Comparing the Network Performance of AWS, Azure, GCP, IBM Cloud, and Alibaba Cloud

Angelique Medina

Cloud Research Journey

- Microsoft Azure
- AWS
- Google Cloud

- YoY changes (Azure, AWS, GCP)
- AWS Global Accelerator
- Broadband providers
- China
- Alibaba Cloud
- IBM Cloud

Research Methodology

Data Collection

- Customized traceroute
 - TCP-based
- Bidirectional measurements
 - Accounts for variation in forward and return routes
 - Unidirectional metrics computed at target agent
- Network path
 - Layer 3 per-hop AS path, metrics, QoS re-markings
- End-to-end network metrics
 - Latency, loss, jitter

Data Processing

- Managed vantage points
 - Consistent measurement
 - Hosted in data centers
- 10 minute testing interval
- 30 day data collection
 - Data collection spans 09.01.2019 -10.30.2019
 - Zero outages occurred during the data collection timeframe
 - Loss and Jitter negligible
 - Latency differences most prominent

End User Measurements

Broadband Measurements

Inter-Region Measurements

- Inter-region performance
 measured per-provider
- Provider performance compared against baseline latency metrics derived from vantage points proximal but external to each cloud provider

Intra-Region (Inter-AZ) Measurements

- AWS: 6 regions
- Azure: 6 regions
- GCP : 6 regions
- Alibaba Cloud: 7 regions
- IBM Cloud: 4 regions

Are Cloud Backbones Created Equal?

Inter-Region Performance Reveals Connectivity

- Performance baselined with Internet averages to reflect relative performance
- 97% of IBM inter-regions pairs performed better than the Internet
- Alibaba Cloud had ~ 15% of interregions pairs perform worse than the Internet
- Inter-Region traffic for compute resources typically stays within the cloud provider network
 - Except for Alibaba Cloud

What Does Strong Inter-AZ Performance Mean?

Two Types of User <-> Region Connectivity

But Three Approaches

2018 vs. 2019 Performance

2018: AWS had High Performance Variability

HOSTING REGION: MUMBAI, INDIA

BI-DIRECTIONAL LATENCIES

END-USER MEASUREMENTS

2018 AWS Azure GCP

2019: AWS Improved Performance Variability

HOSTING REGION: MUMBAI, INDIA BI-DIRECTIONAL LATENCIES

2018: Sub-Optimal Connectivity to AWS India

2019: AWS Optimized Routing

2018: GCP is 3x Slower From Europe to India

HOSTING REGION: MUMBAI, INDIA

BI-DIRECTIONAL LATENCIES

2018 🗌 AWS 📃 Azure 🔲 GCP

Why was GCP 3x Slower to Asia in 2018?

2019 Measurements Still Show High Latency

GCP Infrastructure Updated in 2019

WARNING: Low Cloud Visibility Ahead

GCP

2018: Reverse Path Visibility

2019: Reduced Visibility

Root cause: GCP Changes in TTL Handling

Traceroute to internet-bound destinations

For internal reasons, GCP increases the TTL counter of packets leaving Compute Engine instances for the internet. Tools like traceroute might provide incomplete results because the TTL doesn't expire on some of the hops. Hops that are inside and outside of Google's network might be hidden.

The number of hidden hops varies based on the instance's Network Service Tier, region, and other factors. If there are only a few hops, it's possible for all of them to be hidden. Missing hops from a traceroute result don't mean that outbound traffic is dropped.

There is no workaround for this behavior.

The Performance Impact of China's Great Firewall

All Cloud Providers Pay Performance Toll

User Locations

Viable Hosting Locations Outside of China

Viable Hosting Locations Outside of China

US Broadband to Cloud Connectivity

US Broadband to Cloud Connectivity Is Strong

But, Exceptions Can Occur

Bidirectional Latency to GCP LA (us-west2)

Routing Anomaly: SJC to LA via NJ

Fast MTTR from GCP – Routing Anomaly Resolved!

AWS Global Accelerator Performance

AWS Global Accelerator

Your Mileage May Vary

Continuous Optimizations in Progress

Vantage Points		LATENCY	
Sources	Baseline Internet Connection	Global Accelerator Connection	Global Accelerator Connection
Bangalore, India (Reliance)	219.74	323.27	243.98
Los Angeles, CA	74.92	74.45	59.43

Oct. 2019 Dec. 2019

Wrap Up

Summary Findings

- Cloud routing preferences continue to vary
 - Backbone vs. Internet-centric vs. hybrid
- Inter-Region connectivity stays within the cloud provider network
 - Exception: Alibaba Cloud
- Inter-AZ latency < 2ms
- AWS Global Accelerator
 - Performance varies but optimization continues
- GCP Europe-to-India backbone route still pre-rollout for most geos

Takeaways

- No steady state in the cloud
- Trust, but verify performance and routing expectations
- Visibility key to provider oversight and accountability

Download the full report: <u>ThousandEyes.com/cloud</u>

