
ACEnano knowledge infrastructure to support data collection, methods optimisation and knowledge sharing in the area of physicochemical characterisation of nanomaterials

Thomas Exner, Edelweiss Connect (Switzerland)

NanoSafety Cluster week 09 October 2019, Copenhagen, Denmark

ACENANO Analytical and Characterisation Excellence

Analytical and Characterisation Excellence in nanomaterial risk assessment: A tiered approach

A tiered approach

ACEnano (Horizon 2020; Project number 720952) aims to introduce confidence, adaptability and clarity into nanomaterial risk assessment by developing a widely implementable and robust tiered approach to nanomaterials physicochemical characterisation.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 720952

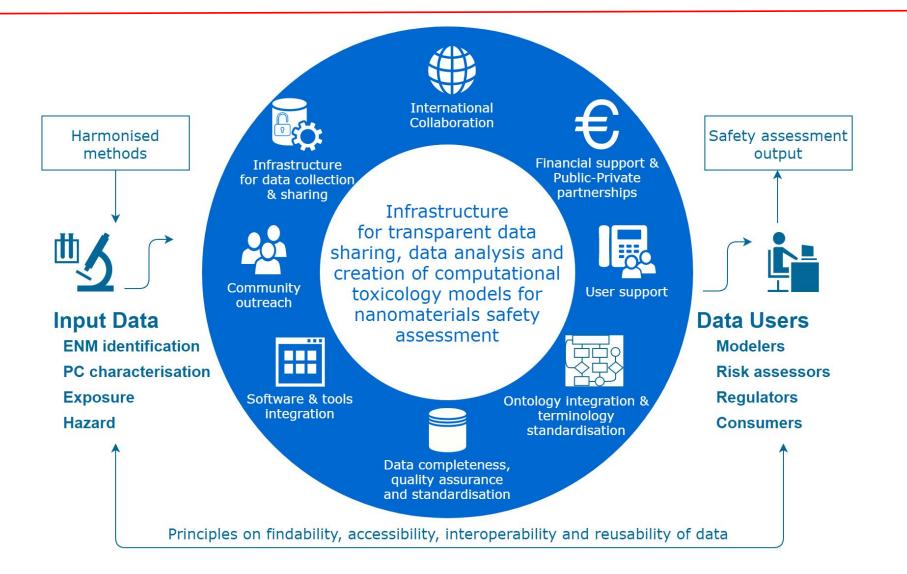
www.acenano-project.eu

Analytical and Characterisation Excellence in nanomaterial risk assessment: A tiered approach

ACEnano will introduce **confidence**, **adaptability and clarity into nanomaterial risk assessment** by developing a widely implementable and robust tiered approach to nanomaterials physicochemical characterisation

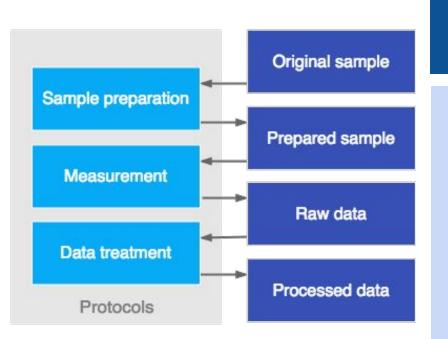
Main outcome: ACENANO TOOLBOX, available online and comprising:

- Analytical **innovation** in non-existent or poorly developed techniques
- **Optimisation** in existing techniques/instrumentation
- **Benchmarking/standardisation** in well developed techniques
- Three layer **training** model: core cohort of experts from the consortium, community training events, and online training tools
- **Decision tree** to guide users (specially SMEs) through selection of the most appropriate methods to address their needs in risk assessment


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 720952

www.acenano-project.eu

Fadeel B, Farcal L, Hardy B, Vázquez-Campos S, Hristozov D, Marcomini A, Lynch I, Valsami-Jones E, Alenius H, Savolainen K, Advanced tools for the safety assessment of nanomaterials, *Nature Nanotechnology 13, 537–543 (2018),* DOI: <u>10.1038/s41565-018-0185-0</u>


