otherwise
199
8
     */
200
72
    for (i = lh->num_nodes - 1; i >= 0; i--) {
201
64
        a = lh->b[i];
202
104
        while (a != NULL) {
203
40
            n = a->next;
204
40
            if (use_arg)
205
0
                func_arg(a->data, arg);
206
40
            else
207
40
                func(a->data);
208
40
            a = n;
209
40
        }
210
64
    }
211
8
}
212
213
void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func)
214
8
{
215
8
    doall_util_fn(lh, 0, func, (OPENSSL_LH_DOALL_FUNCARG)0, NULL);
216
8
}
217
218
void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNCARG func, void *arg)
219
0
{
220
0
    doall_util_fn(lh, 1, (OPENSSL_LH_DOALL_FUNC)0, func, arg);
221
0
}
222
223
static int expand(OPENSSL_LHASH *lh)
224
5.16k
{
225
5.16k
    OPENSSL_LH_NODE **n, **n1, **n2, *np;
226
5.16k
    unsigned int p, pmax, nni, j;
227
5.16k
    unsigned long hash;
228
5.16k
229
5.16k
    nni = lh->num_alloc_nodes;
230
5.16k
    p = lh->p;
231
5.16k
    pmax = lh->pmax;
232
5.16k
    if (p + 1 >= pmax) {
233
48
        j = nni * 2;
234
48
        n = OPENSSL_realloc(lh->b, sizeof(OPENSSL_LH_NODE *) * j);
235
48
        if (n == NULL) {
236
0
            lh->error++;
237
0
            return 0;
238
0
        }
239
48
        lh->b = n;
240
48
        memset(n + nni, 0, sizeof(*n) * (j - nni));
241
48
        lh->pmax = nni;
242
48
        lh->num_alloc_nodes = j;
243
48
        lh->num_expand_reallocs++;
244
48
        lh->p = 0;
245
5.11k
    } else {
246
5.11k
        lh->p++;
247
5.11k
    }
248
5.16k
249
5.16k
    lh->num_nodes++;
250
5.16k
    lh->num_expands++;
251
5.16k
    n1 = &(lh->b[p]);
252
5.16k
    n2 = &(lh->b[p + pmax]);
253
5.16k
    *n2 = NULL;
254
5.16k
255
22.4k
    for (np = *n1; np != NULL;) {
256
17.2k
        hash = np->hash;
257
17.2k
        if ((hash % nni) != p) { /* move it */
258
2.94k
            *n1 = (*n1)->next;
259
2.94k
            np->next = *n2;
260
2.94k
            *n2 = np;
261
2.94k
        } else
262
14.3k
            n1 = &((*n1)->next);
263
17.2k
        np = *n1;
264
17.2k
    }
265
5.16k
266
5.16k
    return 1;
267
5.16k
}
268
269
static void contract(OPENSSL_LHASH *lh)
270
0
{
271
0
    OPENSSL_LH_NODE **n, *n1, *np;
272
0
273
0
    np = lh->b[lh->p + lh->pmax - 1];
274
0
    lh->b[lh->p + lh->pmax - 1] = NULL; /* 24/07-92 - eay - weird but :-( */
275
0
    if (lh->p == 0) {
276
0
        n = OPENSSL_realloc(lh->b,
277
0
                            (unsigned int)(sizeof(OPENSSL_LH_NODE *) * lh->pmax));
278
0
        if (n == NULL) {
279
0
            /* fputs("realloc error in lhash",stderr); */
280
0
            lh->error++;
281
0
            return;
282
0
        }
283
0
        lh->num_contract_reallocs++;
284
0
        lh->num_alloc_nodes /= 2;
285
0
        lh->pmax /= 2;
286
0
        lh->p = lh->pmax - 1;
287
0
        lh->b = n;
288
0
    } else
289
0
        lh->p--;
290
0
291
0
    lh->num_nodes--;
292
0
    lh->num_contracts++;
293
0
294
0
    n1 = lh->b[(int)lh->p];
295
0
    if (n1 == NULL)
296
0
        lh->b[(int)lh->p] = np;
