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Abstract: In this dissertation, a photo/sketch synthesis algorithm based on Markov
random fields was explored with the aim of preparing sketches for automatic face recog-
nition. Such an algorithm has useful applications in law enforcement where on several
occasions police officers must rely on a sketch drawn from witness recollection. This
dissertation adopts a set of training sketch/photo pairs to synthesize unseen sketches.
To synthesize sketch/photo images, all images within this training set and the input im-
age are transformed into a certain face template and divided into overlapping patches.
The best matching candidate patches are chosen and their image pairs are modelled
into a Markov network where the maximum a posteriori estimate is calculated. Several
tests have shown that recognition performance improved when converting sketches and
photos into the same modality and that overall sketch synthesis achieved the best result
of 94.68% (rank one) recognition rate.

1 Introduction

Although face sketching is a simple tool for expressing face portraits, it has many useful

applications in several areas such as law enforcement and digital entertainment. Sketches

manage to capture the most important perceptual information with a number of strokes

[UJdVL96]. Researchers have been using different types of face drawings such as line

drawings [WT09] or pencil sketches in order to study how capable the human visual system

is at face recognition. It was found that humans are even able to recognize persons from

caricatures [BP91] and cartoon animated images [BHD+92].

This research eventually led to several proposals for computer based sketch synthesis

systems. In [KTFM99], [ITO99], without the need for any learning algorithm, face features

were extracted from photos and exaggerated slightly by some parameter in order to produce

a realistic sketch. This system, along with those in [FTP99], [CXS+01] make use of face

∗Submitted in partial fulfillment of the requirements for the degree of B.Sc. Computing Science (Hons.).
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alignment algorithms, such as active appearance model (AAM) [CET01]. However they

were limited to just line drawings. Compared to pencil sketches, line drawings are less

expressive due to the absence of shading texture.

A common problem faced by law enforcement agencies is that in many cases, police

officers must rely on a sketch based on witness recollection since an image of the suspect

would not always be available. This sketch can be made in many forms such as a pencil

sketch by a forensic artist or a sketch produced using composite software such as EFIT-

V. Eventually, after creation, this sketch is released to the public in the hope that some

individual would be able to identify the suspect. This process can be quite tedious and

time consuming. It is worth emphasizing that the quality of the resulting sketch (in

terms of resemblance) highly depends on the accuracy of the witness’ description. Another

instance where forensic sketches are used is when police officers must rely on poor quality

surveillance images as illustrated in Figure 1.

Figure 1: An example of sketches drawn from poor surveillance images [Lov11].

A more efficient solution to the above problem is to use automated face recognition

systems which are able to automatically recognize the person in a sketch by referring to

a database of images such as driving license or ID card photos, thereby narrowing down

the list of potential suspects. Such a system would not only save time, but also minimize

the amount of subjective assessment. The need for effective and automatic recognition of

sketches by reference to a photo database has attracted many researchers. Although photos

and sketches might have similar structure, the texture will vary across the two modalities.

Human skin texture is simplified when drawing sketches compared to that is captured by

a camera.

Despite being a simplified version, in most cases we can often recognize a person from a
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sketch. However, there is limited research work on face sketch recognition. This is mainly

due to the fact that there was no large face sketch database available for experimental

study, thus making it more difficult than photo based face recognition [WT09]. As a

result, existing face recognition algorithms are designed to match photo based faces, not

sketches [XGTL09].

Several methods for face sketch recognition have been introduced in the past few

years. These are categorised into two general approaches [GS12]: intra-modality and inter-

modality. The intra-modality approach consists of synthesizing a pseudo-photo from an

input sketch (or vice versa) in order to perform automatic face recognition in the same

modality. An inevitable step in this approach is photo/sketch synthesis. Alternatively

in inter-modality approaches, face recognition is performed by extracting discriminative

features that are invariant to photo and sketch modalities such as colour and texture de-

scriptors.

In this dissertation, an intra-modality synthesis algorithm based on Markov random

fields was explored in order to synthesize sketches for automatic face recognition systems.

The performance of intra-modality approaches highly depends on the quality of the training

set and the accuracy of the photo/sketch synthesis algorithms. What makes the problem

non-trivial however is the fact that it is very difficult to define sketch/photo synthesis

by simple rules or grammar [WT09]. Another reason is that sketches depend on eyewit-

ness recollection and not on the data set provided. The synthesis algorithm is capable

of converting between any two modalities including pencil sketches, computer generated

composite sketches, line drawings, camera photos and even low/high resolution images

(super-resolution). However, throughout this dissertation the main focus was restricted to

sketch-to-photo and photo-to-sketch synthesis of face portraits for automated face recog-

nition in the same modality.

2 Background

2.1 Bayesian Inference

A certain branch of mathematical probability deals with calculating the uncertainty of

certain outcomes by combining general knowledge and observational evidence. This branch

is called Bayesian probability theory and it is a very important technique for statistical

purposes.

In real life situations one can notice that certain variables are dependent on other
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variables. This is usually referred to as evidence. Everyday life presents many situations

in which the gathering of evidence leads to a certain conclusion. These dependent variables

can be modelled into a graphical structure called a Bayesian network. Formally, a Bayesian

network, also known as a belief network, is a directed model of conditional dependence

across a set of random variables [Bay]. It is represented as an acyclic directed graph such

that nodes are variables and the edges show conditional dependencies. The lack of edges

show conditional independence where there is no possibility of that variable depending on

another. Building a belief network requires the inclusion of all important variables from

the model and prior knowledge on how connections should be made, hence which variables

depend on which.

Bayesian inference is the process of updating outcome probabilities based on the re-

lationships and currently known evidence. In general, the joint probability distribution

must first be calculated in order to correctly perform inference. When using a Bayesian

network, evidence and observations are updated with regards to recent events. A few im-

portant notations are prior and posterior probabilities. Existing beliefs (or probabilities)

within the model are called prior probabilities while beliefs computed after evidence and

observations are called posterior probabilities.

