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Nanozymes were introduced approximately 15 years ago as inorganic materials capable of mimicking the
catalytic abilities of natural (protein-based) enzymes. While the catalytic efficiency of nanozymes typically
does not match that of enzymes, their research gains special attention due to their potential advantages
over conventional enzymes, particularly their higher resistance to adverse conditions. This article focuses
on the utilization of cerium oxide for the catalytic acceleration of non-redox reactions (e.g.,
dephosphorylation). It elucidates certain analogies between the functioning of conventional enzymes
(metalloenzymes) and the nanozymatic activity of ceria, and the distinctions in the mechanisms of action
between the two catalyst types. The unique catalytic (enzymatic) ability of cerium oxide is predetermined
by the fine interplay between surface reactivity (associated with surface defects) and structural integrity
(simplicity and stability of the subsurface crystalline structure). Limitations associated with the less flexible
nature of cerium oxide are discussed, together with strategies to overcome them, which are based on the
new concept of dynamic active sites. Possible generalizations to other metal oxide-based nanozymes are
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Environmental significance

Currently, nanomaterials have become an integral part of our daily lives. Despite their initial purpose, these materials, or their residual components, are
introduced into the environment, where they can accumulate and engage in intricate mutual reactions and interactions with the surrounding ecosystem.
Many naturally occurring or industrially produced nanomaterials exhibit remarkable catalytic activities. In some cases, these activities may be considered
enzyme-mimicking. A comprehensive understanding of the interactions occurring at the interface between (predominantly inorganic) nanoparticles and
complex biomolecules not only lays the foundations for new industrial branches but also holds the potential to significantly contribute to resolving

fundamental questions in contemporary science, such as the origins of life on Earth.

1. Introduction

By definition (enc. Britannica), “an enzyme is a substance
that acts as a catalyst in living organisms”. Typically, enzymes
are biomolecules that are able to accelerate dramatically the
chemical reactions in biomedia with exceptional selectivity
under relatively mild conditions, representing in many
aspects the dream of chemical engineers searching for
efficient catalysts utilizable in industry.

About fifteen years ago, the ability of magnetite (Fe;O,)
nanoparticles to accelerate the oxidation of organic substances
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was interpreted as an enzyme-mimetic activity.' This article
started the era of inorganic analogues of natural enzymes -
nanozymes, ie., nanosized particles exhibiting enzyme-mimetic
ability. It is worth mentioning, however, that inorganic (nano)
particles were used to catalyse bio-reactions years before the
mentioned article was published - note the “clusters” (freshly
precipitated cerium hydroxide) used by Sumaoka et al” to
destroy a (highly resistant) molecule of 3',5'-cyclic adenosine-
monophosphate (cAMP). Most probably, even earlier examples
could be traced back in the history of chemistry.

Although the term “nanozymes” was questioned recently,’
hundreds of articles published annually use it in a similar
sense as we will do in this article - for inorganic substances
with an ability to mimic natural enzymes. Iron oxides still
remain the most extensively examined nanozymes, followed
by cerium oxide, but many other substances were tested for
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their enzyme-mimicking ability."® So far, more than 1200
nanozymes have been developed in more than 200
institutions involved in nanozyme research around the world,
and more than 3000 papers have been published.’

Nanozymology as a branch of nanoscience (nanotechnology,
nanomedicine) utilizes the basic principles of physics to explain
the complex phenomena occurring at the edge of biosciences
using the language of chemistry. Rapidly growing numbers of
published papers and the amount of information exceeding the
capacity of a single research group, together with the inherently
multidisciplinary nature of the research, are the factors that
emphasize the need for completely new strategies for the
development and application of nanozymes, combining
theoretical and computational approaches with a full range of
sophisticated experimental methods. Chen et al.® characterized
today's phase in nanozymology as a shift from computer driven
to data driven research. In this process, methods of machine
learning and artificial intelligence will certainly play an
important role.

Regardless of the great efforts that have been made, there is
still a large gap in the efficiency of nanozymes compared to
natural enzymes."® Learning from nature as suggested by Zhang
et al.'® is certainly a good idea how to improve the efficiency of
nanozymes. However, more in-depth understanding of the
reaction mechanisms is necessary. In recent times, some
progress has been made especially in the investigation of
nanozymes imitating the redox properties of enzymes. As iron
and cerium oxides contain cations with the ability to change
their oxidation state, they were mostly used to mimic the
enzymes from the oxidoreductase family."™* However, cerium
oxide as a multifunctional nanozyme'* accelerates also some
non-redox (hydrolytic) reactions governing the crucial processes
in living organisms. In a recently published review, Wu et al.™®
presented some examples of nanozymes with phosphatase-like
activity and their applications in various areas ranging from the
destruction of toxic substances to sensing purposes. They

Pavel Janos graduated from the
University of Chemical Technology
in Pardubice (1981) and Charles
University in Prague (PhD, 1992)
in analytical chemistry. Since
1983, he has been a researcher at
the Research Institute of Inorganic
Chemistry, Usti nad Labem,
involved in the chemistry of rare
earths. Since 2002, he has been a
professor/senior scientist at the
University of J. E. Purkyné, Faculty
of Environment, Usti nad Labem,
involved in the research of non-
and nanomaterials for environmental

Pavel Janos$

conventional sorbents
applications.

This journal is © The Royal Society of Chemistry 2024

Perspective

concluded that an array of nanozymatic materials with
dephosphorylating activity is narrower in comparison with
redox active nanozymes.

In this article we focus on the unique ability of cerium
oxide to catalyse non-redox (hydrolytic) reactions under
biologically relevant conditions, (i.e. on the phosphatase-like
activity of cerium oxide in the first place). Certain analogies
between “conventional” enzymes (metalloenzymes) and
nanozymes will be demonstrated. We will assess the attempts
to exploit these analogies in the design and application of
new nanozymes. Limitations arising from the rigid structure
of (inorganic) nanozymes will be pointed out together with
possibilities to circumvent these limitations.

