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Executive summary 

Subdural strip and grid electrodes are used as a diagnostic tool in intracranial electroencephalography 

(iEEG) procedures in patients with drug resistant epilepsy (DRE) undergoing evaluation for potential 

surgical resection. The electrodes monitor brain activity to precisely localize abnormal brain tissue 

provoking seizures, as well as stimulate the brain to map functional cortical areas (e.g. speech, vision) to 

determine the relationship between the presumed seizing tissue and these cortical areas. Outside of the 

epilepsy field, subdural electrodes are used for monitoring brain activity in certain patients with acute 

severe traumatic brain injury and during intraoperative monitoring (IOM) in patients undergoing tumor 

resection.   

Existing subdural electrodes, which have been around for decades, are made of silicon, are thick (~0.5 

mm) and not conform well to the brain. The thickness, weight, lack of flexibility and conformability to 

the cortical surface have negative impact on the underlying cortical tissue, can result in fluid accumulation 

in between the electrode and brain or dura, and contribute to a heightened tissue inflammatory response. 
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These can result in increased number of post-operative complications and decreased quality of the neural 

recordings, all of which can greatly impact clinical decisions and outcomes. 

To provide a solution to these problems, NeuroOne® had designed, developed and manufactured a new 

thin film electrode, the EVO® cortical electrode. By comparison with silicone electrodes, EVO electrodes 

are ~7 times thinner, ~8 times lighter, are characterized by greater flexibility, and demonstrate reduced 

tissue reaction in pre-clinical studies. The electrodes passed all biocompatibility, mechanical, electrical 

and electrochemical testing and were the first FDA cleared thin film electrodes for use in clinical practice 

for monitoring and stimulation of brain activity. To assess the initial clinical experience, NeuroOne 

conducted a post-market user feedback study. Data were collected from neurosurgeons (n=7) who used 

EVO electrodes in DRE patients undergoing evaluation for potential surgical resection or undergoing 

tissue (epileptic and/or tumor) resection. Users provided very high ratings, mostly 4 and 5 on a scale of 1-

5, regarding the properties (thickness, flexibility, weight), features (ease of placement, conformability to 

the brain areas) and performance (qualitative signal recording quality) of the electrodes during surgical 

implantation.  

In conclusion, the EVO cortical electrode is the first thin film electrode technology FDA cleared for use 

in clinical practice for monitoring and mapping brain activity. The properties of these thin, flexible 

polyimide electrode arrays may overcome many limitations of existing commercially available 

technology. Initial clinical use indicated that the technology is feasible for surgical implantation and 

demonstrates exceptional signal quality, greater flexibility, ease of placement and conformability to brain 

gyrations when compared to silicone based cortical electrodes.   

 

Background 

Drug resistant epilepsy - epidemiology and health care burden 

Epilepsy affects about 1.2 % of the US population, which is ~3.4 million people, ~ 3 million adults 

and ~470,000 children 1. Antiepileptic drugs (AEDs) are the first treatment choice, however, more than 

30% of the patients continue to experience uncontrolled seizures despite trying two or more AEDs  2. 

These patients became known as patients suffering from drug resistant epilepsy (DRE) or refractory 

epilepsy.  

DRE takes a heavy toll on the patients, 

families, caregivers, health care system and 

socio-economic system. Quality of life and 

patient’s ability to function independently are 

severely impacted 3, 4. Seizures starting early in life may result in developmental delays, and impact 

cognition, learning, emotional development, behavior and social integration, often leading to a lifetime of 

disability 4, 5. Social stigma, loss of employment, loss of independence such as inability to drive, further 

lead to isolation and contribute to well-known co-morbidities. Epidemiological studies have shown that 

co-morbidities including depression, anxiety, dementia, migraines, peptic ulcers, and arthritis are 8 times 

more common in people suffering from epilepsy than in the general population 3, 4. The mortality rate is 

also 5-10 times higher than in the general population, due primarily to sudden unexpected death in epilepsy 

(SUDEP), accidents, and suicide 6-8. 

The health care costs for patients with epilepsy are estimated at $28 billion per year 9, with direct 

costs per person ranging from $10,192 to $47,862 10. There is increased utilization of health care resources 

1/3 of the epilepsy patients fail drug treatment and 

are candidates for surgical options. 
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and higher health care costs for DRE patients as compared to patients that respond to medication 2, 10. In 

addition, loss of productivity and employment profoundly impacts the socio-economic system 11.  

Surgical and neuromodulation treatment options for DRE patients 

The most successful surgical treatment options for DRE patients are resective surgery and 

neuromodulation. Resective surgery involves the removal of abnormal tissue, while neuromodulation 

consists of stimulating brain circuitry that causes seizures to prevent or abort seizures. Other surgical 

options include ablation (e.g. Laser Interstitial Thermal Therapy, LITT), hemispherectomy, corpus 

callosotomy, and stereotactic radiosurgery).  

