

RPKI ROV

One journey
Tony Tauber
Comcast
2022

Agenda

- ROV Background ←
- Validating
- Publishing

BGP Security Risks

- Misconfiguration
- Malicious Actors
- Traffic doesn't go to the right place
 - and maybe goes to the wrong place

RPKI Route Origin Validation (ROV)

What are these acronyms

- RPKI = Resource Public Key Infrastructure
 - The system
- ROA = Route Origin Authorization
 - The main item of interest
- ROV Route Origin Validation
 - How it gets used the process it enables

What does it do?

- Provides a method for the "owner" (registered user) of a prefix to assert which ASN(s) are the correct originator(s) for that prefix
- Asserts (implicitly) that other originators are not valid

RPKI Route Origin Validation (ROV)

- What is in a ROA?
 - A signed statement consisting of:
 - prefix
 - maximum prefix length
 - originating ASN
- RPKI also has other types of objects to make it work

RPKI Route Origin Validation (ROV)

How does it work?

- The "root" assigner of all IP space (v4+v6) is IANA
- Delegated to 5 RIRs (Regional Internet Registries)
 - ARIN, RIPE NCC, APNIC, LACNIC, AFRINIC
- They assign further to
 - LIRs (Local Internet Registries)
 - Service Providers
 - Enterprises
- RIR portals for address holders to generate ROAs
- ROAs are published out by the RIR so that anyone can view them

ROAs

Global ROV coverage

NIST RPKI Monitor: RPKI-ROV Analysis Protocol: IPv4 RIR: All Date: 2022-01-22 06:00

Courtesy: NIST (National Institute of Standards and Technologies https://rpki-monitor.antd.nist.gov/ROV

Considerations

- Fail-open model
 - Given that most of the prefixes are still not covered (i.e., "not-found")
 - Hence absence of a covering ROA will still allow for route propagation
 - Same for complete loss of RTR connections/data at router level (more later)
- Already some large ISPs doing ROV
 - Hence invalid announcements are already getting dropped

Components

- Repositories
 - ROAs are published on servers operated by RIRs and their delegates
- Validating Caches (VC) running Relying Party (RP) software
 - Servers running validator software which fetches ROAs and other data using
 - rsync TCP protocol for synchronizing files on servers (TCP port 873)
 - RRDP RPKI Repository Delta Protocol which uses HTTPS as transport (newer, preferred)
 - Run cryptographic integrity checks to produce VRPs (Validated ROA Payload)
 - RPKI-to-Router (RPKI-RTR) protocol (TCP port 323 or 8323)
 - Allows for fetching VRP data by routers
 - Routers cache the data locally and refresh at intervals
 - Retain local cached data for a configurable time in case connection to cache is lost

Motivation

- Low barrier of entry
 - No new gear (features on existing routers)
 - Some VMs running freely available open-source software
- Risk of doing nothing
 - Vulnerability of mis-origination by others
- Risks of doing something
 - Collateral damage, increased complexity, new troubleshooting
- Management buy-in
 - Can't make the case on my own just in case something goes wrong
 - "Whose idea was this anyway?"
 - Different recent incidents in the trade press helped the case

Reading (Validating) / Writing (Publishing)

- Can do one without doing the other, not necessary to do together
- Need to work as incrementally as possible
 - Can't do things globally
 - Always have a backout plan of each (sub-)step
- Publishing
 - Hosted model: RIR publishes the data that members enter in the portal
 - e.g., ARIN Online
 - Delegated model: RIR delegates to LIR (Local Internet Registry)
 - Run own CA (Certificate Authority) and PP (Publication Point) servers
- Validating... (covered in later slides)

RPKI ROV High Level Plan

- Reading Route Origin Validation using published ROAs
 - Add inbound route-policy to "drop invalid" after dropping bogons
 - Field trial with subset of interconnection partners in August 2020
 - Broader rollout through remainder of 2020 and early 2021
- Writing Publishing ROAs for our own address space
 - Start with one or small number of prefixes
 - Gradually expand