2. Inspiration sources for nanozyme
development
2.1. From clusters to mixed-metal complexes

As mentioned, Sumaoka et al.? discovered the remarkable
activity of cerium hydroxide precipitates (clusters). In parallel,
they examined the application of various lanthanide
1617 and developed effective tools for DNA scission.
It was shown that the best performance was exhibited by the
complexes containing two different lanthanide cations, e.g.
cerium and neodymium."” The activities of this group were
reviewed recently by Komiyama.'® The utilization of
lanthanide cations and complexes has been a subject of
extensive research and contributed significantly to
understanding the mechanisms of the phosphoester bond
cleavage.'*?°

complexes

2.2. From reactive sorbents to nanozymes

At the turn of the century, Klabunde and his group at Kansas
University found that nanosized MgO (ref. 21) and some
other metal oxides (CaO, ZnO, TiO,) are able not only to
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retain, on their surfaces, some dangerous compounds
including highly toxic phosphate-based chemical warfare
agents (CWAs), but also to convert them (to destroy) into
non-toxic or less toxic degradation products.”>> These
materials, under the common name of reactive sorbents,
have been successfully commercialized and are still used by
militaries and security forces around the world as an effective
means of combating highly dangerous CWAs. In addition to
those mentioned above, several other metal oxides including
lanthanide oxides have been tested as reactive sorbents.
Interestingly, with a rare exception,®®
considered as an effective reactive sorbent. Even in the
mentioned report,”® cerium oxide was classified as a poorly
effective decontamination agent.

More recently, Stengl et al>’° extended substantially the
family of reactive sorbents and developed new, environmentally
friendly synthetic procedures suitable for their large-scale
production. Reactive sorbents were used to destroy
organophosphate pesticides - substances structurally similar to
the mentioned CWAs, e.g parathion methyl or paraoxon
methyl.*® Cerium oxide was introduced by Janos et al*' ™ as a
reactive sorbent capable of destroying both CWAs and
organophosphate pesticides. Inspired by the pioneering work of
Kuchma et al.,** some other environmentally relevant reactions
of cerium oxide were examined,* including its ability to mimic
natural enzymes. The methods of the preparation of cerium
oxide are briefly summarized in the following section.

cerium oxide was not

Preparation of cerium oxide

Cerium as the most abundant element of the lanthanide group is easily
available. Due to the so called rare earth balance problem®® it is produced
in such quantities that markedly exceed the demand. Cerium oxide is the
most important cerium compound with traditional large-scale applications
in glass polishing and catalysis, and its applications in biosciences and
medicine that are usually related to its nanocrystalline forms have been
rapidly growing in recent times. Numerous synthetic methods were
developed for these emerging applications of cerium oxide - see e.g.
reviews.”’ ™ For the purpose of this article, the synthetic methods
can be divided into two groups: i) the precipitation/calcination method
requires the preparation of an insoluble cerium-containing precursor
(typically carbonate, oxalate or hydroxide), which is subsequently converted
to cerium oxide by annealing at relatively high temperatures (500-600 °C)
in the presence of oxygen. This method (“dry” or “high temperature”) is
suitable also for industrial applications, e.g. for the preparation of ceria-
based polishing powders."** ii) The method of direct precipitation
(“wet” or “low temperature”) is derived from the more than one century
old work of Dennis and Magee*® and is still frequently used in many
modifications mainly for the preparation of biocompatible forms of
nanoceria. In this method, the aqueous solution of cerous salt is
precipitated with the solution of ammonia (less often NaOH or KOH) at
mild (e.g. ambient or even lower) temperature. Under extensive agitation
(stirring, purging with decarbonized air) the sparingly soluble cerous
hydroxide is converted to cerium oxide, which can be directly (without any
additional treatment, such as drying) used for selected applications. Both
synthetic procedures may be modified in numerous ways. For example,
the precursor in the first procedure can be prepared by homogeneous
precipitation,**”*® using templates® or varying the conditions during
precipitation.® Hydrothermal methods can be used to modify the
properties of the precursor in the first synthetic route and also to modify
the properties of cerium oxide in the second synthetic route; they are
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especially effective in the shape sensitive preparation of cerium oxide.”*

The methods of the cerium oxide preparation and conditions during its
synthesis significantly affect most of its characteristics, such as
morphology, surface area and surface chemistry, crystallinity, and many
others. However, the relation between the synthetic route and nanozymatic
activity is not straightforward. For example, cerium oxide prepared by the
wet synthetic method at ambient temperature without any additional
thermal treatment exhibited an almost identical dephosphorylating ability
to cerium oxide prepared by thermal decomposition of cerium carbonate
at 600 °C. This somewhat counter-intuitive finding is discussed in the
main text.

3. Mechanisms of the phosphoester
bond cleavage

Organophosphates, esters of the phosphoric (or thiophosphoric)
acid, are a large group of diverse compounds differing, among
others, in their susceptibility to undergo the hydrolytic cleavage
of the phosphoester bonds (and subsequently in their
persistence in the environment). Phosphomonoesters are
usually energetically rich molecules, which may be easily
destroyed liberating the terminal phosphate group (e.g. ATP).
Phosphodiesters are very stable compounds with the
phosphodiester bonds extremely resistant to hydrolytic cleavage.
The phosphoester bonds in phosphotriesters are moderately
strong. In summary, the reactivities of phosphates for hydrolytic
cleavage follow usually the order:>® pyrophosphates >
phosphomonoesters > phosphotriesters >> phosphodiesters.