2.2 Markov Random Field Modelling

Another branch of mathematical probability is Markov Random Fields (MRF) modeling

where a set of random variables having a Markov property are formed into an undirected

graph. The Markov property refers to the memory-less property of a stochastic process,

such that the probability distribution of future states does not depend on the sequence of

events that come before, but rather on just the current state.

MRF is used to establish probabilistic distributions of interacting labels. Several image

processing and analysis problems can be described as labelling problems [Li09]. A labelling

problem consists of a set of sites and a set of labels. A site represents a region in Euclidean

space such as a pixel, corner, line segment or image patch. A set of sites in a 2-D image

of size n × n for example is denoted as S = {(i, j)|1 ≤ i, j ≤ n} where the indices

i and j correspond to a pixel location on the image. The order of sites do not matter,

however a certain relationship is kept between several sites through a neighbourhood system.

Sites which do not present spatial regularity are called irregular, otherwise if they can be

presented as a lattice, they are called regular.

A label describes the current state or a certain event happening on a particular site.
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Labels can be either discrete or continuous. Continuous labels can take the shape of a vector

or matrix value for example Lc = Ra×b where a and b are dimensions. On the other hand,

discrete labels consist of discrete values for example, in edge detection L = {edge, nonedge}
describes the set of possible labels. In essence a labelling of sites can be considered as a

process for mapping the set of sites S to the set of labels L [Li09].

There are four categories to classify labelling problems. These categories are a com-

bination of continuous or discrete labels and regular or irregular sites. Face sketch/photo

synthesis falls under the category of regular sites with continuous labels, since sites refer

to image patches while labels are from a real interval.

Figure 2: Neighbourhood System. Image from [Li09].

As mentioned earlier, sites are related via a neighbourhood system. For example, for

a 2-D n × n image, each pixel will have a set of neighbouring pixels. The neighbourhood

of a pixel varies according to its pixel location and its neighbourhood depth. Pixel loca-

tion must be taken into consideration since edge pixels will have less neighbouring pixels

than non-edge pixels. On the other hand, neighbourhood depth is defined as the set of

neighbouring pixels within a certain radius of the concerning pixel. Rather than describ-

ing neighbourhood systems according to radius, a certain order is utilised. In a first order

neighbourhood system, each pixel consists of 4 neighbours as in Figure 2(a). X denotes the

concerned pixel while the zeros refers to its neighbours. Figure 2(b) shows a second order

neighbourhood system, also known as the 8-neighbourhood system. The numbers from 1 to

5 in Figure 2(c) point to the outermost neighbouring pixels in the nth-order neighbourhood
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system. The relationship between neighbouring pixels usually is represented by Euclidean

distance however it might vary depending on the problem.

Markov random field theory is often used in conjunction with statistical decision method-

ologies. The most commonly used method to derive an estimate is finding the maximum

a posteriori (MAP) probability. Similar to Bayesian probability theory, given some prior

information, one can estimate parameters of a physical process. This prior information

can come from previous empirical evidence. As an example, if we would like to estimate

the value of parameter θ , the associated probabilities P (θ) are called prior probabilities

[Awa07]. Bayes theorem shows how prior information can be incorporated to derive the

posterior probability given by:

P (θ|x) =
P (x|θ)P (θ)

P (x)
(1)

where P (θ|x) is the likelihood term and P (x) is a normalization term. With Bayesian

inference, it is possible to find the optimal parameters which maximize the posterior prob-

ability. When prior information is available about θ, it is included in the prior distribution

of θ. The maximum a posteriori estimate through Bayesian inference is defined as:

arg max P (θ|x) = arg max P (x|θ)P (θ) (2)

2.3 Markov Network for Sketch-Photo/Photo-Sketch Synthesis

It is necessary to estimate an underlying scene from a given image data. Calculating the

maximum a posteriori (MAP) probability helps achieve an optimal solution. However in

general it is very difficult to compute this probability without any approximations. A good

solution would be to divide both the image and underlying scene into patches and assign

each patch a node from the Markov network. Let x and y denote the estimate patch and

the input patch respectively. The edges connecting the nodes are weighted according to

their statistical dependency. Each scene x is connected to its corresponding image patch

y and its neighbours as in Figure 3.

Similar to Bayes theorem, here the posterior probability is denoted as P (x|y) = cP (x, y)

where c = 1
P (y)

is a constant over x. The best estimate x̂ is the mode, or in other words

the MAP probability, of the posterior probability P (x|y).

There are two phases when solving a Markov network. The learning phase consists

of learning network connection parameters from the training data. The inference phase
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consists of estimating a particular unseen scene from some input image.

Figure 3: Graphical model of a Markov Network for Vision Problems. Image from [WT09].

The joint probability over estimate patch x and input patch y in Markov random fields

(MRF) is written as:

P (x1, x2, ..., xN , y1, y2, ...yN) =
∏
(i,j)

ψ(xi, xj)
∏
k

φ(xk, yk) (3)

where ψ and φ are compatibility functions, (i, j) indicate neighbouring nodes i and j

and N the number of nodes. The exact notation for ψ and φ is smoothness constraint

and data constraint respectively. The data constraint term measures the fidelity between

the input patch and target output while the smoothness constraints measures the local

neighbourhood relationship of the target output. The estimate x is calculated by taking

the maximum a posteriori (MAP):

x̂j MAP = arg max
xj

arg max
[all xi,i 6=j]

P (x1, x2, ..., xN , y1, y2, ...yN) (4)

As an example, if we assume that the neighbours of node x2 are x1, x4, x7 and x10 in Figure
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3, then the x̂2MAP at node x2 gives:

x̂2MAP = arg max
x1

max
x2

max
x4

max
x7

max
x10

P (x1, x2, ..., xN , y1, y2, ...yN) (5)

x̂2MAP = arg max
x1

max
x2

max
x4

max
x7

max
x10

φ(x1, y1)φ(x2, y2)φ(x4, y4)φ(x7, y7)φ(x10, y10)

ψ(x1, x2)ψ(x2, x4)ψ(x2, x7)ψ(x2, x10) (6)

x̂2MAP = arg max
x1

φ(x1, y1)

max
x2

φ(x2, y2)ψ(x1, x2)

max
x4

φ(x4, y4)ψ(x2, x4)

max
x7

φ(x7, y7)ψ(x2, x7)

max
x10

φ(x10, y10)ψ(x2, x10) (7)

Equations 5, 6 and 7 break down the MAP estimation equation such that eventually each

line of equation 7 is a local computation involving one node and its compatibility with the

concerned node. In most situations, estimate patches x in the Markov model would consist

of several candidate patches. In this case, the local computations in equation 7 takes

into consideration the candidate patches that achieve the maximum possible probabilities.