Environment

- Validation Cisco/Juniper edge routers
 - Incremental rollout
- Publication ROA generation
 - 100 + prefixes
 - Two dozen internal ASNs
 - Thousands of more-specifics

Agenda

- ROV Background
- Validating ←
- Publishing

ROV – Route Origin Validation

- Easier to do with small risk
 - Luckily, it "fails open" in absence of a ROA, BGP route is accepted
- Only external eBGP sessions
 - Not on sessions among our different regional ASes for instance
 - No iBGP (doesn't even make sense)
 - Key reason: we carry many more-specifics internally
- Config per router, per neighbor
 - Easier to see if something goes wrong and back out if necessary
- Pairwise coordination with all partners is not the goal, notification is

Validating Cache Relying Party Software

- Geographic diversity
 - Deploy to two different data centers in case one has an outage
- Software diversity
 - Deploy two different codebases in case one has a problem
- Several freely available open-source options

Validating Cache Relying Party Software

- Initial choices
 - RIPE RPKI Validator v.3 RIPE NCC –written in Java language
 - Later replaced with <u>rpki-client</u> (with <u>web wrapper</u>) and <u>StayRTR</u>
 - Routinator NLnet Labs written in Rust programming language
- Hence, each router will have 4 different RTR servers configured
 - Deployed and managed by our DNS staff
- All have packages now, easy to install and keep updated
- Can produce metrics also for consumption

RPKI ROV infrastructure design

ROV – Bugs?

- Cisco and Juniper both had some bugs
 - Made sure to patch to the recommended versions
- RP Software has had some bugs
 - Mostly bounds-checking and the like
 - Installed fixed packages as they were released

Agenda

- ROV Background
- Validating
- Publishing ←

Signing and Publishing ROAs – Hosted

- Via RIR portals
 - Varying degrees of ease and integration
 - For example, publish ROAs to match existing BGP announcements
- APIs available
 - ARIN API script Rich Compton from Charter Communications
 - Not polished but wouldn't be possible without it!

Signing and Publishing ROAs – Delegated

- Address-issuing authority delegates to you
 - RIRs in our case, could be more layers down
 - Issues a Certificate which is used to sign ROAs and other artifacts
 - Hosts a record with URL to Publication Point (PP)
- Certificate Authority (CA) and Publisher Software:
 - Krill NLnet Labs
 - <u>rpki.net</u> Dragon Labs
- Publication point (PP) needs to be globally reachable
- Info about running own RPKI CA
 - https://www.slideshare.net/apnic/should-i-run-my-own-rpki-certificate-authority

Decision – Hosted vs. Delegated

- Delegated
 - Extra servers and software to run
 - Availability profile a bit unknown
- Hosted
 - Less of these risks....
- Went with Hosted at this point
 - Share fate with thousands of others
 - Consider revisiting at a later date
 - Hybrid model (CA internal, PP hosted elsewhere) has some appeal

Publishing – Creating ROAs

- Larger risk
 - Can create connectivity issues if something goes unreachable
 - Can take time to back out or correct
 - ROA distribution is on order of minutes to hours
 - Make sure to do it carefully
- Our complexity
 - Something over 100 address blocks
 - Almost all ARIN, a few from other RIRs
 - Distributed unevenly across more than 20 different ASes
 - Backbone, Regional, Data Center, Enterprise

Publishing – Creating ROAs Process

- Issuing ROA for largest blocks makes ROAs underneath "invalid"
 - Unless there's a matching ROA for the more-specific already
- Gradually roll out
 - Sign few non-intrusive prefixes
 - Start from "bottom" (more-specific prefixes)
 - Once all filled in, issue ROAs for top-level blocks
- Integrate with IP management software in a later phase
- Ended up publishing several thousand ROAs (mostly IPv6)
 - Fewer blocks but so much more to break apart

Thanks!

Tony Tauber <firstname>_<lastname>@comcast.com

(Not needing more spam from robots who should solve this robot Wordle instead.)