Phosphatases - enzymes effective in the cleavage of
phosphoester bonds - often contain metal cations in their
molecule; purple acid phosphatase (PAP) may serve as an
example,** containing typically the Fe*"/Fe*" pair, in which Fe*"
may be replaced with some other divalent metal cations. More
than one third of the known enzymes are classified as
metalloenzymes; all significant groups of enzymes, such as
oxidoreductases, transferases or hydrolases, are involved here.
In general, the role of metal cations consists typically in their
ability to coordinate the central atom in the substrate and to
activate the water molecule making it an effective nucleophilic
agent. In PAP, the metal-ion-bound hydroxide is proposed to
perform the nucleophilic attack.”®®” Hence, the nucleophilic
substitution is the mechanism responsible for the cleavage of
the phosphoester bonds. Two modes of action of the metal
ions in enzymatic reactions suggest that the presence of two
metal cations in the metalloenzyme structure (active site) might
be beneficial.”® PAP catalyses typically the dephosphorylation
of phosphomonoesters. Huang’>® demonstrated that iron
oxide nanoparticles and even aged iron solutions exhibit
phosphatase-like activity; however, a detailed mechanism of
the dephosphorylating reactions was not given.’>°*

Hence, we postulate that metal oxide-based nanozymes and
some other materials (metalloorganic frameworks, MOFs) can
be viewed as a certain kind of metalloenzymes. The analogy
between nanozymes and metalloenzymes lies in their catalytic
mechanism. Both types of catalysts use the same principles of
catalysis, e.g., a transition-state stabilization, and they both

This journal is © The Royal Society of Chemistry 2024



Environmental Science: Nano

exploit the concept of active sites/centres, where the substrate
molecule binds and undergoes a chemical transformation.

The concept of active centres used in heterogeneous catalysis
can be applied to enzyme-mimetic systems. Ideally, the active
centre should®

- Stabilize (selectively) the transition state of the reaction
it catalyses,

- Transform an intermolecular reaction into a (pseudo)
intramolecular one by binding the reactants,

- Facilitate the proton transfer, stabilize charges,
coordinate metal ions, and/or serve as a nucleophile and/or
an electrophile,

- Modify the reaction microregion (hydrophilicity/
hydrophobicity, pH) to be suitable for the given reaction.

According to the conventional Michaelis-Menten model, the
enzymatically catalysed reaction is described by the following
equation:*

E+S < ES—EP—E+P 1)

The catalysed reaction, in which the reactant (substrate) is
converted to the product, could be viewed as a cycle (see
Fig. 1), into which the catalyst (enzyme) is introduced and is
regenerated at the end of the cycle.*® It should be noted that
the scheme in Fig. 1 does not represent any particular
reaction mechanism; the concept dividing the catalytic cycle
into three parts allows us to discuss separately and (to some
extent) independently the analogies and differences between
enzymes and nanozymes for the distinct parts of the
catalytically accelerated process. Before such a generalization,
we will give some examples.

3.1. Hydrolytic cleavage of phosphotriesters as the model of
the enzymatically and nanozymatically catalysed reaction

Phosphotriesters are toxic, artificially created derivatives of
phosphoric acid. During the decades since their introduction

EP |, ES

Fig. 1 Catalytic cycle. a) Interaction enzyme (nanozyme) with the
substrate; b) chemical transformation; c) product liberation and
regeneration of the active centre.

This journal is © The Royal Society of Chemistry 2024
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into the environment (mainly as pesticides), some bacteria
developed enzymes capable of destroying these substances -
phosphotriesterases (PTEs), for example OPH from
Pseudomonas diminuta or OpdA from Agrobacterium
radiobacter.> PTEs, together with other enzymes with the
ability to degrade the organophosphate compounds, attract
considerable attention not only because of the urgent need to
destroy great amounts of the banned pesticides, but as a
means of combating chemical weapons (sarin, soman, and
VX agent).

PTE isolated from Pseudomonas diminuta (OPH) was
characterized by Aubert et al.®® by a variety of spectroscopic
and other techniques. It was used to destroy the
organophosphate pesticide paraoxon and several of its
structurally similar analogues with the goal of precisely
describing the degradation mechanism. The binuclear metal
centre with two zinc ions was identified as the catalytically
active part of PTE. The destruction of paraoxon with PTE
proceeds via a hydrolytic reaction, giving p-nitrophenol as a
product. For a similar purpose, nanocrystalline cerium oxide
was used, again with p-nitrophenol as a product.®”

In PTEs, the phosphoester cleavage proceeds on active
centres consisting of two metal cations bridged by hydroxide.®”
The metal cations, which may be identical, play different roles
in the cleavage reaction. The cation at the f§ site polarizes the
P-O bond in the phosphoester molecule by the interaction with
phosphoryl oxygen, making the central P atom more susceptible
to the nucleophilic attack. The cation at the o site with the
hydroxide group, either the metal-bridging-OH or an o-bound
water molecule (depending on the enzyme and/or substrate),
serves as a nucleophile.®®”°

The active centre on the cerium oxide surface consists of
two cerium cations (advantageously in different oxidation
states) and a hydroxyl group in a proper spatial arrangement.
The Ce*" cation corresponds to the o site in the binuclear
metallozyme, and the Ce" cation corresponds to the B site.
The phosphoester bonds are broken by the nucleophilic
substitution mechanism in a similar way to that of
metalloenzymes (Fig. 2). The concept of active centres is close
to that of the vacancy/defect-engineered “hotspots” created
by the chemical modification of cerium oxide”* or by doping
with a polyvalent metal cation.”

