DEMYSTIFY QUANTUM KEY DISTRIBUTION

Introduction, Applicability, Encryption, Use cases

Melchior Aelmans – Juniper Networks maelmans@juniper.net

Engineering Simplicity

AGENDA

- Introduction to Quantum Networking and Internet
 - Language, terminology and abbreviations
- Demystify Quantum Key Distribution (QKD)
 - How does QKD work
- Proof of Concept / ETSI interface

A tale about Alice, Bob and Eve

WHAT IT IS NOT? DEBUNKING!

- QKD is Key-Distribution using photons, it is NOT distribution of Quantum-Keys (what are those?).
- Post-Quantum Cryptography (PQC) is not the successor of Quantum Cryptography or QKD. It only tells us that the crypto algorithms have been invented after Quantum computers have been taken into account.
- Quantum Secure doesn't mean that quantums (QKD) are protecting the network. It means the network is secure against attacks using Quantum Computers
- To use QKD requires ZERO Quantum Computers. Keys are generated through quantum-mechanic effects at room temperature, not computed.

Conclusion: It is less spooky than you might think!

PROBLEM STATEMENT: PUBLIC KEY CRYPTOGRAPHY SCHEMES

INTRODUCTION TO QUANTUM

- Language, terminology and abbreviations
- Quantum Networking and Quantum Internet

QUBIT

- A qubit (or quantum bit) is the quantum mechanical analogue of a classical bit.
- A classical bit can have the value zero or one.
- In quantum (computing) the information is encoded in qubits.
- A qubit can be in state |0>, |1> or (unlike a classical bit) in a linear combination of both states. The name of this phenomenon is superposition.
- The most peculiar property of a Qubit is that it cannot be copied.
- Further reading: https://en.wikipedia.org/wiki/Qubit

SUPERPOSITION

One of the properties that sets a qubit apart from a classical bit is that it can be in superposition. Superposition is one of the fundamental principles of quantum mechanics.

In classical physics, a wave describing a musical tone can be seen as several waves with different frequencies that are added together, superposed.

Similarly, a quantum state in superposition can be seen as a linear combination of other distinct quantum states. This quantum state in superposition forms a new valid quantum state.

Qubits can be in a superposition of both the basis states $|0\rangle$ and $|1\rangle$. When a qubit is measured (to be more precise: only observables can be measured), the qubit will collapse to one of its eigenstates and the measured value will reflect that state.

Further reading:

https://www.quantum-inspire.com/kbase/superposition-and-entanglement/

QUANTUM TELEPORTATION

Quantum teleportation is a technique for transferring quantum information (state) from a sender at one location to a receiver some distance away.

While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information.

The qubit held by Alice can be 0 as well as 1. If Alice measured her qubit in the standard basis, the outcome would be perfectly random, either possibility 0 or 1 having probability 1/2.

But if Bob then measured his qubit, the outcome would be the same as the one Alice got. So, if Bob measured, he would also get a random outcome on first sight, but if Alice and Bob communicated, they would find out that, although their outcomes seemed random, they are perfectly correlated.

Further reading: https://en.wikipedia.org/wiki/Bell_state

ADVANTAGES AND CHALLENGES OF QUANTUM

	Details
Advantages and their applications	 No cloning: qubits cannot be copied which makes them perfect for cryptography Superposition collapses: when a qubit is measured the superposition collapses hence eavesdropping cannot go unnotified. Physics over math: Quantum security relies on physics instead of math hence factoring keys is much harder (impossible).
Challenges	 Decoherence: The coherence of a qubit is its ability to maintain superposition over time. Environment, interactions with the external world cause the system to decohere. Qubit quality (fidelity): qubits in today's cloud-based quantum computers are not good enough for large scale systems. In some cases, the result we get can be indistinguishable from noise. Scaling: We need to have innovations in the current ways we control wires, or multiple lasers, to create each qubit.

QUANTUM NETWORKING / INTERNET

- What is Quantum Networking
- Is there or will there be a Quantum Internet?

QUANTUM NETWORKING

What is a Quantum Network? Or is it a Quantum Internet?