The appropriate treatment critically depends on the location of the abnormal seizing tissue, called 

the seizure onset zone (SOZ), number of epileptogenic foci, and SOZ’s proximity to functionally 

important brain areas, called eloquent cortical areas (e.g. speech, vision, movement, etc). These factors 

are identified based on a comprehensive 

patient evaluation, which can be a two-

phase process. Phase 1 evaluation consists 

of non-invasive imaging and neuro-

functional tests, such as a high-resolution 

magnetic resonance imaging (MRI), 

magnetoencephalography (MEG), positron emission tomography (PET), single-photon emission 

computed tomography (SPECT), video scalp electroencephalography (EEG), and a detailed 

neuropsychological assessment 12, 13. If the SOZ cannot be clearly localized (for example due to imaging 

methods lacking the necessary spatial resolution), and/or different tests provide divergent results, and/or 

the presumed SOZ is located in close proximity to eloquent cortex or in an area inaccessible surgically 

(e.g. deep structures of the brain), the patients progress to phase 2 evaluation. This phase uses invasive 

intracranial electroencephalography (iEEG) tests. iEEG is a method to record electrical signals using 

electrodes that come in direct contact with the brain, providing anatomically precise information about 

neuronal populations at the millimeter scale.  

Two main types of intracranial 

electrodes are used, (a) subdural or cortical 

electrodes, consisting of strips and grids, 

placed under the dura using a craniotomy, 

and (b) depth electrodes, penetrating the 

brain to target deeper structures (e.g. 

hippocampus) and placed using stereotactic 

methods via a small burr hole.  Electrode type and their placement are decided based on a hypothesis about 

the location of the SOZ, formulated based on the results of the phase 1 investigation. Once electrodes are 

implanted, patients are kept in epilepsy monitoring units (EMU) for a number of days (mean ± SD: 8.12 

± 3.49 days; range 2-29 days- 14-18), until sufficient information about seizure type, frequency and precise 

localization is gathered for a clinical decision.  12, 13, 19.  

At the end of phase 2 investigation, for patients with a clearly identified SOZ, resection is the most 

desirable treatment given the clinical outcomes. Studies have shown that seizure free rates in patients who 

underwent resection were 58-77% versus 0-8% in patients assigned to standard medical treatment with 

AEDs 20-23.  When there are multiple SOZs, or these areas are in close proximity to eloquent cortex, or in 

surgically difficult to reach areas, neuromodulation is a preferred option. Neuromodulation includes three 

modalities, vagus nerve stimulation (VNS), responsive neurostimulation (RNS), and deep brain 

stimulation (DBS). The efficacy rates, i.e. achieving seizure free rates or reducing the number of seizures 

The appropriate surgical treatment depends on the 

ability to precisely localize the epileptogenic tissue.  

Subdural strip and grid electrodes are main diagnostic 

tools used to precisely localize the epileptogenic tissue 

and map functional cortical areas.  
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and/or their severity, are similar for all 3 modalities and range from 41-43%  at 1 year and increase to 50-

68%  over the years (RNS 24 VNS 25, DBS 26, 26-32). 

Use of subdural electrodes outside of epilepsy indication  

Monitoring and mapping of brain function with subdural electrodes has been shown to be 

beneficial in patients with acute severe traumatic brain injury (TBI) and patients undergoing tumor 

resection (not necessarily related to epilepsy).   

In patients with severe TBI, strip electrodes have enabled identification of spreading cortical 

depolarizations, not detected with scalp EEG. These mass neuronal depolarizations are pathological brain 

waves triggered by ischemia, trauma and other noxious stimuli.  They have adverse effects on the injured 

brain, effectively increasing the injured 

area, and are associated with poor clinical 

outcomes. Detection of these waves is 

critical for clinical intervention. 33-36 

In patients undergoing tumor 

resection, strip electrodes are used during 

the intraoperative monitoring (IOM) to 

ensure that vital neural pathways are not 

affected by surgical resection. Strips are typically placed over the primary sensory and motor cortex areas, 

perpendicular to the central sulcus which divides these areas. The electrodes record somatosensory evoked 

potentials, which are electrical signals triggered by stimulation of a peripheral nerve (e.g. median nerve, 

tibial nerve). The signal waveform recorded by contacts located in the primary sensory cortex has opposite 

direction to the waveform recoded by contacts in the primary motor cortex. The anatomical location of 

the signal reversal is marked by the central sulcus. The method, called phase reversal, allows precise 

identification of the motor and sensory cortex areas and plays a critical role in monitoring of the integrity 

of the neural pathways carrying information from the periphery to cortex. 37, 38 

Problem  

Legacy electrodes are thick, bulky, heavy, not flexible and do not conform well to brain convolutions 

Subdural strips and grids electrodes represent a main diagnostic tool used for precise delineation 

of the extent of the epileptogenic zone and functional mapping of eloquent cortex. Electrodes are placed 

under the dura via a craniotomy and left in place for up to 30 days, to sample brain activity from large 

parts of the cerebral cortex.  

