/src/openssl/crypto/sha/sha256.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright 2004-2020 The OpenSSL Project Authors. All Rights Reserved. |
3 | | * |
4 | | * Licensed under the Apache License 2.0 (the "License"). You may not use |
5 | | * this file except in compliance with the License. You can obtain a copy |
6 | | * in the file LICENSE in the source distribution or at |
7 | | * https://www.openssl.org/source/license.html |
8 | | */ |
9 | | |
10 | | /* |
11 | | * SHA256 low level APIs are deprecated for public use, but still ok for |
12 | | * internal use. |
13 | | */ |
14 | | #include "internal/deprecated.h" |
15 | | |
16 | | #include <openssl/opensslconf.h> |
17 | | |
18 | | #include <stdlib.h> |
19 | | #include <string.h> |
20 | | |
21 | | #include <openssl/crypto.h> |
22 | | #include <openssl/sha.h> |
23 | | #include <openssl/opensslv.h> |
24 | | #include "internal/endian.h" |
25 | | |
26 | 0 | int SHA224_Init(SHA256_CTX *c) |
27 | 0 | { |
28 | 0 | memset(c, 0, sizeof(*c)); |
29 | 0 | c->h[0] = 0xc1059ed8UL; |
30 | 0 | c->h[1] = 0x367cd507UL; |
31 | 0 | c->h[2] = 0x3070dd17UL; |
32 | 0 | c->h[3] = 0xf70e5939UL; |
33 | 0 | c->h[4] = 0xffc00b31UL; |
34 | 0 | c->h[5] = 0x68581511UL; |
35 | 0 | c->h[6] = 0x64f98fa7UL; |
36 | 0 | c->h[7] = 0xbefa4fa4UL; |
37 | 0 | c->md_len = SHA224_DIGEST_LENGTH; |
38 | 0 | return 1; |
39 | | } |
40 | | |
41 | 0 | int SHA256_Init(SHA256_CTX *c) |
42 | 0 | { |
43 | 0 | memset(c, 0, sizeof(*c)); |
44 | 0 | c->h[0] = 0x6a09e667UL; |
45 | 0 | c->h[1] = 0xbb67ae85UL; |
46 | 0 | c->h[2] = 0x3c6ef372UL; |
47 | 0 | c->h[3] = 0xa54ff53aUL; |
48 | 0 | c->h[4] = 0x510e527fUL; |
49 | 0 | c->h[5] = 0x9b05688cUL; |
50 | 0 | c->h[6] = 0x1f83d9abUL; |
51 | 0 | c->h[7] = 0x5be0cd19UL; |
52 | 0 | c->md_len = SHA256_DIGEST_LENGTH; |
53 | 0 | return 1; |
54 | | } |
55 | | |
56 | 0 | unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md) |
57 | 0 | { |
58 | 0 | SHA256_CTX c; |
59 | 0 | static unsigned char m[SHA224_DIGEST_LENGTH]; |
60 | 0 |
|
61 | 0 | if (md == NULL) |
62 | 0 | md = m; |
63 | 0 | SHA224_Init(&c); |
64 | 0 | SHA256_Update(&c, d, n); |
65 | 0 | SHA256_Final(md, &c); |
66 | 0 | OPENSSL_cleanse(&c, sizeof(c)); |
67 | 0 | return md; |
68 | | } |
69 | | |
70 | 0 | unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md) |
71 | 0 | { |
72 | 0 | SHA256_CTX c; |
73 | 0 | static unsigned char m[SHA256_DIGEST_LENGTH]; |
74 | 0 |
|
75 | 0 | if (md == NULL) |
76 | 0 | md = m; |
77 | 0 | SHA256_Init(&c); |
78 | 0 | SHA256_Update(&c, d, n); |
79 | 0 | SHA256_Final(md, &c); |
80 | 0 | OPENSSL_cleanse(&c, sizeof(c)); |
81 | 0 | return md; |
82 | | } |
83 | | |
84 | 0 | int SHA224_Update(SHA256_CTX *c, const void *data, size_t len) |
85 | 0 | { |
86 | 0 | return SHA256_Update(c, data, len); |
87 | | } |
88 | | |
89 | 0 | int SHA224_Final(unsigned char *md, SHA256_CTX *c) |
90 | 0 | { |
91 | 0 | return SHA256_Final(md, c); |
92 | | } |
93 | | |
94 | | #define DATA_ORDER_IS_BIG_ENDIAN |
95 | 0 |
|
96 | | #define HASH_LONG SHA_LONG |
97 | 0 | #define HASH_CTX SHA256_CTX |
98 | | #define HASH_CBLOCK SHA_CBLOCK |
99 | | |
100 | | /* |
101 | | * Note that FIPS180-2 discusses "Truncation of the Hash Function Output." |
102 | | * default: case below covers for it. It's not clear however if it's |
103 | | * permitted to truncate to amount of bytes not divisible by 4. I bet not, |
104 | | * but if it is, then default: case shall be extended. For reference. |