Knowledge warehousing

Protocols

- Access and sharing of methods
- Collection of metadata on the experimental procedure
- Tracking details on the steps performed
- Linked the method with the result
- Comparison of the experimental design
- Searchable and easy to filter database

Data

- Selection and use any of the methods added in the protocols database
- Create and save the full workflow applied
- Support intra- and inter-laboratory reproducibility goal
- Document all steps performed on a sample from the identification to the final characterisation results
- Storage and sharing of data

ACEnano tasks are:

- 1. Develop new and optimize existing characterization methods
- 2. Round robin testing for interlaboratory testing
- 3. Standardization of methods

Solution: Covering exact details as computer-readable metadata able to show even small differences in form of a questionnaire.

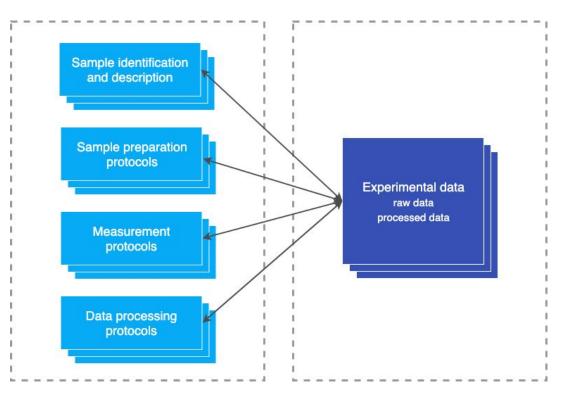
Sample prepa	ration protocol	
	Protocol name and description	
Part 1: General information	Contacts	Part
	Technique and Endpoints	
Part 2: Steps	Multiple actions and action parameters	
→ Preview protoco	I, Make more changes & Submit protocol	Part

Data treatment protocol		
	Protocol name and description	
Part 1: General information	Contacts	
	Technique and Endpoints	
Part 2: Steps	Steps and algorithm used	
\rightarrow Preview protocol, Make more changes & Submit protocol		

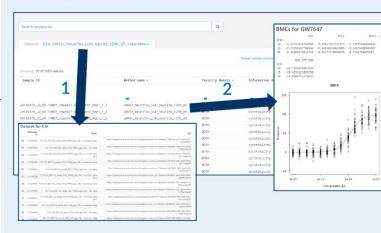
Measurement protocol				
	Protocol name and description			
Part 1: General information	Contacts			
	Technique and Endpoints			
	Instrument settings			
Part 2: Equipment	Type of datasets produced			
	Measurement quality parameters			
Part 3: Steps	Protocol steps			
→ Preview protocol, Make more changes & Submit protocol				

ACEnano Protocols: measurement

Part 2: Equipment					Possible datasets			
Equipment					State the type and units of each of	the axes of raw data that can be	produced by your instrument th	nat are pertinent to the
Please describe the equipment used to may introduce artefacts in the final resu		measureme	nt. Be sure to pro	vide details on any instrument settings that	endpoint in question.	Units:		
Name:*	Model:			Instrument type:			Delete	
Software:	Common ins	strument makes ar ersion:	nd models.		+ Add another axe			
Limit of detection upper:	Limit of de	tection lower:		Limit of detection unit:	Measurement quality pa	arameters		
What is the largest value of the endpoint that can be measured? If there are no definite detection limits please mention the particle or medium properties that limits the detectability as a function of size.	What is the I measured?	owest value of the	endpoint that can be		State parameters that are measure also their units if applicable.			lidity of the endpoint. State
Instrument settings and parameters (optional) List instrument settings and parameters that might inf give units of these settings.	luence the meas	ured value or its a	ccuracy, or are of import	ance for reproducing the experiment. Where applicable, also	Parameter:"	Common setting:	Units:	Delete
Setting	Value	Unit	delete		+ Add another quality parameter			
Setting	Value	Unit	delete					
Setting	Value	Unit	🗆 delete		Continue to next step			



- **1.** Select the technique used in the analysis and which endpoints were measured.
- 2. Select which sample preparation protocol was used.
- **3.** Select the measurement protocol.
- **4.** Select which data treatment protocol was used.
- **5.** Provide details such as analysis name, description, and contact information.
- **6.** Provide description of the sample that was used in the measurement.
- 7. Upload raw and processed data files.