The choice of the ideal candidate patch will depend on how similar it is to the input

patch and also how well it fits in with neighbouring patches. Since candidate patches

are involved, the xj MAP probability must be calculated for every combination of patch

candidate neighbourhoods. The candidate patch with highest joint probability combination

is chosen as the estimate patch.

3 Literature Review

In the past few years intra-modality and inter-modality approaches have been introduced

in order to solve the face sketch recognition problem. The intra-modality approach con-

sists of converting images into the same modality through face sketch/photo synthesis.

Alternatively in inter-modality approaches, face recognition is performed on extracted dis-

criminative features. Such features are color and texture descriptors which are invariant
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to photo and sketch modalities. In comparison, inter-modality approaches are relatively

new and therefore the majority of existing works synthesize pseudo photos from input

sketches (or vice versa) into the same modality, followed by face recognition. Most face

sketch/photo synthesis algorithms have been heavily influenced by face hallucination tech-

niques [WTG+14].

Intra-modality approaches can be further categorised into four subcategories categories:

Bayesian inference methods, subspace learning methods, a combination of Bayesian and

subspace learning methods and sparse representation methods. Figure 4 shows all the

subcategories of face sketch recognition in a tree diagram. The rest of this section analyses

in greater detail all these approaches.

Figure 4: A tree diagram of the different categories of face sketch synthesis

3.1 Intra-modality Approaches

3.1.1 Bayesian Inference Method

The Bayesian inference method has presented itself into several sub-categories. Nonethe-

less, all methods follow a certain framework where prior probabilities P (θ) and likelihood

terms P (x|θ) are calculated in order to derive the posterior probabilities. The major differ-

ence in each sub-category however is how these prior probabilities and the likelihood values
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are calculated. The most imporatant sub-categories which are relevant to sketch/photo

synthesis are Markov random fields and embedded hidden Markov models.

3.1.1.1 Markov Random Fields-based Method

The background section illustrated the manner in which several image processing and anal-

ysis problems can be described as labelling problems and how the model in Figure 3 can

be used to describe the relationship between image patches. Freeman et al. [FPC00] pro-

posed a framework where images and scenes (estimate output) were modelled by Markov

Random Fields. Images were divided into overlapping patches and assigned to a node in

a Markov network. For each input patch, N nearest neighbours and K candidates were

found from the training set. The smoothness constraint ψ and compatibility φ relation-

ships were constructed in order to calculate the joint probability. The local maximum a

posteriori probability for each output patch was found through Bayesian belief propagation

[YFW+00]. Patches were then combined by finding the average of the overlapping regions.

Although the method in [FPC00] was applied to face super resolution, their work inspired

many others to apply the same technique for sketch/photo synthesis.

Other related works [CXS+01][EL99][LSF07][LLX+01] showed promising results when

adopting a patch-based nonparametric sampling technique for texture synthesis. These

works inspired Liu et al. [LSZ01] to propose a non-parametric MRF-based super resolution

method. Rather than model the likelihood and prior probabilities respectively they used

PCA (Principal Component Analysis) to construct a global model that would create a

global face image. The uniform scale of Markov random fields however is limited to just

local dependency of patches. While this might yield more accurate results, since prominent

features can be compared directly in each patch, one problem of this approach is that

patches are only synthesized locally, thus making it more difficult to learn at a large scale,

particularly the whole face structure.

Wang and Tang tackled this problem by using a multiscale MRF model where, from a

training set, the photo-sketch model is learned at different patch sizes [WT09]. Inspired

by Freeman et al. in [FPC00], candidate patches are chosen and assigned a node from

the Markov model as in Figure 3 where through belief propagation, a synthesized image is

produced. Other methods usually assume that all image patches have the same size. The

drawback of this assumption is that an artist usually refers to the whole face structure when

drawing a certain face area. However, using large fixed patch sizes tends to lead to more

distortions and create a certain mosaic effect. As a result the multiscale MRF model learns
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face structures at different scales in order to overcome these conflicts. Another advantage of

multiscale MRF is that the approach can easily be used to either generate pseudo-sketches

or pseudo-photos. Rather than finding the average of overlapping patches, image quilting

[EF01] was used to reduce blurring effects between stitched patches. Their experiments

showed that their proposed method achieved better visual results than previous methods.

Zhou et al. followed up on Wang and Tang’s method by introducing what they call

Markov weight fields [ZKW12]. They argue that Wang and Tang’s method, although

achieving optimal performance despite pose variations and illumination changes, can only

synthesize an approximate solution and selecting just the best candidate makes it harder

to synthesize unseen patches. They also slightly deviated from the Markov structure in

Figure 3. The difference was that each node in the lower layer correspond to a list of

variables or weights for candidate sketch patches, rather than to a single variable.

3.1.1.2 Embedded Hidden Markov Model

A hidden Markov model (HMM) is a means of representing probability distributions over

sequences of observations [Gha01]. In any Markov model, the next state to be visited

is chosen according to the state’s transition probability distribution. The model hence

produces two strings of information: i) the state path and ii) the observation sequence.

