
RPKI ROV
One journey
Tony Tauber

Comcast
2022



Agenda

• ROV Background ß

• Validating
• Publishing



BGP Security Risks

• Misconfiguration
• Malicious Actors
• Traffic doesn’t go to the right place 
• and maybe goes to the wrong place 



RPKI Route Origin Validation (ROV)
• What are these acronyms
• RPKI = Resource Public Key Infrastructure
• The system

• ROA = Route Origin Authorization
• The main item of interest

• ROV – Route Origin Validation
• How it gets used – the process it enables

• What does it do?
• Provides a method for the ”owner” (registered user) of a prefix to 

assert which ASN(s) are the correct originator(s) for that prefix
• Asserts (implicitly) that other originators are not valid



RPKI Route Origin Validation (ROV)
• What is in a ROA?
• A signed statement consisting of:
• prefix 
• maximum prefix length
• originating ASN

• RPKI also has other types of objects to make it work



RPKI Route Origin Validation (ROV)
• How does it work?
• The “root” assigner of all IP space (v4+v6) is IANA 
• Delegated to 5 RIRs (Regional Internet Registries) 
• ARIN, RIPE NCC, APNIC, LACNIC, AFRINIC

• They assign further to 
• LIRs (Local Internet Registries)
• Service Providers
• Enterprises

• RIR portals for address holders to generate ROAs
• ROAs are published out by the RIR so that anyone can view them



ROAs

RIR CA
RIR Resource

Database
RIR Member

Authentication 

ROA

2001:db8::/32
192.0.2.0/24

AS64500 



Global ROV coverage

Courtesy: NIST (National Institute of Standards and Technologies 
https://rpki-monitor.antd.nist.gov/ROV



Considerations

• Fail-open model
• Given that most of the prefixes are still not covered (i.e., “not-found”)
• Hence absence of a covering ROA will still allow for route propagation
• Same for complete loss of RTR connections/data at router level (more later)

• Already some large ISPs doing ROV
• Hence invalid announcements are already getting dropped



Components

• Repositories
• ROAs are published on servers operated by RIRs and their delegates

• Validating Caches (VC) running Relying Party (RP) software
• Servers running validator software which fetches ROAs and other data using

• rsync – TCP protocol for synchronizing files on servers (TCP port 873)
• RRDP – RPKI Repository Delta Protocol which uses HTTPS as transport (newer, preferred)

• Run cryptographic integrity checks to produce VRPs (Validated ROA Payload)
• RPKI-to-Router (RPKI-RTR) protocol (TCP port 323 or 8323)

• Allows for fetching VRP data by routers
• Routers cache the data locally and refresh at intervals

• Retain local cached data for a configurable time in case connection to cache is lost



Motivation
• Low barrier of entry
• No new gear (features on existing routers)
• Some VMs running freely available open-source software

• Risk of doing nothing
• Vulnerability of mis-origination by others

• Risks of doing something
• Collateral damage, increased complexity, new troubleshooting

• Management buy-in
• Can’t make the case on my own just in case something goes wrong
• “Whose idea was this anyway?”

• Different recent incidents in the trade press helped the case



Reading (Validating) / Writing (Publishing)
• Can do one without doing the other, not necessary to do together
• Need to work as incrementally as possible
• Can’t do things globally
• Always have a backout plan of each (sub-)step

• Publishing
• Hosted model: RIR publishes the data that members enter in the portal
• e.g., ARIN Online

• Delegated model: RIR delegates to LIR (Local Internet Registry)
• Run own CA (Certificate Authority) and PP (Publication Point) servers

• Validating… (covered in later slides)



RPKI ROV High Level Plan

• Reading – Route Origin Validation using published ROAs
• Add inbound route-policy to ”drop invalid” after dropping bogons
• Field trial with subset of interconnection partners in August 2020
• Broader rollout through remainder of 2020 and early 2021

• Writing – Publishing ROAs for our own address space
• Start with one or small number of prefixes
• Gradually expand



Environment

• Validation – Cisco/Juniper edge routers
• Incremental rollout

• Publication – ROA generation
• 100 + prefixes
• Two dozen internal ASNs
• Thousands of more-specifics