- A comprehensive tabular data and metadata environment
- Supports annotation, organisation and storage of primary data and metadata
- Provides domain data types (e.g. understand chemical's SMILES)
- Facilitates the analysis, visualisation and sharing of data
- Provides interactive exploration of the data via web-based tools
- Implements the FAIR data principles of Findability, Accessibility, Interoperability and Reusability.
- Allows the upload of data directly onto a secure, cloud-based platform
- Provides harmonised and interoperable access to different knowledge sources including publicly available databases
- Provides a rich application programming interface (API)
- Helps creating a culture of data sharing by making sharing easy
- Replace manual error-prone, time consuming and costly processes with lean data solutions and processing workflows

 Upload data 	0	Annotate data 🛛 👘 📵	Publish dat	taset	
Dataset name:	LTKB			Cancel Publish dataset	
LTKBID	PubChem_CID	Compound Name	Appro	×	
LT01185	5361919.0	ceftriaxone	1984.	Column properties	
LT01842	5578.0	trimethoprim	1980.	< >	
LT00036	5353990.0	tetracycline	1953.		
LT00289	2955.0	dapsone	1979.	Short name	
LT00166	1046.0	pyrazinamide	1971.	Compound Name	
LT00098	3339.0	fenofibrate	1993.	Description	
LT00013	2907.0	cyclophosphamide	1959.	The Label Compound Name	
LT00068	2726.0	chlorpromazine	1957.		
LT00335	31703.0	doxorubicin	1974.	A	
LT01225	29029.0	clindamycin	1970.	Data type	
LT01716	4993.0	pyrimethamine	1953.	string 🗸	
LT00429	4614.0	oxaprozin	1992.		
LT02041	18381.0	dicloxacillin	1968.	Searchable	
LT00059	44093.0	captopril	1981.	Fulltext searchable 💙	
LT00393	5281011.0	doxycycline	1967.	Aggregation	
LT01167	2610.0	cefadroxil	1978.	Term based aggregation V	
LT01433	3639.0	hydrochlorothiazide	1959.	ienn based aggregation	
LT01492	5362119.0	lisinopril	1987.	Visibility	
LT01545	4158.0	methylphenidate	1955.	🛛 Visible	
LT01723	54892.0	quinapril	1991.		

After indexing the data in EdelweissData, the APIs can be used to 1) show datasets from all partners relevant for a specific case study and 2) generate automatic workflows for further processing and analysis, e.g. the calculation of benchmark doses.

Step 1. Addition of protocols

Step 2. Creation of data workflow

Step 3. Transfer of data to EdelweissData

- Selection of the dataset(s)
- Preparation of data file compatible with EdelweissData technology (reading the original csv file, extracting relevant information, collecting metadata, creating the final csv summary data)
- Automatic transfer (upload) of data
- Data visualisation