The state path is a Markov chain which means that the next state does not depend on

the sequence of events that come before, but rather on just the current state. If only an

observation sequence is given, then the state path is a hidden Markov chain. In typical

HMM problems one is required to find the best state path.

HMM are mostly used in speech recognition systems and other pattern recognition

scenarios. Nonetheless, they have been successfully applied to computer vision problems as

well. Samaria [Bal05] constructed a one-dimensional HMM where the face was partitioned

into 5 regions: forehead, eyes, nose, mouth and chin. Each region relate to a hidden state

while image intensities are taken as observations. The problem was that conventional

HMM is challenging for face images that contain two-dimensional spatial information.

Using conventional HMM would result in high computation and the loss of some spatial

information. Embedded HMM was eventually proposed by Nefian and Hayes [NH99] and

this drastically reduced computation cost.

E-HMM in this case consists of 5 super-states that model the face in a vertical manner.

Each super-state corresponding to the forehead, eyes, nose, mouth and chin. Super-states

are further divided into embedded states that describe that region in a horizontal manner.
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Each super state acts as a one dimensional HMM. Gao et al. [GZLT08] used E-HMM to

model the non-linear relationship between a sketch and its image pair. A series of pseudo-

sketches were generated from several learned models and fused together with selective

ensemble strategy in order to generate a finer pseudo-sketch.

The method introduced in [GZLT08] was only conducted on a holistic face image, hence

some noise was introduced since certain fine features associated with the eyes, nose and

mouth could not be learned. Thus, Gao et al. extended their approach to local patch-

based sketch synthesis [GZTL08]. Images were divided into overlapping patches where for

each input patch the target patch is synthesized using the same approach introduced in

[GZLT08]. Xiao et al. [XGTL09] applied Gao et al.’s method for face photo synthesis.

3.1.2 The Subspace Learning Framework

The Subspace learning technique can be described as finding a subspace Rm within a higher

dimensional space Rn such that n > m. Principle component analysis (PCA) and linear

discriminant analysis (LDA) are currently two of the widely used subspace learning tech-

niques, which are mainly used for face recognition. The main idea of these techniques is

that the face space has a lower dimension than the image space [Niy04]. This involves con-

structing a projection matrix U ∈ Rn×m which is learned from the training examples. The

projection matrix can be calculated by using standard eigenvalue decomposition [ZTLY09]

or generalized eigenvalue decomposition [Niy04]. There are two sections for the subspace

learning framework: linear subspace learning and nonlinear manifold learning.

Tang and Wang [TW02], [TW03], [TW04] proposed an eigentransformation method for

face sketch synthesis by using PCA. In PCA reconstruction a new face sketch (or photo) can

be described by a linear combination of photo-sketch pair samples. Eigentransformation

computes the weighted combination of sketch eigenfaces to reconstruct the sketch training

image. these derived weights are then used to combine the set of photo images to derive

the pseudo-image. If Tp and Ts are the photo and sketch pairs respectively, the formulae

Ip = TpCp and Is = TsCs represents this linear combination where each column of Tp and

Ts represent corresponding training samples while Cp and Cs are column vectors obtained

through PCA eigentransformation. The assumption is that sketch reconstruction is similar

to its image pair, therefore Cp ≈ Cs.

Since sketches do not obtain optimal face recognition performance, Li et al [LSB06]

introduced an algorithm for synthesizing a photo from its corresponding sketch. They

used eigen-analysis on a hybrid space of training sketches and training photos, rather than
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just on the photo space.

Approximating images through a linear process might turn out to be quite inaccurate.

Liu et al. [LTJ+05] introduced two nonlinear techniques for synthesizing images. Inspired

by local linear embedding (LLE), mapping the relation between photos and sketches could

be achieved by using a patch based strategy. LLE is a learning method that approximates

non linearity by a local linearity. In other words, it is a method where weights are computed

for each patch through a linear combination of its neighbours. Their experimental results

showed that this nonlinear method achieved better results than in [TW02][TW03] and

[TW04]. The rest of the research in this sub category lead to further development in super

resolution techniques.

3.1.3 Combination of Bayesian Inference and Subspace Learning Framework

The approach adopted by Liu et al. [LSF07][LSZ01], although categorised under the

Bayesian inference section, can also be deemed to be a representative technique of the

Bayesian inference and subspace learning category [WTG+14]. In their approach PCA

was used to obtain an initial global face image and then proceeded to use MAP-MRF to

calculate local face images.

Later on, Liu et al introduced a two-step procedure for photo synthesis from an input

sketch [LTL07]. The first step was inspired by [LTJ+05] (LLE-based) in order to gener-

ate an initial estimate. Through a proposed tensor model whose modes consist of patch

position, style, and features, the high frequency residual error is inferred under the MAP

framework. It is assumed however that sketch-photo pairs have the same tensor represen-

tation parameter. The addition of these two steps could synthesize a detailed photo.

3.1.4 The Sparse Representation-based Approaches

Sparse representation tries to find the sparse weighted combination of a set of training

sketches (referred to as atoms [WTG+14]) that can reconstruct the test sketch image.

The same sparse weights are used to combine the corresponding photo training photos.

Initially Yang et al [YTMH08] proposed a face super resolution method based on sparse

coding which eventually inspired Chang et al [CZHD10] to use the same model for sketch-

photo synthesis. The first step was to construct a coupled dictionary of training photo

and sketch pairs by using sparse coding. Next, for each patch in the test photo, its sparse

representation is obtained as a product of the sketch patch and its sparse representation
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coefficient. The sketch image is finally reconstructed by enforcing a smoothness constraint

between overlapping patches.

3.2 Inter-modality Approaches

Recently a few researchers have instead focused on minimizing the modality difference when

extracting features. Klare and Jain [KJ10] proposed the first inter-modality method. Dense

scale-invariant feature transform (SIFT) descriptors [Low99] are extracted from patches in

order to reconstruct a holistic image representation. A simple 1-NN classifier is then used

for sketch-photo matching. Klare et al. [KLJ11] went further and proposed local feature

based discriminant analysis (LFDA) to match sketches to photos. Here sketches and photos

are represented by two features: SIFT descriptors and multi local binary patterns (MLBP).