105 | | * Idea behind separate cases for pre-defined lengths is to let the |
106 | | * compiler decide if it's appropriate to unroll small loops. |
107 | 0 | */ |
108 | 0 | #define HASH_MAKE_STRING(c,s) do { \ |
109 | 0 | unsigned long ll; \ |
110 | 0 | unsigned int nn; \ |
111 | 0 | switch ((c)->md_len) \ |
112 | 0 | { case SHA224_DIGEST_LENGTH: \ |
113 | 0 | for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++) \ |
114 | 0 | { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \ |
115 | 0 | break; \ |
116 | 0 | case SHA256_DIGEST_LENGTH: \ |
117 | 0 | for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++) \ |
118 | 0 | { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \ |
119 | 0 | break; \ |
120 | 0 | default: \ |
121 | 0 | if ((c)->md_len > SHA256_DIGEST_LENGTH) \ |
122 | 0 | return 0; \ |
123 | 0 | for (nn=0;nn<(c)->md_len/4;nn++) \ |
124 | 0 | { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \ |
125 | 0 | break; \ |
126 | 0 | } \ |
127 | | } while (0) |
128 | | |
129 | | #define HASH_UPDATE SHA256_Update |
130 | | #define HASH_TRANSFORM SHA256_Transform |
131 | 0 | #define HASH_FINAL SHA256_Final |
132 | | #define HASH_BLOCK_DATA_ORDER sha256_block_data_order |
133 | | #ifndef SHA256_ASM |
134 | | static |
135 | | #endif |
136 | | void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num); |
137 | | |
138 | | #include "crypto/md32_common.h" |
139 | | |
140 | | #ifndef SHA256_ASM |
141 | | static const SHA_LONG K256[64] = { |
142 | | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, |
143 | | 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, |
144 | | 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, |
145 | | 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, |
146 | | 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
147 | | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, |
148 | | 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, |
149 | | 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, |
150 | | 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, |
151 | | 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
152 | | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, |
153 | | 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, |
154 | | 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, |
155 | | 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, |
156 | | 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
157 | | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
158 | | }; |
159 | | |
160 | | /* |
161 | | * FIPS specification refers to right rotations, while our ROTATE macro |
162 | | * is left one. This is why you might notice that rotation coefficients |
163 | | * differ from those observed in FIPS document by 32-N... |
164 | | */ |
165 | | # define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10)) |
166 | | # define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7)) |
167 | | # define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3)) |
168 | | # define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10)) |
169 | | |
170 | | # define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) |
171 | | # define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
172 | | |
173 | | # ifdef OPENSSL_SMALL_FOOTPRINT |
174 | | |
175 | | static void sha256_block_data_order(SHA256_CTX *ctx, const void *in, |
176 | | size_t num) |
177 | | { |
