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e Physiologically- based pharmacokinetic (PBPK) modelling is used for predicting the biokinetics (absorption, distribution, metabolism and excretion) of a
substance in an organism. Recently, PBPK modelling has been extended and successfully applied for describing the biokinetics of Nanomaterials (NMs).
® Jagpot is an open computational web-platform that enables the systematic production, collection, organization, validation, storage and sharing of

predictive models, with emphasis on predictive toxicology.
e A web service route has been established for hosting PBPK models in the Jagpot environment, bridging the gap between PBPK developers and
end-users.

Overview

PBPK models offer a methodology for predicting the internal distribution and exposure of a chemical in an organism and, as such, they are useful in
predictive toxicology and in risk assessment. PBPK models fuse physiological and drug- related information and describe known physiological relationships
through compartmental modeling, where each compartment represents an existing tissue. The main outcome of this type of models is the production of
concentration-time profiles in each tissue following the external exposure of the organism to the substance. PBPK modelling of NMs is more challenging
due to their complicated in vivo disposition properties compared to conventional chemicals. Several PBPK models have been developed for NMs, but most
efforts lack the capacity to accurately describe the complex bioprocesses related to NMs. One of the earliest publications which consider the process of
NMs uptake by phagocytizing cells (PCs) for improving the description of the biodistribution process is the one of L et al.
(https://doi.org/10.3109/17435390.2013.863406). The model introduced a subcompartment in each tissue for describing the activity of PCs and managed
to adequately describe the biodistribution of pegylated polyacrylamide (PAA- peg) nanoparticles in rats. The success of the Li model made it an ideal
candidate for showcasing the functionality of the Jagpot web services.

Jagpot (app.jagpot.org) is a computational platform developed by NTUA, that facilitates in silico modeling and enables the systematic production,

collection, organization, validation, storage and sharing of predictive models. Special infrastructure has been developed in Jagpot, to allow and support the

development, implementation and deployment of PBPK models as ready-to-use web services. The necessary elements for uploading a PBPK model to

; Jagpot are:

@l o A list of independent variables, which are the inputs to the model

=N o A list of dependent variables, which are the model outputs

f e A function containing the ODE system

O Following the deployment of the model on Jagpot, the model developer can further process and enrich the model metadata on the Jagpot Graphical User

; Interface (GUI). Specifically:

® In the “Overview” tab, he can include a detailed verbal and schematic description of the model, in Markdown language (Figure 1).

e |n the “Data” tab, he can add a short description, units and ontological class for each of the features of the model, dependent or independent. The
information of the “Data” tab is inherited by the “Predict” tab (Figure 2).

Introduction

The Li et al. (2014) PBPK model was deployed on Jagpot as part of the transnational access (TA) activities of the NanoCommons EU Horizon 2020 project,
aiming to increase the visibility of the model and allow simulation and testing of different biodistribution scenarios by users.

= Jagpot 8 <0 O ”Overview” tab of il 8 & A
the Li et al. model.

3

| |
L) PBPK model on polyethylene glycol-coated polyacrylamide (PAA-peg) nanoparticles on rat |,/> Choose method
This PBPK model has been developed on a rat population to describe the biodistricution of polyethylene glycol-coated (PAA-peg) nanoparticles. Its
MODEL schematic representation can be seen in the following figure. It consists of 7 compartments describing the mass distribution of the nanoparticles in MODEL Predict
e various organs, namely liver (L/), kidney (K/), brain (BR), bone marrow (BM), , heart (HT), spleen (SPL) and lungs (LU), one compartment to model
Title: PAA-PEG the rest of the body (ROB) as well as two blood pools; venous (VEN) and arterial (ART). All compartments include a sub-compartment describing the Title: PAA-PEG
PBPK model uptake of nanoparticles by phagocytizing cells (PCs), while all but the blood compartments have a third component describing the distribution of PBPK del
Ownar-pefildicts nanoparticles in the capillary blood. The detailed description of the PBPK model used can be found in Li et al.. 2006 : moae
Owner: penklists

Upload dataset with the required independent features and values

Arterial blood

A 10 compartment PBPK model
for the distribution of PAA-PEG
nanoparticles

A 10 compartment PBPK b M
model for the distribution of
PAA-PEG nanoparticles

Input values for the independent features

dose

CO_LI_TISSUE CO_SPL_TISSUE CO_ART_TISSUE CO_VEN_TISSUE

"Prediction” tab of the
Li et al. model.

The end-user of the model can read all the details for the model and the variables involved in the model in the “Overview” and “Data” tabs, but most
=f importantly he can perform simulation and generate concentration-time profiles in the “Predict” tab by providing values for the independent features
8 either manually or by uploading an csv file. For the Li et al. model the user can select the infusion time, dose, initial mass of PAA-peg for each
ol COmpartment, as well as the duration and time step of the simulation. When all values are completed, the user can click the start button, initialising the
prediction process. Shortly after, the mass profiles of PAA-peg in each compartment are generated and presented in a Table format on the GUI. The user
can then download the data in CSV format and further process them offline.
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One future step of high significance is the creation of an R library that will allow R users to deploy custom PBPK models on Jagpot. Even
non-experienced model developers will be able to deploy their models, rendering Jagpot a central repository for hosting, sharing, testing and using
nanoPBPK models. The GUI will be extended by providing functionalities to automatically produce concentration-time profiles within the Jagpot
environment. This improvement will enable generation of mass/concentration time profile plots on the GUI, thus minimising the need for offline
post-processing.
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