3.2. Dephosphorylation of cAMP

As stated above, the phosphodiester bonds are extremely
resistant against the hydrolytic cleavage, which is quite
understandable, considering the crucial role they play in
ascertaining the stability of DNA and other important
biomolecules. The phosphodiester bonds occur also in some
small molecules, such as in cyclic adenosine monophosphate
(cAMP). cAMP is a small molecule regulating (as a so called
second messenger) many physiological processes both in
plants and animals. In the absence of catalysts, the cAMP
molecule is extremely resistant to the hydrolytic cleavage even
at elevated temperature; Chin and Zou”® estimated the half-
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Fig. 2 (A) Degradation of paraoxon with bacterial PTE (simplified from ref. 66); (B) degradation of paraoxon on the surface of cerium oxide. This
figure demonstrates clearly the different roles of « and B sites in binuclear metallozymes and analogous roles of Ce** and Ce** cations in cerium

oxide. Vo represents oxygen vacancies.

life of uncatalyzed cAMP dephosphorylation to be a million
years. Jano$ et al.”* demonstrated a remarkable enhancement
of the reaction rate in the presence of cerium oxide; the half-
lives for the total dephosphorylation (giving adenosine as a
product) were in the range of several minutes to several
hours. cAMP was recommended for testing the activity of the
phosphodiesterase enzymes,”® supposing that it may serve as
a DNA surrogate. The cAMP stability was proven, among
others, in tests imitating the conditions prevailing on Earth
at the time of the origin of life.”®

In living organisms, cAMP is hydrolysed by the
phosphodiesterase enzyme (PDE) to give adenosine 5'-
monophosphate (5-AMP) as a product (Fig. 3A). PDE like PTE
belongs to metalloenzymes with two metal cations in their
active site. However, there are some differences between the
two enzymes. In PTE, both metal cations are identical (Zn>"),
whereas PDE is a hetero-bimetallic protein containing
different cations (zn>*, Mg>*, Ca®").”” Fig. 3C shows the
overall structure of the PDE enzyme with different cations.
The mechanism of the phosphodiester bond cleavage in
CAMP was studied in detail by QM/MM simulation.”® The
pre-reaction complex of PDE with cAMP based on the
aforementioned theoretical study is shown in Fig. 3D,
highlighting the nucleophilic OH ion, the two catalytic
cations (Zn**, Mg>") and amino acid side chains forming the
catalytic centre of the enzyme.

It is assumed that nanozymatically catalysed
dephosphorylation of cAMP proceeds by the Sy2 reaction
mechanism. However, in the presence of cerium oxide, any
possible intermediate (neither 5-AMP nor 3-AMP) was not
detected, suggesting that the ring-opening reaction is
followed immediately by the removal of the remaining
phosphate group, giving adenosine as the final product.”* A
possible structure of the transition state is given in Fig. 3B.

3272 | Environ. Sci.: Nano, 2024, 11, 3268-3285

4. Comparison of the efficiency of
enzymes and nanozymes

A systematic comparison of nanozymes and natural enzymes
in terms of their efficiency under comparable conditions can
be rarely found in the literature. A critical comparison of
nanozymes and enzymes for biosensing purposes given by
Ashrafi et al.®® contains some kinetic parameters (the K,,, and
Ko constants of the Michaelis-Menten equation). However,
only materials mimicking enzymes from the oxidoreductase
family are involved here. The standardized procedure was
developed to compare the activity of nanozymes with
peroxidase-like ability.*" According to this procedure, the
activity of nanozymes is standardized against the activity of
Fe;0,4. Obviously, this procedure can be hardly adapted to
other kinds of nanozymes.

Generally, the efficiency of catalysts is expressed using the
terms such as the turnover number or turnover frequency,
often used inconsistently in industrial catalysis and
enzymology.®” In this article, we use the term turnover
frequency (TOF) calculated as the number of substrate
molecules converted to the product by a single molecule of
enzyme per second.®® For natural enzymes, the TOF values
vary in a wide range of few molecules to several million
molecules per second. It should be noted that some
phosphoesterases have the highest known enhancement rate,
increasing the reaction rate as much as 10> times over the
uncatalyzed reaction.®?

For nanozymes, the TOF values are reported less often; a
possible reason is an unclear definition of the nanozyme
8485 which should replace the “molecule of enzyme” in
the above definition. To give readers some perspective, we
compare the degradation of the organophosphate pesticide
paraoxon in the presence of cerium oxide®” with the

unit,

This journal is © The Royal Society of Chemistry 2024
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Fig. 3 A) Hydrolysis of cAMP by phosphodiesterase (PDE); B) schematic representation of the transition state in the ring-opening reaction of cAMP
in the presence of cerium oxide. i) Coordination of the cerium cation by an oxygen atom and ii) nucleophilic attack of the OH group on the
phosphorus atom;®” C) structure of the PDE enzyme with bound AMP and the two catalytic metal ions (PDB ID: 1ROR).”® The protein is displayed
in new cartoon representation with a-helices, turns and coil regions shown in green, cyan and white, respectively. AMP is shown in licorice
representation with atoms colored by element. The Zn?* and Mg?* catalytic metal ions are shown as purple and magenta spheres, respectively. D)
Close-up of the PDE active site showing the pre-reaction complex modeled using Schrodinger's suite (2021) based on the information from ref.
78. The cAMP and the hydroxide ion, performing the nucleophilic attack in the reaction, are shown in thicker licorice representation. Protein
residues and water molecules stabilizing the two metal ions and/or the cAMP's phosphate group are shown in thinner licorice representation with

the hydrogen bonding interaction between them shown as red dashed lines.

enzymatically catalysed cleavage of the same pesticide by
phosphotriesterase (PTE) from Pseudomonas diminuta.®® As
can be seen from kinetic dependencies and experimental
conditions in ref. 67, the degradation of paraoxon proceeds
almost completely within the time scale of several minutes in
the presence of 50 mg cerium oxide. Considering CeO, as a
nanozyme unit, we obtain the TOF values ranging from 10’
to 107 s

Even lower TOFs were obtained for the dephosphorylation
of cAMP in the presence of cerium oxide” (107° s™"). For this
reaction, the Michaelis-Menten equation can be used to fit
the dependence of the dephosphorylating reaction rate on
the initial concentration of cAMP (Fig. 4).