LFDA however was not enough to minimize the difference between the two modalities.

Zhang et al. [ZWT11] introduced a face descriptor based on coupled information-theoretic

encoding to extract modality-invariant descriptor. Coupled information-theoretic projec-

tion increases the mutual information between photos and sketches. Their method is

considered as state of the art [GS12].

Another new gradient orientations based face descriptor was introduced by Galoogahi

et al. [GS12]. This was called Histogram of Averaged Oriented Gradients (HAOG). with

HAOG, the modality gap between sketches and photos is reduced drastically by empha-

sizing coarse texture of facial components when extracting features.

4 Specification and Design

In this dissertation, an intra-modality approach was used for face sketch recognition. The

main focus was to research and implement a face image synthesis algorithm using Markov

Random Fields. This algorithm was applied to a specific scenario where law enforcement

must rely on a sketch based on witness recollection in order to identify the suspect. Es-

sentially one can reach the solution in two different ways:

1. By comparing the query sketch with synthesized pseudo-sketches of the photos within

the database/gallery or

2. By comparing a synthesized pseudo-photo of the query sketch with real photos in

the database/gallery.
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The proposed synthesis algorithm is not tied to one specific conversion, hence the algorithm

works both ways. Clearly the second would seem to be the most practical for this scenario.

First of all, most existing face recognition systems at the moment are designed to match

photo based faces, not sketches [XGTL09]. Also a lot of pre-processing would be required

in order to generate pseudo-sketches for every photo in the photo database. As a result it

would be cheaper and quicker to generate just one pseudo-photo from the query sketch and

use existing algorithms for face recognition. On the other hand, some literature suggest

that the conversion of photos to sketches is more accurate for recognition. The reason is

that since photos are richer in detail, converting photos to sketches would actually involve

reduction of information. Nonetheless, both methods were evaluated in this dissertation.

A high level overview of the proposed algorithm can be seen in Figure 5. A training

set containing photo-sketch pairs is required with the assumption that image pairs are

similar in shape and distinct features. These training images are warped into the same

face template as show in Figure 5. The scope is to align training images by transforming

them into one specific face template. The input sketch is also warped in the same face

template. The input warped sketch is then divided into equal patches. K candidate patches

pairs are then chosen from the training set which best match these input patches. These

candidate patches are then inserted into a Markov model such that each node corresponds

to a patch. The Markov model defines the relationship between query, candidate and

neighbouring candidate patches. Using Markov random fields, the best patch is chosen

from the candidate training patches. This patch must not only be similar to the query

patch, but it must also fit well with neighbouring patches. Finally overlapping patches are

stitched back together by averaging overlapping pixels in order to form an image.

There are many mathematical ways in which the relationship between patches can

be modelled such as kNN based algorithms and other Markov Models. However, the

proposed methodology uses Markov random fields which is suitable for modelling the a

priori probability of context dependent patterns including object features [Li09]. Another

reason for using MRF was that in literature the MRF approach seemed to produce the

most promising results, especially Wang and Tang’s state of the art method Multiscale

MRF Model [WT09]. In MRF theory, a patch can receive information not just from

neighbouring patches, but also from patches further away through belief propagation. This

however would severely increase complexity and it was decided to stick to just a first order

neighbourhood system just like in Figure 2(a).
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Figure 5: A high level system view of the algorithm

5 Implementation

Throughout this section the main focus will be on face photo synthesis, namely construct-

ing a pseudo-photo from an input face sketch. The approach can easily be extended to

sketch synthesis by substituting roles of photos and sketches. The steps required for face

photo synthesis are explained sequentially in the following subsections. A training set of

photo-sketch pairs is required with the general assumption that photo-sketch pairs are

recognizably the same person.

5.1 Pre-processing

The first step was to scale and align all images so that different face components roughly

lie in the same face region. There are several ways to align face images however it was de-

cided to use some functionality from the Active Orientation Models (AOMs) introduced by

Georgios, et al. [TAiMZP14]. AOMs are generative models of facial shape and appearance,

an extension of the Active Appearance Models (AAMs) which is a well-known computer

vision algorithm for matching statistical models of appearance to images. Georgios, et al.

have kindly released their MATLAB code for public use. The appearance model of an

AOM is learned by first warping training images to a canonical reference frame. The exact

same face warping functions were used in this dissertation in order to transform all face

images into the same reference frame.
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All photos were converted to grayscale. Converting to other colour spaces such as the

Luv or Lab colour space is also an option. Some researchers claim that Euclidean dis-

tance would perform better with Luv colour space however grayscale still achieved optimal

results.

5.2 Patch Matching

The next step was to divide the warped face images into overlapping patches. Simply

dividing patches equally across all images would not be ideal because although faces have

been roughly aligned in the previous step, certain face features vary in shape, size and

relative position and will still not be perfectly aligned. To help solve this problem, the

input face sketch was first divided into equal overlapping patches. These patches were used

as reference patches. For each reference patch its corresponding position in all training

photos was located. This required comparing the reference patch to all possible patches

in the training image, however rather than searching the whole image, a search radius was

defined. The best matching patch was found using simple Euclidean distance. Out of these

training patches, the K candidate patches which best matched the corresponding reference

patch were chosen. This was done by using a Structural Similarity Index Metric (SSIM)

algorithm that computes a similarity score based on luminance, contrast and structure. The

greater the score, the more similar the patches are to one another. Since the query patch

is a sketch patch, SSIM indexing was performed on training sketch patches. This process

was followed by the selection of the nearest K candidate patches and their corresponding

photo patch pair. The reason for choosing K candidate patches is that patch estimation

in this algorithm takes into consideration how well a patch fits in with its neighbouring

patches. If only one candidate patch were to be chosen, then the synthesized photo would

most likely have a mosaic effect with disoriented face features. While the synthesized photo

should match the input sketch as closely as possible, at the same time the image must be

smooth in appearance. In order to reach this goal, a Markov network was used to model

the process of face image synthesis.

