
gRIBI
gRPC Service for RIB Injection
13-FEB-2022
Nandan Saha (nandan@arista.com) @nonedonetwtr
steve ulrich (sulrich@arista.com) 🐘

mailto:nandan@arista.com
https://twitter.com/nonedonetwtr
mailto:sulrich@arista.com
https://botwerks.social/@sulrich

Overview
• gRIBI is a gRPC service to inject entries into the RIB
• We will look at
• Existing approaches for route injection, their

challenges and how gRIBI helps overcome them
• Details about the gRIBI service
• walk thru simple weighted route injection scenario

Motivation
• Existing approaches* for route injection include
• Direct programming of forwarding plane entries

(P4Runtime, OpenFlow)
• Use existing routing protocols to inject entries
• e.g., BGP SR-TE Policy, BGP-LU for egress peer

engineering.
• Device APIs using a vendor SDK

* something, something … I2RS

Motivation (contd.)
• Direct programming assumes
• Controller(s) have full view of device’s forwarding

table.
• Controller(s) can modify all hardware tables
• Requires controller to know about resolving routes

(usually IGP) and reacting to changes
• adds complexity to overall system

Motivation (contd.)
• Using a routing protocol involves:
• Force fitting data model and routes to constraints of

protocol (for example BGP NLRI uniqueness and
affecting BGP best path Algo in the context of BGP
SR-TE Policy)

• No notion of transactional semantics
• No acknowledgments of programming

• Using a device/vendor-specific API isn’t open and
portable

gRIBI
• gRPC service to inject (and query) routing table entries

into a network device’s RIB from an external entity (say
a controller)

• From device’s PoV, control plane service where
injected entries are just another source to device’s
RIB(s)

gRIBI as a control plane service

External entity
(gRIBI client)

BGP
daemon

Static
routing
daemon

RIB Manager

H/W

gRPC IS-IS
daemon

LFIB FIB

gRIBI
server

gRIBI Data model
Table entries data model is the existing OpenConfig
Abstract Forwarding Table (AFT) converted to protobuf

Transactional semantics for programming
operation
• Every programming operation request from the

external entity has an (unique) “id”
• Device responds with programming response for every

request using the “id” which allows the external entity
to tie back to a specific operation

Support for FIB programming ACK
Acknowledgement from the device can separately
indicate the status of the programming in the device’s
software RIB and hardware FIB
• enables the controller to do something intelligent

based on the response from the device

Other features
• Includes support for redundant clients
• i.e., active/standby and active/active

• Persistence of programmed entries
• Entries programed by client persist in RIB and FIB

on client disconnect and gRIBI daemon restart
• Leverages support for gRPC transport security

(mTLS/TLS/SPIFFE-ID) to provide secure connections
from external entity to device

Example Applications
• Inject route entries into a VRF for scrubbing traffic for

DDoS mitigation
• gRIBI injected entry is another route with its own

type and preference
• Next hops are recursively resolved in the RIB like for

any other route from a routing protocol
• Injecting a Labeled FIB entry that points to a WECMP

set of label stacks akin to BSID steering in SR Policy
• Variations on these themes for selective tunnel-based

traffic engineering

Route injection, not config

External entity
(gRIBI client)

BGP
daemon

Static
routing
daemon

RIB Manager

H/W

gRPC IS-IS
daemon

LFIB FIB

gRIBI
server

222.222.222.222

Traffic scrubbing for DDoS mitigation

Traffic
destination

(100.100.100.1/32)

Scrubber
111.111.111.111

Example: prefix forwarding into IPinIP tunnel

AFTOperation {
network_instance: default
Ipv6 route AFT entry {

Prefix: 100.100.100.1/32
Next hop group: 1

}
}

AFTOperation {
network_instance: default
next hop group AFT entry{

Id: 1
Next hops, wt: [(1000, 1)]

}
}

AFTOperation {
network_instance: default
next hop AFT entry: {

Id: 1000
IpInIp {

src_ip: 111.111.111.111
Dst_ip: 222.222.222.222

}
}

Example: MPLS traffic to LSPs
AFTOperation {

network_instance: default
MPLS AFT entry {

Label: 100
Next hop group: 1

}
}

AFTOperation {
network_instance: default
next hop group AFT {
Id: 1
Next hops, wt: [(1000, 1), (2000,2), (3000, 5)]

}
}

AFTOperation {
network_instance: default
next hop AFT:

Id: 1000
Pushed MPLS label: 201
Pushed MPLS label: 300

}
}

{ … Id: 2000}
{ … Id: 3000}

IP 100

IP 201 300

IP 401 500

IP 601 700

* not all WECMP legs are shown

RPCs
• Modify
• Inject entries, client parameters.