297
0
    else {
298
0
        while (n1->next != NULL)
299
0
            n1 = n1->next;
300
0
        n1->next = np;
301
0
    }
302
0
}
303
304
static OPENSSL_LH_NODE **getrn(OPENSSL_LHASH *lh,
305
                               const void *data, unsigned long *rhash)
306
49.6k
{
307
49.6k
    OPENSSL_LH_NODE **ret, *n1;
308
49.6k
    unsigned long hash, nn;
309
49.6k
    OPENSSL_LH_COMPFUNC cf;
310
49.6k
311
49.6k
    hash = (*(lh->hash)) (data);
312
49.6k
    tsan_counter(&lh->num_hash_calls);
313
49.6k
    *rhash = hash;
314
49.6k
315
49.6k
    nn = hash % lh->pmax;
316
49.6k
    if (nn < lh->p)
317
23.8k
        nn = hash % lh->num_alloc_nodes;
318
49.6k
319
49.6k
    cf = lh->comp;
320
49.6k
    ret = &(lh->b[(int)nn]);
321
118k
    for (n1 = *ret; n1 != NULL; n1 = n1->next) {
322
104k
        tsan_counter(&lh->num_hash_comps);
323
104k
        if (n1->hash != hash) {
324
65.0k
            ret = &(n1->next);
325
65.0k
            continue;
326
65.0k
        }
327
39.6k
        tsan_counter(&lh->num_comp_calls);
328
39.6k
        if (cf(n1->data, data) == 0)
329
36.1k
            break;
330
3.48k
        ret = &(n1->next);
331
3.48k
    }
332
49.6k
    return ret;
333
49.6k
}
334
335
/*
336
 * The following hash seems to work very well on normal text strings no
337
 * collisions on /usr/dict/words and it distributes on %2^n quite well, not
338
 * as good as MD5, but still good.
339
 */
340
unsigned long OPENSSL_LH_strhash(const char *c)
341
160
{
342
160
    unsigned long ret = 0;
343
160
    long n;
344
160
    unsigned long v;
345
160
    int r;
346
160
347
160
    if ((c == NULL) || (*c == '\0'))
348
0
        return ret;
349
160
350
160
    n = 0x100;
351
1.00k
    while (*c) {
352
848
        v = n | (*c);
353
848
        n += 0x100;
354
848
        r = (int)((v >> 2) ^ v) & 0x0f;
355
848
        ret = (ret << r) | (ret >> (32 - r));
356
848
        ret &= 0xFFFFFFFFL;
357
848
        ret ^= v * v;
358
848
        c++;
359
848
    }
360
160
    return (ret >> 16) ^ ret;
361
160
}
362
363
unsigned long openssl_lh_strcasehash(const char *c)
364
0
{
365
0
    unsigned long ret = 0;
366
0
    long n;
367
0
    unsigned long v;
368
0
    int r;
369
0
370
0
    if (c == NULL || *c == '\0')
371
0
        return ret;
372
0
373
0
    for (n = 0x100; *c != '\0'; n += 0x100) {
374
0
        v = n | ossl_tolower(*c);
375
0
        r = (int)((v >> 2) ^ v) & 0x0f;
376
0
        ret = (ret << r) | (ret >> (32 - r));
377
0
        ret &= 0xFFFFFFFFL;
378
0
        ret ^= v * v;
379
0
        c++;
380
0
    }
381
0
    return (ret >> 16) ^ ret;
382
0
}
383
384
unsigned long OPENSSL_LH_num_items(const OPENSSL_LHASH *lh)
385
4
{
386
4
    return lh ? lh->num_items : 0;
387
4
}
388
389
unsigned long OPENSSL_LH_get_down_load(const OPENSSL_LHASH *lh)
390
0
{
391
0
    return lh->down_load;
392
0
}
393
394
void OPENSSL_LH_set_down_load(OPENSSL_LHASH *lh, unsigned long down_load)
395
0
{
396
0
    lh->down_load = down_load;
397
0
}
398
399
int OPENSSL_LH_error(OPENSSL_LHASH *lh)
400
80
{
401
80
    return lh->error;
402
80
}