5.3 Markov network

Figure 6 shows the Markov model that was adopted for this particular problem. Since

images were divided into overlapping patches, each patch was assigned a node. Let yi and

xi represent the input sketch patch and the estimate photo patch at patch i respectively.
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As previously mentioned, candidate training patches that best match patch yi were chosen,

hence node xi in the model also contained candidate patches, each with its own notation.

Candidate patch k at patch i is denoted as xik.

Figure 6: The graphical model of the Markov network that will be used. Y and X represent
input sketch patches and candidate estimate patches respectively.

The relationship between patches was defined by the compatibility functions ψ and φ.

The dependency between x and y is denoted by φ(xi, yi) which provides local evidence for

xi. Estimate patches xi on the other hand are connected to neighbouring estimate patches

with the function ψ(xi, xj) where xj is neighbouring node. The dependency between xi

and yi is calculated as:

φ(x̃i, yi) = exp{−‖ỹi − yi‖2/2σ2
e} (8)

where x̃i refers to the estimated photo patch, ỹi its corresponding sketch patch pair, yi the

input reference patch and σe the variance that needs to be tuned empirically. It is assumed

that x̃i and ỹi are very similar in structure. All patches overlap each other by a certain

distance parameter. Let xik and xjk be two overlapping patches. The overlapping region
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for xik and xjk is denoted as dlij and dmji respectively as in Figure 6. These overlapping

regions are used in order to compute the compatibility matrix between patches i and j as:

ψ(xlik, x
m
jk) = exp{−‖dlij − dmji‖2/2σ2

e} (9)

By using these dependency and compatibility functions, the joint probability between the

input sketch and the synthesized photo can be written as:

P (x1, x2, ..., xN , y1, y2, ...yN) =
∏
(i,j,k)

ψ(xik, xjk)
∏
l

φ(xl, yl) (10)

By taking the maximum a posteriori (MAP) estimator x̂iMAP , we could estimate the

synthesized patch from the constructed Markov network:

x̂iMAP = arg max
xi

arg max
[all xj ,i 6=j]

P (x1, x2, ..., xN , y1, y2, ...yN) (11)

Computing the MAP estimates is the most time consuming part of the algorithm.

After calculating all dependency and compatibility probability values, for every candidate

patch it is required to multiply its dependency value with all possible compatibility values

from neighbouring candidate patches. This involves computing the probability score for all

possible combinations of patch match. The candidate patch which best fits neighbouring

patches and its corresponding reference patch would have the highest probability score, and

would be chosen as the estimate patch. Calculating the MAP estimator can be extended

along any neighbourhood radius, however it was decided to work with just first order

neighbourhood system, namely with the closest four neighbours. Extending beyond four

neighbours would have increased the complexity even further.

Execution time highly depends on the patch size, overlap size and number of candidates

in this case. Smaller patch and overlap sizes drastically increase the number of patches

while the number of candidates affects the number of combinations that must be processed.

5.4 Stitching Patches

When the output photo patches have been estimated, all that remained was to reconstruct

an image from these overlapping patches. Within this algorithm, the average of overlapping

pixels was calculated. The output image was finally ready for face recognition.
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Figure 7: The compatibility between two patches is determined by the values in their
region of overlap.

5.5 Other Remarks

Unlike most photo/sketch synthesis approaches, hair region has been ignored when syn-

thesizing an image. This is because the presence of hair does not affect the recognition

performance of modern face recognizers [TKB12].

6 Testing and Evaluation

The implemented algorithm was tested using the CUHK database [WT09] which consists

of 188 photo-sketch pairs. Tests were carried out for both sketch to photo and photo

to sketch synthesis. These tests can be categorised into two sections: quality tests and

recognition tests.

6.1 Quality Tests

In this section 88 image pairs were used for training while the remaining 100 images

were used for testing as in [WT09]. The quality of the resulting synthesized image can

be described by two types of measurements: peak signal-to-noise ratio (PSNR) and the

structural similarity index metric(SSIM). PSNR is measured in decibels (dB) and is a valid

quality measure [HTG08]. On the other hand SSIM is a technique for measuring similarity

based on luminance, contrast and structure. SSIM is known to be more correlated to the
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human perception. For both measurements, the synthesized photo is compared to the

actual photo and vice-versa. High PSNR and SSIM scores signify high similarity.

There are many parameters which can influence the final result namely patch size,

overlap size, number of candidates, processing image size and search space radius. However

it was decided that it would be sufficient to focus on different patch sizes and number of

candidates.

6.1.1 Patch Sizes

All images were resized to 160 × 160 pixels before processing. Experimentation was done

with patch sizes of 5, 10, 15 and 20 pixels. The overlap size was taken as half the patch

size while 5 candidates were extracted from the training set. The results for patch size

performance can be seen in Figure 8. For both metrics the y-axis consists of the cumu-

lative probability. For example, for a PSNR of xdB the cumulative probability gives the

probability that the quality is lower than x.

Clearly the ideal patch size is 20 pixels. This was quite expected since with 20 pix-

els there are less patch overlaps. Since the average is taken between overlapping pixels,

overlapping regions are susceptible to noise. A surprising result was that patch size 10

outperformed patch size 15. Since 15 is an odd number, the overlap was set to 7 pixels.

A plausible reason for this result could be because of the extra pixels that are not be-

ing overlapped in odd sized patches. These pixels probably do not fit in smoothly with

neighbouring overlapped pixels, therefore increase noise slightly.

Another expected observation is that overall, photo to sketch synthesis performed bet-

ter. This was expected because the conversion of photos to sketches essentially consists of

reducing information which is much easier to do.