However, if we re-define the active centre as an assembly
of the Ce®* and Ce®" cations and surface OH groups,”* we
can use the number of the surface OH groups (experimentally
accessible) as an estimate of the nanozyme units. Then, TOFs
in the order ranging from ca. 0.1 to 0.4 s* can be obtained.
These values are still lower than the TOF value of the
paraoxon hydrolysis by bacterial PTE (2300 s'), but the
difference is not so dramatic and gives hope that with a
suitable modification of either the nanozyme itself or the
reaction conditions, it will be possible to achieve comparable
activity of enzymes and nanozymes.

This journal is © The Royal Society of Chemistry 2024

5. Can nanozymes compete with
natural enzymes?

Enzymes are catalytically active biomacromolecules made of
linear polypeptide/protein chains built from as much as 22
possible amino acids. The protein enzymes have been fine-
tuned by nature for the catalysis of a wide range of reactions.
This is possible thanks to the diverse “alphabet” of the 22
amino acids, from which proteins are constructed. The
diversity of these building blocks enables proteins to adapt
different global structures (folds)®*®®” with highly optimized
local structures (active sites)®® leading to very specialized
biocatalysts both in terms of the reactions catalysed and the
substrates being processed. The complexity of enzymes
allows them to exploit the traditional “tricks” utilized in
catalysis (stabilization of the transition state, destabilization
of the ground state); their main advantage consists in their
ability to arrange the substrate molecule and active site into
such mutual positions where the respective reaction is most
favoured.

Enzymes can stabilize the transition state of the reaction
by, for instance, having a charge distribution in the active
site that complements the electrostatic potential changes
during the reaction,®® or they can destabilize/disrupt the
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Fig. 4 A) Dependencies of the reaction rate on the initial concentration of substrate for the dephosphorylation of cAMP in the presence of
different kinds of cerium oxide. Experimental data fitted to the Michaelis-Menten equation. B) Lineweaver-Burk plot used to treat the same
experimental data. Experimental conditions: Concentration of cAMP ranged from 0.05 to 0.5 mmol L™, concentration of cerium oxide 12.5 mg
mL%, TRIS buffer 0.01 mol L™, pH 7.043, temperature 25 * 2 °C. Red points and curves - cerium oxide prepared from the carbonate precursor by
calcination at ca. 700 °C, the blue points and curves - cerium oxide prepared by precipitation with ammonia and lyophilization. Data from: A.
Alikberov, diploma thesis, University of J. E. Purkyné in Usti nad Labem, 2024.

ground state of the reaction thus promoting easier transition
into the transition state.”

The key to the function of enzymes is the nature of their
active sites, which is (usually) a surface-exposed pocket or
groove that facilitates the binding of a specific substrate and
the catalysis of a specific reaction. The active part of the
enzyme typically consists of the binding site and the catalytic
site.” Catalytic sites are often similar for the enzyme group
catalysing the same reaction with different substrates. As an
example, PTEs from Pseudomonas diminuta (OPH) and
Agrobacterium radiobacter (OpdA) share the same catalytic site
only differing in three amino acids in the binding site, which
drives their different substrate specificities.®> In this part of
the catalytic cycle (Fig. 1), we can find some similarity
between nanozymes and natural enzymes.

As shown above, the dephosphorylating reactions proceed
via the nucleophilic substitution reaction mechanism; these
reactions are favoured in nonpolar or aprotic solvents.
Natural enzymes are able to modify the reaction microregion
and provide a different chemical environment (pH,
hydrophobicity, etc.) more favourable to the catalysed
reaction®*** compared to the solvent (reaction medium).
Cerium oxide, although hydrophilic by nature, exhibits
hydrophobic behaviour when immersed in water. Molecular
dynamics simulation® demonstrated that the layer of
adsorbed water molecules in contact with the surface of
cerium oxide creates a hydrophobic interface, which may
alter the conditions for the surface reactions. Some other
studies confirmed a possibility to modify the hydrophobicity/
hydrophilicity of the cerium oxide surface.”>® It was shown
by molecular dynamic simulation that organophosphates
such as thiamine pyrophosphate or f-nicotinamide adenine
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dinucleotide (NAD) interact with the surface of cerium oxide;
the attractive interactions predominate over the competitive
ceria-water interactions,”” which makes the nanoceria-
catalysed dephosphorylation reactions possible.

The binding site is what determines the substrate specificity
of enzymes.”® The binding of the substrate is driven by non-
covalent interactions: hydrophobic interactions, electrostatic
interactions, hydrogen bonding and others.”®'% In this part of
the catalytic cycle, the (purely inorganic) nanozymes may hardly
compete with natural enzymes. For the given compound, such
as cerium oxide, there are only a limited number of ways how to
improve the accessibility of the catalytic site or even to optimize
the geometry of the pre-reaction complex. To some extent, the
difference in the reactivity of different facets of the cerium oxide
crystals may be exploited (see the shape-selective synthetic
methods'* %), New kinds of enzyme-like catalysts, namely
single-atom nanozymes, may provide better accessibility of the
active site to the substrate molecules. Some of them exhibit
excellent catalytic performance surpassing that of natural
enzymes,'® % but their ability to catalyse the phosphoester
cleavage reactions has been only rarely exploited. A significant
improvement in the catalytic efficiency may be achieved by
decorating the inorganic “core” with suitable ligands or other
structures emulating the functionalities of enzymes. The
strategy for the design and synthesis of this kind of artificial
enzyme was described in detail by Ginovska et al,'"”” who
emphasized that not only the catalytic active site, but the whole
enzyme scaffold should be emulated. A properly designed
enzyme should not only support the (static) structural similarity
with the established model substance, but also facilitate the
tuning of the reaction conditions along the reaction
trajectory.’®® However, there is a risk that this kind of bio-
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decorated nanozyme will lose some of the advantages of
nanozymes, e.g. resistance against extreme reaction conditions.
The valuable discussion to this point can be found in the
“viewpoint” article of Lyu and Scrimin.®*