- <u>Quantum networks</u> facilitate the transmission of information in the form of <u>qubits</u>, between physically separated quantum end-nodes (quantum computers).
 - Physical (telecom)fiber or free-space. Currently only partly able to leverage xWDM due to loss of quantum state (<u>decoherence</u>).
- Basic network structure is analogous to a classical p2p network connecting end-points when processors with more than the local available qubits are available or when in need for storage.
 - Currently only direct connections between 2 end-nodes using optical switches that preserve <u>quantum coherence</u>.
- Signal amplification and the use of optical repeaters is not possible as quantum state will be lost, and qubits cannot be copied. Hence distance between direct connected quantum nodes currently of about ~120km.
 Using a Quantum Repeater longer distances should become possible but additional

equipment is needed in the path for entanglement swapping and teleportation.

QUANTUM NETWORKING

- Two approaches to construct quantum networks; simply forward quantum information directly between nodes or create entanglement between not directly connected nodes (somewhat comparable to overlay networking) leveraging teleportation and entanglement swapping.
- Classical computer networks tackle the complexity of transmitting bits between two nodes by breaking down the transmission into several layers of a stack model, the Open Systems Interconnection model (OSI model). Work is ongoing to establish a comparable model to quantum network.

Application				
Transport	Qubit transmission			
Network	Long distance entanglement			
Link	Robust entanglement generation			
Physical	Attempt entanglement generation			

• Quantum applications can operate with imperfect quantum states — as long as the fidelity is above an application-specific threshold (for basic QKD the threshold fidelity is about 0.8).

Source: https://arxiv.org/pdf/2010.02575.pdf

HOW WILL THE QUANTUM INTERNET LOOK LIKE?

Supports multiple applications potentially based on quantum entanglement

"The quantum internet as part of a hybrid network together with the classical internet. End-users Alice and Bob have classical and quantum capabilities, whereas Charlie and Dave only have classical capabilities. Alice and Bob are in the process of requesting an entangled qubit pair from the quantum internet."

Source: https://blog.qutech.nl/2019/10/22/quantum-internet-at-the-verge-of-an-emerging-technology/

APPLICATION OF A QUANTUM NETWORK

Supports multiple applications based on quantum entanglement

In general quantum entanglement is well suited for tasks that require coordination, synchronization or privacy:

- Clock synchronization
- Leader Election
- Secure Access to resources (banking application for example)
- Telescope baselining or other geographically dispersed highly precise equipment
- Communication between quantum computers
- Sharing memory in quantum computers
- Quantum Key Distribution

"Classical internet" currently still needed for synchronisation between Quantum End Nodes.

DEMYSTIFY QUANTUM KEY DISTRIBUTION

- Symmetric Key Cryptography
- How does QKD work?
- QKD ETSI interface

SYMMETRIC KEY CRYPTOGRAPHY

- both sender and receiver have symmetric keys
- principally secure
- strengths essentially depend on the length of the key
- Advanced Encryption Standard (AES*), key lengths: 128,192 or 256 bit
- AES is considered quantum-safe because the cipher can adapt to a quantum attack by increasing its key size

BUT:

How can Alice and Bob share a key prior to communication?

QUANTUM CRYPTOGRAPHY BB84* PROTOCOL (SCHEMATIC)

*invented by Ch. Bennett (IBM Research) & G. Brassard (University of Montreal) in 1984

Alice	Information	Bob	Information	
Quantum Transmission				
Quantum Measurement Preparation				
Quantum Measurement				
Measurement post-processing				
Sifting through the Results				
Key Result				
	Ē	Filter 0 1		

Juniper Public

QUANTUM KEY DISTRIBUTION USED IN ROUTERS

- Measuring the quantum state destroys the photon
- The Quantum State of photons cannot be replicated
- Eavesdropping is easily recognized
- Classical channel for postprocessing does not carry the key

Quantum Cryptography security is based on quantum mechanics

QUANTUM CRYPTOGRAPHY KEY EXCHANGE

APPLICABILITY

- Keys are exposed using ETSI REST API <u>https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_qkd0</u> <u>14v010101p.pdf</u> and can be consumed by many.
- QKD usable in many Symmetric-key algorithms and protocols that allow for hitless key rollover.
 For example: MACsec, TCP-AO, IPsec, etc.