6.1.2 Number of Candidates

Choosing K candidate patches from the training set is an essential part of the methodology

since choosing the right patch includes computing the maximum a posteriori estimate from

a set of neighbouring candidate patches. Since there are 88 training images, the maximum

number of candidates is 88. The results are as shown in Figure 9. Given the results in

the previous tests, the following candidate tests were run with 20 pixels patch size and 10

pixel overlap.

The first question to ask is whether taking candidates is necessary at all (therefore

K > 1), hence only taking the closest patch into consideration. If only one candidate was
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Figure 8: Patch performance for sketch-photo synthesis and photo-sketch synthesis mea-
sured in PSNR and SSIM. The further the curve is to the right, the better the performance.

needed, then calculating the MAP estimate, particularly with the smoothness constraint

ψ, would be redundant. From the results it was evident that more than one candidate was

needed to achieve optimal results. This result was expected since previous research has

shown that compatibility with neighbouring patches must also be taken into consideration.

The next question to ask is how many candidates are actually needed. Clearly taking

all patches as candidates gave the worst results. This seems logical because patches that

received a low similarity score to the reference patch might still achieve a high compatibil-

ity score with neighbouring patches. This result highlights the importance of filtering out

patches as candidates. The fact that only the top K matching patches are taken as candi-

dates gives a certain priority on reference patch similarity. The ideal number of candidates
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Figure 9: Candidate performance for sketch-photo synthesis and photo-sketch synthesis
measured in PSNR and SSIM. The further the curve is to the right, the better the perfor-
mance.

seems to lie between 3 to 5 candidates, depending on the type of synthesis. There was no

particular expected number of candidates, but the resulting range is acceptable. Again,

photo to sketch synthesis performed much better than sketch to photo synthesis.

6.2 Recognition Tests

For these tests, the leave-one-out technique was used for synthesizing images. This means

that for every input image, the remaining images were used as training. Using the optimal

parameters found in the previous quality tests, Figure 10 shows some examples of both

sketch and photo synthesis results.

For these tests, the PHD (Pretty Helpful Development) toolbox [ŠP09][ŠP10] was used.
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Figure 10: Face sketch synthesis and face photo synthesis results.

The PHD toolbox consists of several MATLAB implementations for popular face recog-

nition techniques such as PCA, LDA and Gabor filtering along with some useful plotting

functions. The PCA face recognition technique was used in these recognition tests since it

is commonly used in literature. LDA is also a popular technique however it requires more

than one training image per subject.

It is pertinent to recall the scenario where police officers must rely on a sketch drawn by

a forensic artist. The tests revolved around the two approaches of preparing sketches for

automatic face recognition: either generating a synthesized pseudo-photo from the input

sketch, or synthesizing all database images to pseudo-sketches. Although existing face

recognizers are designed to match photo based faces, a face recognizer can still recognize

sketches if it was trained on a sketch database. A total of 4 tests were performed. The

base test consisted of feeding a photo trained face recognizer with input sketches. Two
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other experiments test the aforementioned methods of preparing a sketch for automatic

face recognition. Given the very positive results obtained from training the recognizer

with synthesized sketches, it was also decided to test whether doing the complete opposite,

therefore training the recognizer with the original sketches and testing with synthesized

sketches, obtained the same result. The recognition results are shown in Table 1 and Figure

11.

Table 1: Rank 1 recognition results for the three scenarios of face sketch recognition.

Type Rank 1 (in %) Rank 10 (in %)
Direct Sketch Recognition 35.64 62.30
Photo Synthesis 20.21 48.41
Sketch Synthesis (as Training) 94.68 98.23
Sketch Synthesis (as Testing) 86.70 99.01

Figure 11 illustrates the Cumulative Match Characteristic (CMC) curve for each sce-

nario. In face recognition systems, a rank is used to measure face recognition performance.

The recognition rate at rank N refers to the success rate of identifying the correct face

image from a set of N nearest candidates that are chosen by the face recogniser as the

closest match. The lower the rank, the harder it is to obtain a high recognition score.

The biggest question that needs to be answered by these recognition tests is whether

converting to the same modality is necessary for improving recognition results. While from

Table 1 poor results were achieved when converting sketches to photos, the opposite proved

otherwise. Given the quality test results, it comes to no surprise that sketch synthesis

performed better than photo synthesis. The main reason for poor results for photo synthesis

is that photo synthesis is much harder and more prone to noise than sketch synthesis since

a lot of texture detail is involved when dealing with photo patches. Another reason is

that it is hard to get the illumination information from a sketch. PCA is known to be

susceptible to lumination variation. A minor solution would be smoothing overlapping

patches through image quilting [EF01] in order to reduce the mosaic effect that is evident

in Figure 10. However the biggest improvement would be to have a much larger training

set. Another interesting detail was that although better recognition results were achieved

when training the recognizer with synthesized sketches rather than with sketches, 100%

recognition rate was achieved at a much lower rank when training with sketches.
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Figure 11: PCA recognition results.

7 Conclusions and Future Work

In this dissertation, a face sketch/photo synthesis algorithm based on Markov random fields

was implemented in order to prepare sketches for automatic face recognition systems. The

aim of this dissertation was to investigate whether converting images to the same modality

improves the face recognition rate. Although this was not so evident for photo synthesis, it

was more successful in the case of sketch synthesis. Both quality tests and recognition tests

have shown that sketch synthesis yielded better recognition results than photo synthesis,

primarily because sketch synthesis involves reducing information. Other observations have

shown that 20 pixels is the optimal patch size, when dealing with 160 × 160 images, while

the ideal number of candidates is between 3 and 5 candidates.

Despite these results, there is still a lot of room for improvement, especially when it
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comes to synthesizing photos. One observation for improving photo synthesis would be to

obtain a larger training set. Compared to sketches, skin texture within photos contains

much more information such as different skin tone, shadowing, and feature details. More

image information results in more possible patch combinations. Therefore having more

patches to choose from would be considered an asset.