The key part of the catalytic cycle is the conversion of substrate
(reactant) to product (part b) in Fig. 1. It is advantageous if the
metal cations are involved in dephosphorylation reactions. Many
enzymes (metalloenzymes) contain in their structure one or more
metal cations. There is diversity in the possible metal ions present
and their contribution to the enzyme's function.'”'® Some
metalloenzymes employ metal ions mainly for the purpose of
substrate binding/stabilization, for instance enzymes working with
substrates containing phosphate groups utilize divalent cations,
such as Mg>" or Mn*', to compensate for the negative charge on
the phosphate group."""''*> More often, however, metalloenzymes
employ the unique properties of metal ions directly in the
reaction. In some cases, replacement of the metal ion may be
tolerated at the cost of reduced efficiency, for example replacing
Mn*" with Mg®","** but typically metalloenzymes are uniquely
specific in the metal ion they use. This is achieved by the specific
arrangement of amino acids in the active site that precisely
correspond to the coordination sphere requirements of the given
metal ion."™*

The different strategy is used in dephosphorylating reactions
catalysed by cerium oxide, when the redox-cycling ability of
cerium cations is combined with the unique properties of the
cerium oxide crystalline lattice (see Fig. 5). Dynamic active
sites'*>¢ on the surface of cerium oxide consist of Ce**, Ce**
and the ~OH group (or the tightly attached water molecule). The
coordination with the Ce*" cation reduces the electron density
on the P atom in the phosphate group, making it more
susceptible to the nucleophilic attack with the -OH group. The
-OH groups bound to the trivalent cation are stronger
nucleophiles than the same groups bound to the tetravalent
cation; therefore the presence of a certain amount of Ce®
cations in the surface layer is essential for the proper function
of ceria-based nanozymes. However, the Ce®* concentration
(most probably) is not the rate limiting parameter. The easy
creation of oxygen vacancies''” "' and their mobility in the
cerium oxide structure'?°™*>* allow the re-creation of active sites
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virtually at any place on the surface of cerium oxide, where the
hydroxyl group or an activated water molecule is present. The
diffusion of oxygen through cerium oxide occurs via the vacancy
hopping mechanism."**

The proposed mechanism is not fully validated yet, but it
explains some discrepancies appearing in the literature,
regarding e.g. the role of cerium valence in the catalytic process.
There are also some experimental findings supporting its
validity:

- The dephosphorylating activity of cerium oxide depends
on the temperature during its preparation; for cerium oxide
prepared by annealing at temperatures above ca. 600 °C the
dephosphorylating activity decreases steeply with increasing
temperature, and correlates strongly with the content of the
-OH groups on its surface,®” obviously in agreement with the
proposed mechanism.

- When the precipitation/calcination method is used for
cerium oxide preparation, its activity depends only slightly on
the annealing temperature in a relatively broad range (ca.
300-600 °C), regardless of the precursor used. When the
annealing temperature decreases below a certain limit,
cerium oxide obtained by annealing the carbonate or oxalate
precursors loses its activity completely, whereas cerium oxide
prepared from cerium hydroxide retains a (certain) activity
over the whole temperature range. From these observations,
the necessity of the presence of a crystalline form of cerium
oxide was deduced. When carbonate or oxalate is used as a
precursor, its crystalline structure must be destroyed first,
and subsequently cerium oxide is created. When the wet
method (precipitation of cerium hydroxide by ammonia) is
used, the mechanism of the cerium oxide creation is quite
different; crystalline cerium oxide may be created at virtually
any temperature.

- The proposed reaction mechanism is consistent with the
results of the repeated use of cerium oxide in various
solvents.”* Briefly in aqueous solutions, cerium oxide can be
used repeatedly, because the surface -OH groups on its
surface can be re-generated by interactions with the
molecules of water. In organic solvents (non-polar, aprotic),
the -OH groups are consumed during the dephosphorylation
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Fig. 5 The mechanism of the active site re-creation via oxygen vacancy migration (from ref. 74).
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reaction. The ability of cerium oxide to destroy (toxic)
organophosphates in nonpolar solvents is excellent, but it
reduces rapidly in repeated cycles;”* cerium oxide should be
called a “reactive sorbent” instead of a catalyst in these
applications (see above).

- The dephosphorylating activity of cerium oxide is
demonstrated mainly in its nanocrystalline forms, but it is
not restricted to them. Indeed, we found some (non-
negligible) activity also in the case of certain technical
materials, not declared as “nano”.”*

- None of the other examined metal oxides exhibited
dephosphorylating activity towards cAMP comparable to
cerium oxide.”

In connection with the described mechanism of action of
cerium oxide, several questions may arise: (i) is cerium oxide,
which is used in large quantities in some industries, capable
of posing any risks to human health? The answer is not
clear-cut. Indeed, some dephosphorylation activity was
observed even with cerium oxides that were not declared as
“nanoceria,” including technical materials such as glass
polishing powders.”* Independently, Xu et al.'** confirmed
the ability of cerium oxide to cleave DNA molecules. These
facts deserve attention. On the other hand, cerium oxide for
industrial applications, such as chemical mechanical glass
polishing, is produced at temperatures around 1000 °C,'**
under conditions where it loses its dephosphorylation
activity. (ii) Can the described mechanism influence the fate
of chemical pollutants (e.g., pesticides) in the environment?
Hydrolysis and microbial decomposition are the primary
mechanisms for the degradation of organic pollutants in
soils and aquatic environments, with metal ions and metal
oxides playing crucial roles.'*® However, cerium oxide does
not occur in pure form in significant quantities in the
environment and likely does not exert a significant influence
on these processes. In contrast, iron oxides are plentiful in
the environment. Iron cations possess redox-switching
abilities. Nonetheless, iron oxides exist in numerous
crystalline forms, making it considerably more challenging to
delineate the precise degradation mechanism compared to
cerium oxide. The same holds true for other oxides
containing a metal cation with redox switching ability (e.g.
manganese). The described mechanism can occur in nature,
but it is difficult to observe.