178 | | unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1, T2; |
179 | | SHA_LONG X[16], l; |
180 | | int i; |
181 | | const unsigned char *data = in; |
182 | | |
183 | | while (num--) { |
184 | | |
185 | | a = ctx->h[0]; |
186 | | b = ctx->h[1]; |
187 | | c = ctx->h[2]; |
188 | | d = ctx->h[3]; |
189 | | e = ctx->h[4]; |
190 | | f = ctx->h[5]; |
191 | | g = ctx->h[6]; |
192 | | h = ctx->h[7]; |
193 | | |
194 | | for (i = 0; i < 16; i++) { |
195 | | (void)HOST_c2l(data, l); |
196 | | T1 = X[i] = l; |
197 | | T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i]; |
198 | | T2 = Sigma0(a) + Maj(a, b, c); |
199 | | h = g; |
200 | | g = f; |
201 | | f = e; |
202 | | e = d + T1; |
203 | | d = c; |
204 | | c = b; |
205 | | b = a; |
206 | | a = T1 + T2; |
207 | | } |
208 | | |
209 | | for (; i < 64; i++) { |
210 | | s0 = X[(i + 1) & 0x0f]; |
211 | | s0 = sigma0(s0); |
212 | | s1 = X[(i + 14) & 0x0f]; |
213 | | s1 = sigma1(s1); |
214 | | |
215 | | T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf]; |
216 | | T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i]; |
217 | | T2 = Sigma0(a) + Maj(a, b, c); |
218 | | h = g; |
219 | | g = f; |
220 | | f = e; |
221 | | e = d + T1; |
222 | | d = c; |
223 | | c = b; |
224 | | b = a; |
225 | | a = T1 + T2; |
226 | | } |
227 | | |
228 | | ctx->h[0] += a; |
229 | | ctx->h[1] += b; |
230 | | ctx->h[2] += c; |
231 | | ctx->h[3] += d; |
232 | | ctx->h[4] += e; |
233 | | ctx->h[5] += f; |
234 | | ctx->h[6] += g; |
235 | | ctx->h[7] += h; |
236 | | |
237 | | } |
238 | | } |
239 | | |
240 | | # else |
241 | | |
242 | | # define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \ |
243 | | T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \ |
244 | | h = Sigma0(a) + Maj(a,b,c); \ |
245 | | d += T1; h += T1; } while (0) |
246 | | |
247 | | # define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \ |
248 | | s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \ |
249 | | s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \ |
250 | | T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \ |
251 | | ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0) |
252 | | |
253 | | static void sha256_block_data_order(SHA256_CTX *ctx, const void *in, |
254 | | size_t num) |
255 | | { |
256 | | unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1; |
257 | | SHA_LONG X[16]; |
258 | | int i; |
259 | | const unsigned char *data = in; |
260 | | DECLARE_IS_ENDIAN; |
261 | | |
262 | | while (num--) { |
263 | | |
264 | | a = ctx->h[0]; |
265 | | b = ctx->h[1]; |
266 | | c = ctx->h[2]; |
267 | | d = ctx->h[3]; |
268 | | e = ctx->h[4]; |
269 | | f = ctx->h[5]; |
270 | | g = ctx->h[6]; |
271 | | h = ctx->h[7]; |
272 | | |
273 | | if (!IS_LITTLE_ENDIAN && sizeof(SHA_LONG) == 4 |
274 | | && ((size_t)in % 4) == 0) { |
275 | | const SHA_LONG *W = (const SHA_LONG *)data; |
276 | | |
277 | | T1 = X[0] = W[0]; |
278 | | ROUND_00_15(0, a, b, c, d, e, f, g, h); |
279 | | T1 = X[1] = W[1]; |
280 | | ROUND_00_15(1, h, a, b, c, d, e, f, g); |
281 | | T1 = X[2] = W[2]; |
282 | | ROUND_00_15(2, g, h, a, b, c, d, e, f); |
283 | | T1 = X[3] = W[3]; |
284 | | ROUND_00_15(3, f, g, h, a, b, c, d, e); |
285 | | T1 = X[4] = W[4]; |
286 | | ROUND_00_15(4, e, f, g, h, a, b, c, d); |
287 | | T1 = X[5] = W[5]; |
288 | | ROUND_00_15(5, d, e, f, g, h, a, b, c); |
289 | | T1 = X[6] = W[6]; |
290 | | ROUND_00_15(6, c, d, e, f, g, h, a, b); |
291 | | T1 = X[7] = W[7]; |
292 | | ROUND_00_15(7, b, c, d, e, f, g, h, a); |