Replicate

Distribution

Size

Size

Size

Size

Size

Size

Size

Weighting

Number

Number

Number

Number

Number

Surface Area

Surface Area

Surface Area

Mean

97.1

95.8

96.9

96.6

95.6

97.8

96.4

97.7

Mode

97.1

95.3

97.8

96.6

95.9

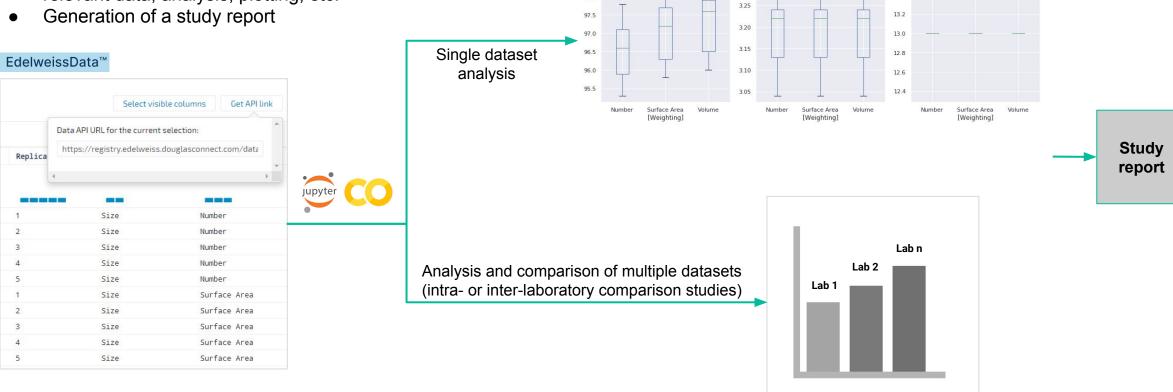
97.7

95.8

98.4

ACEnano **Use case:** Nanoparticle Tracking Analysis (NTA) Analytical and Characterisation Excellence

Cameral evel


13.6

13.4

Step 4. Data analysis

- Selection of dataset(s) to be analysed: data API
- Use the data API url (e.g. in JupyterLab or Google Colaboratory tools): extraction of relevant data, analysis, plotting, etc.
- Generation of a study report •

98.5

98.0

Mode

ConcentrationParticlesM

le8

3.30

Highlights

- ACEnano knowledge infrastructure (KI) supports the activities related to data collection and method optimisation in the area of physicochemical characterisation of nanomaterials.
- The KI provides a central place to access harmonised and standardised methods and data, supporting the implementation of Findable, Accessible, Interoperable and Reusable (FAIR) data principles, the reproducibility and documentation process towards the goal of generating reference resources for nanomaterials risk assessment.
- A public version of the data warehouse is being integrated in the NanoCommons data ecosystem. By semantic annotation and linking, this guarantees harmonisation and interoperability with other data sources of the EU NanoSafety Cluster.
- The protocols section facilitates access and sharing of methodology applied in nanosafety, starting with nanomaterials characterisation protocols developed or optimised within the ACEnano project.
- The experimental datasets of nanomaterials characterisation is stored together with relevant metadata pertaining to sample preparation, measurement, and the data treatment. The resulting measured value and its metadata will give as complete information as possible so that possibilities of future use of the measured value is maximised.
- The data warehouse is offering long-term storage in a re-usable format of data produced by the ACEnano project or provided by the nanosafety community.
- The development of the KI is supported by ACEnano (EU Horizon 2020 NMBP project no. 720952), while its availability to a wider community is assured by the activities in NanoCommons (Horizon 2020 INFRAIA project no. 731032).

Documentation and training materials

- User manual: <u>https://github.com/NanoCommons/tutorials/tree/master/ACEnano manuals</u>
- Poster summarising the KI's features: <u>https://acenano.douglasconnect.com/dissemination/event/152/euronanoforum-2019/</u>
- Contact and user support: <u>acenano@edelweissconnect.com</u>

Next training session

- Information and hands-on sessions organised during the 'EU NanoSafety Cluster Week' (10 October 2019, Copenhagen, Denmark)
- Demo session during the 'OpenTox Euro' Conference (29-31 October 2019, Basel, Switzerland)

ACE Manual Characterisation Excellence

Analytical and Characterisation Excellence in nanomaterial risk assessment: A tiered approach

Geert Cornelis and Jani Tuoriniemi Swedish University of Agricultural Sciences, Uppsala

Lucian Farcal, Maja Brajnik, Ian Steeter Edelweiss Connect GmbH Egon Willighagen Department of Bioinformatics - BiGCaT Maastricht University

Thank you for your attention!