Future work could include smoothing overlapping patches through image quilting [EF01]

rather than simply taking their average. This would reduce the evident blurring effect by

making a minimum error boundary cut between overlapping patches. This blurring effect

is quite evident in pseudo-photos since different patches will have different skin tones and

textures.

Another problem of this approach is the blind assumption that is made between photo

and sketch pairs. For example, when synthesizing a photo, the top K training patches that

best match the input sketch patch are chosen. However their patch pair is used to generate

the resulting image. Currently the relationship between training image patch pairs are

defined by their location in the image, yet there is no guarantee that local sketch patch

neighbourhoods are preserved in photo space. Typically in pencil drawings, certain struc-

tures and face features might be slightly exaggerated in comparison with the real photo.

Using the candidate pairs with this blind assumption would eventually lead to distorted

face features. This is quite evident in Figure 10 particularly in the mouth, nose and eye

regions. Recently Bevilacqua et al. [BRGM13] sought to enforce the coherence between

low resolution and high resolution patches. They proposed a two-step dictionary learning

strategy. First, a clustering process gathers the low resolution and high resolution patches

into jointly coherent clusters. This is then followed by extracting a set of particularly

representative patches that can express the whole dictionary in a compact way from the

clustered dictionary. This might also be applicable to sketch/photo synthesis problems.

Finally future work should also be algorithm optimisation. On a computer with a

3GHz CPU, depending on the parameters, image processing could take between 3 to 20

minutes per image. The algorithm was implemented in a serial fashion and could easily

be optimised to use make use of more CPU or GPU cores given that each patch can be

processed independently.
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Appendices

All code was implemented in MATLAB and can be found on the CD. The CD also contain

results obtained from the quality and recognition tests. A README file is included with

further details about the contents of the CD.
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[ŠP10] Vitomir Štruc and Nikola Pavešić. The complete gabor-fisher classifier for

robust face recognition. EURASIP Journal on Advances in Signal Processing,

2010:31, 2010.

[TAiMZP14] Georgios Tzimiropoulos, Joan Alabort-i Medina, Stefanos P Zafeiriou, and

Maja Pantic. Active orientation models for face alignment in-the-wild. IEEE

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,

9(12), 2014.

[TKB12] Umar Toseeb, David RT Keeble, and Eleanor J Bryant. The significance of

hair for face recognition. PloS one, 7(3):e34144, 2012.

[TW02] Xiaoou Tang and Xiaogang Wang. Face photo recognition using sketch.

In Image Processing. 2002. Proceedings. 2002 International Conference on,

volume 1, pages I–257. IEEE, 2002.

[TW03] Xiaoou Tang and Xiaogang Wang. Face sketch synthesis and recognition. In

Computer Vision, 2003. Proceedings. Ninth IEEE International Conference

on, pages 687–694. IEEE, 2003.

[TW04] Xiaoou Tang and Xiaogang Wang. Face sketch recognition. Circuits and

Systems for Video Technology, IEEE Transactions on, 14(1):50–57, 2004.

[UJdVL96] Robert G Uhl Jr and Niels da Vitoria Lobo. A framework for recognizing a

facial image from a police sketch. In Computer Vision and Pattern Recogni-

tion, 1996. Proceedings CVPR’96, 1996 IEEE Computer Society Conference

on, pages 586–593. IEEE, 1996.

[WT09] Xiaogang Wang and Xiaoou Tang. Face photo-sketch synthesis and recog-

nition. Pattern Analysis and Machine Intelligence, IEEE Transactions on,

31(11):1955–1967, 2009.

[WTG+14] Nannan Wang, Dacheng Tao, Xinbo Gao, Xuelong Li, and Jie Li. A com-

prehensive survey to face hallucination. International journal of computer

vision, 106(1):9–30, 2014.

37



[XGTL09] Bing Xiao, Xinbo Gao, Dacheng Tao, and Xuelong Li. A new approach for

face recognition by sketches in photos. Signal Processing, 89(8):1576–1588,

2009.

[YFW+00] Jonathan S Yedidia, William T Freeman, Yair Weiss, et al. Generalized belief

propagation. In NIPS, volume 13, pages 689–695, 2000.

[YTMH08] Jianchao Yang, Hao Tang, Yi Ma, and Thomas Huang. Face hallucination

via sparse coding. In Image Processing, 2008. ICIP 2008. 15th IEEE Inter-

national Conference on, pages 1264–1267. IEEE, 2008.

[ZKW12] Hao Zhou, Zhanghui Kuang, and K-YK Wong. Markov weight fields for face

sketch synthesis. In Computer Vision and Pattern Recognition (CVPR), 2012

IEEE Conference on, pages 1091–1097. IEEE, 2012.

[ZTLY09] Tianhao Zhang, Dacheng Tao, Xuelong Li, and Jie Yang. Patch alignment

for dimensionality reduction. Knowledge and Data Engineering, IEEE Trans-

actions on, 21(9):1299–1313, 2009.

[ZWT11] Wei Zhang, Xiaogang Wang, and Xiaoou Tang. Coupled information-

theoretic encoding for face photo-sketch recognition. In Computer Vision

and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 513–520.

IEEE, 2011.

38


	Introduction
	Background
	Bayesian Inference
	Markov Random Field Modelling
	Markov Network for Sketch-Photo/Photo-Sketch Synthesis

	Literature Review
	Intra-modality Approaches
	Bayesian Inference Method
	Markov Random Fields-based Method
	Embedded Hidden Markov Model

	The Subspace Learning Framework
	Combination of Bayesian Inference and Subspace Learning Framework
	The Sparse Representation-based Approaches

	Inter-modality Approaches

	Specification and Design
	Implementation
	Pre-processing
	Patch Matching
	Markov network
	Stitching Patches
	Other Remarks

	Testing and Evaluation
	Quality Tests
	Patch Sizes
	Number of Candidates

	Recognition Tests

	Conclusions and Future Work