293 | | T1 = X[8] = W[8]; |
294 | | ROUND_00_15(8, a, b, c, d, e, f, g, h); |
295 | | T1 = X[9] = W[9]; |
296 | | ROUND_00_15(9, h, a, b, c, d, e, f, g); |
297 | | T1 = X[10] = W[10]; |
298 | | ROUND_00_15(10, g, h, a, b, c, d, e, f); |
299 | | T1 = X[11] = W[11]; |
300 | | ROUND_00_15(11, f, g, h, a, b, c, d, e); |
301 | | T1 = X[12] = W[12]; |
302 | | ROUND_00_15(12, e, f, g, h, a, b, c, d); |
303 | | T1 = X[13] = W[13]; |
304 | | ROUND_00_15(13, d, e, f, g, h, a, b, c); |
305 | | T1 = X[14] = W[14]; |
306 | | ROUND_00_15(14, c, d, e, f, g, h, a, b); |
307 | | T1 = X[15] = W[15]; |
308 | | ROUND_00_15(15, b, c, d, e, f, g, h, a); |
309 | | |
310 | | data += SHA256_CBLOCK; |
311 | | } else { |
312 | | SHA_LONG l; |
313 | | |
314 | | (void)HOST_c2l(data, l); |
315 | | T1 = X[0] = l; |
316 | | ROUND_00_15(0, a, b, c, d, e, f, g, h); |
317 | | (void)HOST_c2l(data, l); |
318 | | T1 = X[1] = l; |
319 | | ROUND_00_15(1, h, a, b, c, d, e, f, g); |
320 | | (void)HOST_c2l(data, l); |
321 | | T1 = X[2] = l; |
322 | | ROUND_00_15(2, g, h, a, b, c, d, e, f); |
323 | | (void)HOST_c2l(data, l); |
324 | | T1 = X[3] = l; |
325 | | ROUND_00_15(3, f, g, h, a, b, c, d, e); |
326 | | (void)HOST_c2l(data, l); |
327 | | T1 = X[4] = l; |
328 | | ROUND_00_15(4, e, f, g, h, a, b, c, d); |
329 | | (void)HOST_c2l(data, l); |
330 | | T1 = X[5] = l; |
331 | | ROUND_00_15(5, d, e, f, g, h, a, b, c); |
332 | | (void)HOST_c2l(data, l); |
333 | | T1 = X[6] = l; |
334 | | ROUND_00_15(6, c, d, e, f, g, h, a, b); |
335 | | (void)HOST_c2l(data, l); |
336 | | T1 = X[7] = l; |
337 | | ROUND_00_15(7, b, c, d, e, f, g, h, a); |
338 | | (void)HOST_c2l(data, l); |
339 | | T1 = X[8] = l; |
340 | | ROUND_00_15(8, a, b, c, d, e, f, g, h); |
341 | | (void)HOST_c2l(data, l); |
342 | | T1 = X[9] = l; |
343 | | ROUND_00_15(9, h, a, b, c, d, e, f, g); |
344 | | (void)HOST_c2l(data, l); |
345 | | T1 = X[10] = l; |
346 | | ROUND_00_15(10, g, h, a, b, c, d, e, f); |
347 | | (void)HOST_c2l(data, l); |
348 | | T1 = X[11] = l; |
349 | | ROUND_00_15(11, f, g, h, a, b, c, d, e); |
350 | | (void)HOST_c2l(data, l); |
351 | | T1 = X[12] = l; |
352 | | ROUND_00_15(12, e, f, g, h, a, b, c, d); |
353 | | (void)HOST_c2l(data, l); |
354 | | T1 = X[13] = l; |
355 | | ROUND_00_15(13, d, e, f, g, h, a, b, c); |
356 | | (void)HOST_c2l(data, l); |
357 | | T1 = X[14] = l; |
358 | | ROUND_00_15(14, c, d, e, f, g, h, a, b); |
359 | | (void)HOST_c2l(data, l); |
360 | | T1 = X[15] = l; |
361 | | ROUND_00_15(15, b, c, d, e, f, g, h, a); |
362 | | } |
363 | | |
364 | | for (i = 16; i < 64; i += 8) { |
365 | | ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X); |
366 | | ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X); |
367 | | ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X); |
368 | | ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X); |
369 | | ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X); |
370 | | ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X); |
371 | | ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X); |
372 | | ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X); |
373 | | } |
374 | | |
375 | | ctx->h[0] += a; |
376 | | ctx->h[1] += b; |
377 | | ctx->h[2] += c; |
378 | | ctx->h[3] += d; |
379 | | ctx->h[4] += e; |
380 | | ctx->h[5] += f; |
381 | | ctx->h[6] += g; |
382 | | ctx->h[7] += h; |
383 | | |
384 | | } |
385 | | } |
386 | | |
387 | | # endif |
388 | | #endif /* SHA256_ASM */ |