• Get
• Retrieve entries with RIB/FIB installation state

• Flush
• OOB delete all entries

Modify
• rpc Modify(stream ModifyRequest) returns (stream

ModifyResponse)
• Each ModifyRequest AFTOperation has
• id
• Network instance (VRF)
• Operation (add/replace/delete)
• Entry

• Response has
• id
• RIB, FIB Status
• Timestamp

Modify - Session Parameters
• When a client connects it sends session parameters in

a ModifyRequest to specify the type of connections
and behaviors that are desired
• Client redundancy - active/active, active/standby
• AFT persistence - persist or delete
• ACK type - RIB ACK or RIB+FIB ACK

Modify - Election ID
• Used by device to determine active client
• When a client connects, it sends its election ID
• Device responds with highest election ID it knows about
• Each AFT Operation also has the election ID and the gRIBI

server only processes operations from the client with the
highest election ID

Get - fetch device state

• rpc Get(GetRequest) returns (stream GetResponse):
• GetRequest from client can request all AFT entries from

all VRFs or filter on VRF and/or AFT type
• Device streams entries along with last RIB and FIB

acknowledgement status

Flush - clear one or all VRFs

• rpc Flush(FlushRequest) returns (FlushResponse);
• FlushRequest contains
• Election ID (or an override to ignore election ID)
• A VRF name or all VRFs

• FlushResponse contains a result and timestamp.
• Meant to be used by external entity during controller

malfunction.

operation {
id: 4
network_instance: "default"
op: ADD
next_hop {

index: 4
next_hop {

ip_address {
value: "192.168.1.1"

}
interface_ref {

interface {
value: "Ethernet2"

}
}

}
}
election_id {

low: 1
}

}

params {
redundancy:

SINGLE_PRIMARY
persistence: PRESERVE

}

election_id {
low: 1

}

{...}

Example

operation {
id: 3
network_instance: "default"
op: ADD
next_hop {

index: 3
next_hop {

ip_address {
value: "192.168.1.1"

}
interface_ref {

interface {
value: "Ethernet5"

}
}

}
}
election_id {

low: 1
}

}

e2

e6

e4

e5
192.168.1.1/32d:1.1.1.1

next-hop
construction

connection
params

Example
{ ... }

operation {
id: 8
network_instance: "default"
op: ADD
next_hop_group {
id: 2
next_hop_group {
next_hop {
index: 3
next_hop {
weight {

value: 1
}

}
}

{ ... }

operation {
id: 12
network_instance: "default"
op: ADD
ipv4 {

prefix: "1.1.1.1/32"
ipv4_entry {
next_hop_group_network_instance {
value: "default"

}
next_hop_group {
value: 2

}
}

}
election_id {

low: 1
}

}

next_hop {
index: 4
next_hop {
weight {
value: 3

}
}

}
}

}
election_id {
low: 1

}
}

e2

e6

e4

e5
192.168.1.1/32d:1.1.1.1

next-hop group
construction

route
association

Example
aip1#show ip route
show ip route
VRF: default
WARNING: Some of the routes are not programmed in
kernel, and they are marked with '%'.
Codes: C - connected, S - static, K - kernel,

O - OSPF, IA - OSPF inter area, E1 - OSPF external type 1,
E2 - OSPF external type 2, N1 - OSPF NSSA external type 1,
N2 - OSPF NSSA external type2, B - Other BGP Routes,
B I - iBGP, B E - eBGP, R - RIP, I L1 - IS-IS level 1,
I L2 - IS-IS level 2, O3 - OSPFv3, A B - BGP Aggregate,
A O - OSPF Summary, NG - Nexthop Group Static Route,
V - VXLAN Control Service, M - Martian,
DH - DHCP client installed default route,
DP - Dynamic Policy Route, L - VRF Leaked,
G - gRIBI, RC - Route Cache Route

Gateway of last resort is not set

G% 1.1.1.1/32 [5/0] via 192.168.1.1, Ethernet2, weight 3/4
via 192.168.1.1, Ethernet5, weight 1/4

G% 2.2.2.2/32 [5/0] via 192.168.1.1, Ethernet4, weight 3/4
via 192.168.1.1, Ethernet6, weight 1/4

C 3.3.3.0/24 is directly connected, Ethernet5
C 4.4.4.0/24 is directly connected, Ethernet2
C 5.5.5.0/24 is directly connected, Ethernet6
C 6.6.6.0/24 is directly connected, Ethernet4
C 10.30.1.0/24 is directly connected, Ethernet1
C 10.40.1.0/24 is directly connected, Ethernet3
S 192.168.1.1/32 [1/0] is directly connected, Ethernet2

is directly connected, Ethernet4
is directly connected, Ethernet5
is directly connected, Ethernet6

C 192.168.201.4/30 is directly connected, Ethernet4

network-instance

dynamically
programmed

entries for 1.1.1.1/32

static routes for
192.168.1.1 recursive
resolution

dynamically
programmed
next-hop weights

e2

e6

e4

e5
192.168.1.1/32d:1.1.1.1

References
• gRIBI - Github repository
• Motivation document
• Specification
• Protobuf definitions

• gRIBIGo Reference implementation

https://github.com/openconfig/gribi
https://github.com/openconfig/gribi/blob/master/doc/motivation.md
https://github.com/openconfig/gribi/blob/master/doc/specification.md
https://github.com/openconfig/gribi/tree/master/v1/proto
https://github.com/openconfig/gribigo

Conclusions
• gRIBI provides a new and open mechanism for

programming network device RIB state
• Supports a range of forwarding paradigms

• IP tunnels, surgical routing, VRF population, etc.
• not constrained to classic traffic engineering

technologies (RSVP)
• multiple implementations do exist
• reaching a point where operators can start to utilize

modern tools and software engineering techniques to
interact with the RIB and customize forwarding
behaviors

Thank you