Oxygen vacancies and their role in the cerium oxide activity

Oxygen vacancies are non-stoichiometric point defects frequently
occurring on the surface of metal oxides'*”'*® that significantly affect
their properties and catalytic performance.’* Oxygen vacancies govern
the catalytic properties of metal oxide-based catalysts including their
surface chemistry (presence of OH groups, wettability), electron
transfer or photocatalytic efficiency.*® The presence of oxygen
vacancies in cerium oxide is favoured by the redox switching ability of
cerium cations,***3?
strongly influenced by the nanocrystalline structure of cerium oxide.

As follows from theoretical considerations,"** the simple (fluorite-like)

while the formation energy of oxygen vacancies is
119

structure of cerium oxide not only enables the creation of oxygen
vacancies, but also supports their surface-bulk migration,"** which is
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responsible for the antioxidant activity of cerium oxide (and probably

also for some unexpected magnetic properties of cerium oxide'*®).

X-ray photoelectron spectroscopy (XPS) is one of the most frequently
used methods for element speciation. It reflects the composition of the
surface layer of cerium oxide, which is relevant for the assessment of
the (nano)ceria catalytic activity.'*® In principle, the oxidation state of
cerium is governed by the partial oxygen pressure in the surrounding
environment,'?”'*® but it may be affected by varying the synthetic
conditions, or by doping with polyvalent metal cations.** There are
still extensive discussions in the literature regarding the effect of the
Ce®*/Ce™" ratio on the catalytic efficiency of cerium oxide (and also the
reliability of the Ce®* determination by XPS and other methods'**'*?).
We postulated that both trivalent and tetravalent cerium cations
contribute to the dephosphorylating activity of cerium oxide, but their
exact ratio is not the limiting parameter, as it may be adjusted (in the
respective active site) by oxygen vacancy migration. Vacancy migration
is an integral part of the phosphatase-mimetic catalytic cycle.”* This
implies that not only the redox switching ability of the metal (cerium)
cation, but also the simple and robust crystalline structure of cerium
oxide is beneficial. In nanozymatic applications, the requirements for
metal oxide properties present a challenge marked by apparent
contradictions. While crystalline defects are favorable for the formation
of active centers, maintaining the structural integrity of the oxide is
crucial for facilitating the migration of these active centers. Cerium
oxide emerges as a promising candidate, as its robust fluorite-like
crystalline structure enables oxygen transport through the electron
(polaron) hopping mechanism."**

Conclusions and expected trends

In this article, we presented a dual view on the same kind of
reaction — a hydrolytic cleavage of the phosphoester bond in
organophosphate compounds - with the goal of finding
analogies that could be exploited in the design of (bio)
catalysts suitable for industrial applications of these
reactions. We compared metal oxide-based (mainly ceria-
based) nanozymes with their protein-based counterparts -
metalloenzymes.

Materials with phosphatase-mimetic ability are desirable not
only for numerous applications in bioscience and medicine, but
also they can become the basis of new industries if they are
available in sufficient quantities, with consistent quality and at
a reasonable price. A recovery of phosphorus from
phosphorylated biomolecules (phospholipids, DNA) suggested
by Manto et al'** may serve as an example. For those
applications, catalysts resistant against extreme conditions are
especially needed.

Natural enzymes have been evolutionarily optimized for
the conditions (temperature, pressure, pH) present inside
living cells. At elevated temperature, most of the natural
enzymes start to unfold and denature. There is an optimum
temperature for a given enzyme activity."*> The temperature
(solvent, pH) tolerance of an enzyme can be improved by
means of protein engineering, in which mutations are
introduced into the protein scaffold of the enzyme that
stabilize the protein without affecting its enzymatic
activity."**'"” Immobilization on inorganic (nano)particles
with some additional functionality (e.g. the separability in a
magnetic field) not only enhances the applicability of
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enzymes,"*® but may also improve their thermal resistance."*’
Despite that, the accessible range of conditions is rather
restricted, compared to nanozymes, and the range of possible
industrial applications remains seriously limited.

At present, mainly Ce- and Zr-based nanozymes are used
as dephosphorylating agents.'”” The mechanism of
organophosphate hydrolysis catalysed by cerium oxide was
proposed, based on the concept of dynamic active sites. This
concept is transferable to other metal oxides containing
cations with redox switching ability - Fe, Mn, Cu, Co. Oxides
of these metals occur in various forms (crystalline phases);
therefore the effects caused by this mechanism are hard to
observe. On the other hand, once identified (formulated), it
can be more easily detected in nature (with potential
implications in the theory of pollutant transformation or
even in the theory of life origin on Earth) and exploited in
industry.

For industrial applications, there is an urgent need for
more effective nanocatalysts (nanozymes). Various synthesis
methods are available to prepare cerium oxide with desired
properties, and numerous characterization methods exist for
its detailed characterization. However, a clear relationship
between certain measurable characteristics of cerium oxide
(descriptors) and its performance characteristics (e.g.,
phosphatase-like ability) is currently lacking. A systematic
approach utilizing methods of defect'?°*??/vacancy'*****:*
engineering, supported by effective computational methods
(which are currently lacking for these complex systems),
could facilitate the development of scalable industrially
applicable procedures (probably hydrothermal). However, it
is unlikely that the efficiency of such nanozymes will surpass
that of natural enzymes.