Agenda

• ROV Background
• Validating ß

• Publishing



ROV – Route Origin Validation

• Easier to do with small risk
• Luckily, it “fails open” – in absence of a ROA, BGP route is accepted

• Only external eBGP sessions
• Not on sessions among our different regional ASes for instance
• No iBGP (doesn’t even make sense)
• Key reason: we carry many more-specifics internally

• Config per router, per neighbor
• Easier to see if something goes wrong and back out if necessary

• Pairwise coordination with all partners is not the goal, notification is



Validating Cache Relying Party Software

• Geographic diversity
• Deploy to two different data centers in case one has an outage

• Software diversity
• Deploy two different codebases in case one has a problem

• Several freely available open-source options



Validating Cache Relying Party Software

• Initial choices
• RIPE RPKI Validator v.3 – RIPE NCC –written in Java language
• Later replaced with rpki-client (with web wrapper) and StayRTR

• Routinator – NLnet Labs – written in Rust programming language
• Hence, each router will have 4 different RTR servers configured
• Deployed and managed by our DNS staff

• All have packages now, easy to install and keep updated
• Can produce metrics also for consumption 

https://rpki.readthedocs.io/en/latest/rpkivalidator3/index.html
https://rpki-client.org/
https://github.com/ties/rpki-client-web
https://github.com/bgp/stayrtr
https://rpki.readthedocs.io/en/latest/routinator/index.html


RPKI ROV infrastructure design



ROV – Bugs?

• Cisco and Juniper both had some bugs
• Made sure to patch to the recommended versions

• RP Software has had some bugs
• Mostly bounds-checking and the like
• Installed fixed packages as they were released



Agenda

• ROV Background
• Validating
• Publishing ß



Signing and Publishing ROAs – Hosted 

• Via RIR portals
• Varying degrees of ease and integration
• For example, publish ROAs to match existing BGP announcements 

• APIs available
• ARIN API script – Rich Compton from Charter Communications
• Not polished but wouldn’t be possible without it!

https://github.com/racompton/arin-roa-request


Signing and Publishing ROAs – Delegated 

• Address-issuing authority delegates to you
• RIRs in our case, could be more layers down
• Issues a Certificate which is used to sign ROAs and other artifacts
• Hosts a record with URL to Publication Point (PP)

• Certificate Authority (CA) and Publisher Software:
• Krill – NLnet Labs
• rpki.net – Dragon Labs

• Publication point (PP) needs to be globally reachable
• Info about running own RPKI CA

• https://www.slideshare.net/apnic/should-i-run-my-own-rpki-certificate-authority

https://rpki.readthedocs.io/en/latest/krill/index.html
https://github.com/dragonresearch/rpki.net/
https://www.slideshare.net/apnic/should-i-run-my-own-rpki-certificate-authority


Decision – Hosted vs. Delegated

• Delegated
• Extra servers and software to run 
• Availability profile a bit unknown

• Hosted
• Less of these risks….

• Went with Hosted at this point
• Share fate with thousands of others
• Consider revisiting at a later date
• Hybrid model (CA internal, PP hosted elsewhere) has some appeal



Publishing – Creating ROAs

• Larger risk
• Can create connectivity issues if something goes unreachable
• Can take time to back out or correct
• ROA distribution is on order of minutes to hours

• Make sure to do it carefully
• Our complexity
• Something over 100 address blocks
• Almost all ARIN, a few from other RIRs

• Distributed unevenly across more than 20 different ASes
• Backbone, Regional, Data Center, Enterprise



Publishing – Creating ROAs Process

• Issuing ROA for largest blocks makes ROAs underneath “invalid”
• Unless there’s a matching ROA for the more-specific already

• Gradually roll out
• Sign few non-intrusive prefixes
• Start from “bottom” (more-specific prefixes)
• Once all filled in, issue ROAs for top-level blocks

• Integrate with IP management software in a later phase
• Ended up publishing several thousand ROAs (mostly IPv6)
• Fewer blocks but so much more to break apart



Thanks!

Tony Tauber
<firstname>_<lastname>@comcast.com

(Not needing more spam from robots who should 
solve this robot Wordle instead.)