WHAT'S NEXT?

First useable solutions are here but what is next?

WHATS NEXT?

- How to overcome 120km distance between QKD boxes?
 - Quantum repeaters? SDN/SD-WAN?
- How to distribute keys in locations where no QKD boxes are present but with preserving 'quantum security'?
 - Remote/home workers, mobile users, small branch offices/POS
- Multipoint QKD?
- How to securely exchange keys between QKD boxes and consumers?
- Entangle >2 photons
- What else can we do with perfectly synchronised data?
- Leverage quantum keys to secure routing protocols? TCP-AO for example?

FURTHER READING / ADDITIONAL RESOURCES

- A quantum network stack and protocols for reliable entanglement-based networks <u>https://arxiv.org/pdf/1810.03556.pdf</u>
- Designing a Quantum Network Protocol <u>https://arxiv.org/pdf/2010.02575.pdf</u>
- Architectural Principles for a Quantum Internet
 <u>https://datatracker.ietf.org/doc/draft-irtf-qirg-principles/</u>
- Applications and Use Cases for the Quantum Internet https://datatracker.ietf.org/doc/draft-irtf-qirg-quantum-internet-use-cases/
- Quantum Key Distribution (QKD) Protocols: A Survey <u>https://ieeexplore.ieee.org/document/8527822</u>
- Quantum Key Distribution (QKD): Protocol and data format of REST-based key delivery API https://www.etsi.org/deliver/etsi_gs/QKD/001_099/014/01.01.01_60/gs_qkd014v010101p.pdf
- Dancing with Qubits: Robert S sutor Packt (ISBN-13: 978-1838827366)
- Cryptography Apocalypse: Roger A. Grimes Wiley (ISBN-13: 978-1119618195)

QUESTIONS? REACH OUT!

Melchior Aelmans maelmans@juniper.net

Engineering Simplicity

BACKUP SLIDES

Engineering Simplicity

SUMMARY OF QUANTUM PRINCIPLES

Quantum Concepts	Properties
Qubit	 Basic unit of information in quantum computing Unlike classical bits, a quantum bit or qubit can be sort of in zero and one at the same time
Superposition	 Quantum states can be added(superposed) together to yield a new valid quantum state A qubit can be in state 0), 1) or in a linear combination of the both states
No cloning	 Given an unknown quantum state there is no reliable way to produce extra copies of that state Can be annoying when you want to protect quantum information from outside influence
Measurement	 Act of observing a quantum state and will yield a classical information such as a bit If the state is in superposition, this measurement will 'collapse' it into a zero or one
Entanglement	 A pair of qubits can be entangled by bringing them close together and performing an operation This entanglement will manifest in the outcome of measurements of the qubits
Teleportation	 A method of sending qubits between Alice and Bob using entanglement and a classical channel An entangled qubit and the qubit (information to be sent) is measured by Alice to get a classical information. This information can be sent via a classical channel to Bob Bob does a correction to his qubit using the classical information to recover Alice's qubit
Fidelity	 Fidelity is a measure of the "closeness" of two quantum states. It expresses the probability that one state will pass a test to identify as the other.
Quantum decoherence	 Quantum decoherence is the loss of quantum coherence. In quantum mechanics, particles such as electrons are described by a wave function, a mathematical representation of the quantum state of a system; a probabilistic interpretation of the wave function is used to explain various quantum effects. As long as there exists a definite phase relation between different states, the system is said to be coherent. A definite phase relationship is necessary to perform quantum computing on quantum information encoded in quantum states.

DIFFIE-HELLMAN KEY EXCHANGE

5. Due to computational complexity, Eve cannot compute **S** in **reasonable time** without knowing **a** or **b**

PUBLIC KEY CRYPTOGRAPHY

- relies on one-way functions (e.g. integer factorization or discrete logarithm) requiring complex calculations
- encryption is based upon mathematical calculations that are simple to compute, but require an infeasible amount of processing power to invert
 - no need to establish a secret key
 - distribution of a public key instead

ISSUES WITH PUBLIC KEY CRYPTOGRAPHY

Juniper Public