For specific purposes, cerium oxide can be applied in the
form of a thin layer on a suitable carrier, such as low-cost
sorbents, magnetic cores'** or nylon nanofibres.'*® This trend,
combined with the systematic exploitation of the
multifunctionality of certain nanozymes (with cerium oxide at
the forefront), may improve the applicability of metal oxide-
based catalysts, although not necessarily their efficiency. In
general, composites consisting of several components with
different functionalities are very promising materials with
diverse potential applications - see the combination of cerium
oxide (capable of detoxifying organophosphate compounds)
with titanium oxide, which eliminates residual organic
pollutants exploiting its photocatalytic ability.">*

Protein engineering

Naturally occurring enzymes face challenges when applied in
abiological settings in terms of their stability, their narrow range of
substrates or difficulty of their production. For some reactions of
interest there may not even be naturally occurring enzymes available.
Protein engineering is a field that aims to address these issues in order
to modify existing enzymes and optimize their properties; or generate

new enzymes with novel activities/functions.'*>**®

This journal is © The Royal Society of Chemistry 2024
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When optimizing an enzyme for particular applications, one would
start from an existing enzyme that shows at least some activity towards
the chemical reaction of interest. Such an enzyme would then undergo
several rounds of iterative optimization procedure where random
mutations in the amino acid sequence are introduced, and the
properties of the mutated enzymes are verified before accepting or
rejecting the changed enzyme sequences for the next round. This
approach is called directed evolution (DE) since it mimics the natural
selection process.””'*® The selection criterion can be either the
catalytic activity or protein stability, when sufficient activity has been
already reached. Limitations of DE include the fact that highly
specialized assay is required for the high-throughput screening of
mutated enzyme variants and that DE will typically result in optimized
enzymes that are not that distant to the original in terms of their
sequence, structure and properties.'*®

Alternatives to DE are rational design approaches that introduce changes
in the enzyme purposefully based on insight into its function, instead of
relying on random mutations. With sufficient understanding of the
structure and interaction of the substrate binding to the enzyme, it may be
possible to suggest targeted mutations to the active site to accommodate a
different substrate."**'>® Computational approaches can help suggest
optimal mutations in the protein scaffold, far away from the active site, in
order to increase enzyme stability.'°>'®' Rational approaches and DE can
be combined in a ‘semi-rational’ fashion, in which the mutations are not

fully random, but targeted onto a focused region of the enzyme.'**™*%*

Chimeragenesis can be used when bigger ‘jumps’ in the protein structure
are required. By combining structural elements from different proteins, it
generates new ‘chimeric’ protein structures. Some level of insight and or
analysis is required to understand which protein elements/substructures
are suitable for this ‘shuffling’.’®>'*® In the need of completely novel
enzymatic function, one can exploit the immune system to generate
antibodies against a surrogate molecule representing the transition state
of the chemical reaction of interest. The resulting antibody, exhibiting low
level catalytic activity, can then be further optimized by the
aforementioned methods."®”~*

The recent advent of Al-based protein structure prediction methods,
spearheaded by AlphaFold'”® and RoseTTAfold,'”" opened the doors to
more avenues in protein engineering. Based on just its sequence it is
now possible to predict, with reasonable accuracy, the structure of an
enzyme in the absence of an experimental structure. This enables
rational design approaches where they were not possible before.
Beyond that, Al-based methods can be used to derive completely new
protein structures, different from naturally occurring scaffolds®”>°
with potential for novel enzymatic functions, though they would still
need to undergo more traditional optimization steps described above.

A substantial enhancement of the nanozyme selectivity
may be achieved by molecular imprinting methods,”>"7*
whereas covering nanoparticles with hydrogels
facilitate their applications in biomedia. On the way between
simple inorganic systems with the ability to mimic natural
enzymes and real protein-based enzymes, there are a number
of organometallic'’® and other systems (vesicular,'””
supramolecular’®®™%%), They often contain the same or
similar structural units as the natural enzymes. It is also
possible to embed small molecule catalysts into otherwise
inert protein scaffolds (like artificial cofactors).'®*'®*> With
detailed knowledge of enzymatic reaction mechanisms and
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using protein engineering methods, the design of materials
with enzyme-mimetic activity and enhanced durability, less
susceptible to the conditions outside the living cell, could be
possible.

Although this article has been devoted almost exclusively
to nanozymatically accelerated dephosphorylation reactions,
the most recent studies demonstrated that cerium oxide is
also effective in the hydrolytic cleavage of other emerging
pollutants, e.g. sulfonamides."®®

It's quite clear by now that machine learning or AI
approaches will play an increasingly more important role in
the field of (bio)catalyst design. The ability of Al-based
protein  structure prediction methods (AlphaFold,'”’
RoseTTAFold,"”* and others'®”) to generate reliable structures
from just the amino acid sequence has led to a revolution in
protein engineering of enzymes.'"*>'®® There is now a
plethora of machine learning methods that can aid in the
various steps in enzyme optimization.’®>'*° Potentially even
more exciting is the possibility to generate completely new
protein structures divergent from the naturally occurring
ones,”” ™ thus opening doors to the potential of artificial
enzymes with novel activities. Applications of Al in the fields
of materials science and heterogeneous catalysis are no less
exciting.”® Recent studies, using AI approaches, were able to
design thousands of potential novel materials’’ as well as
autonomously propose workflows to synthetize them.'®?
Machine learning approaches can also speed up traditionally
demanding calculations of catalytic mechanisms and/or
catalyst properties allowing computations on bigger more
realistic systems giving us better understanding and
directions for future designs.'”*™"%> The question that
remains to be answered is whether and how AI approaches
can ‘bridge’ the worlds of enzymatic biocatalysis and
inorganic nanozymes to derive new generation of bio-
inspired nanocatalysts.
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