Although these electrodes have been in the US market for decades (first FDA clearance 1985), their 

fabrication, materials and properties have hardly changed. Existing commercially available subdural 

electrode arrays are made of platinum or 

platinum-iridium discs (3 - 4.5 mm 

diameter) embedded within flat silastic 

sheets which are thick (>0.5mm), heavy 

(weight up to 4g for larger grids), and do 

not optimally conform to brain 

convolutions. The consequences of these 

properties have an impact on 

complication rates, signal quality, and 

tissue immune response.  

• Legacy subdural strip and grid electrodes are thick, 

bulky, heavy, lack flexibility and do not optimally 

conform to brain convolutions. 

• These properties may result in increased 

complications, low quality recordings, and 

heightened tissue response.   

Subdural strip and grid electrodes are useful tools for 

monitoring brain activity in: 

- patients with severe TBI 

- patients undergoing tumor resection 
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Electrode properties negatively impact clinical outcomes: complications, signal quality, tissue response 

a) Lack of conformity to brain surface, bulkiness and reduced flexibility are linked to an increased 

number of complications 39.  A study appropriately entitled “The Brain is Not Flat: Conformal 

Electrode Arrays Diminish Complications of Subdural Electrode Implantation, A Series of 117 Cases”, 

analyzed complication rates in patients implanted with subdural electrodes (SDEs) at one center over a 

period of 14 years, and directly linked the number of complications to the electrode properties. The 

electrodes did “not reliably conform to the convex surface of the cortex”, which could promote fluid/blood 

accumulation in the spaces between electrodes and dura and between dura and skull. This accumulation 

can cause ‘mass effect’, putting pressure on the brain, which can result in increased intracranial pressure, 

intracranial hemorrhage, infections, and neurologic compromise. Changes to improve electrode 

conformability and decrease the effects of thickness/bulkiness dramatically reduced post-operative 

complications. One major change was to make incisions in the silastic sheet, to “help the electrodes better 

conform to the cortex”, thereby “minimizing potential spaces between the cortex and grid and grid and 

dura”.  Another change included dural expansion using bovine xenograft, intended to decrease brain 

compression potentially from the thickness/bulkiness and weight of the electrodes and accumulated fluid.  

“Our strategy of making a silastic sheet that holds the electrodes more pliably by making slits allows it to 

conform to the brain, which, with dural augmentation, prevents distortion of the cortex by SDEs and 

minimizes the potential subdural space. This practice was implemented from 2006 after an initial 

neurologic complication rate (17.7%, 3/17). Subsequent 100 implantations had a 4% (4/100) neurologic 

complication rate.” yes. Complication from dura expansion, which can include infections and CSF leaks 
40, were not reported in this study. Similarly, several other studies reported on the electrode effects of the 

brain, including mechanical compression exerted by the electrodes the brain. This can distort the 

surrounding tissue, compress the cortical veins resulting in cerebral edema, which lead to increase in 

intracranial pressure, bleeding (hematoma) and microinfarcts  41-44, 54. In an effort to avoid or decrease 

these complications, some centers explant or elevate the bone flap for the duration of the monitoring in 

the EMU 43-45. This practice, although having increased risks of infections, has been shown to reduce the 

rate of asymptomatic subdural hematomas and post procedure headaches 45.  

 

b) Lack of conformity to brain surface, bulkiness and reduced flexibility can lead to decreased signal 

quality.  Direct contact between the electrodes and neurons is desired for a high signal to noise ratio. Lack 

of conformability to the brain surface, accompanied by fluid accumulation under the electrodes, can result 

in noise and decreased signal quality. In addition, the brain exhibits micromotion from physiological 

sources, such as the cardiac rhythm and fluctuations in respiratory pressure, and behavioral sources, such 

as spontaneous head and/or trunk displacements (e.g. during seizures). Electrode flexibility and ability to 

move with the brain tissue have been shown to be an important factor in maintaining reliable tracking and 

recording stability 46-48.  Noisy, unstable or unreliable recordings may result in imprecise localization of 

the SOZ or delineation of the SOZ, or mapping of the functional cortical areas, which can impact clinical 

outcomes 49. 

 

c) Lack of flexibility, weight and tissue compression due to thickness can contribute to heightened 

tissue response. Tissue immunological reaction to implanted electrodes is a complex process 

characterized by a multitude of biochemical and immunological reactions occurring in a timely fashion at 

the electrode-tissue interface 49-51. The early (hours to weeks) response is characterized by an acute 

inflammatory response involving accumulation of immune system cells (macrophages, monocytes), 

blood-borne macrophages and edema, followed by activation and migration of microglial cells. 49-53. 

Indeed, histopathological findings from tissue resected from epilepsy patients who had invasive EEG 

monitoring with SDG and/or sEEGs for a median of 7 days, have shown chronic inflammation with 

accumulation of lymphocytes and macrophages, contusion or acute/subacute infarct, acute inflammation, 
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acute hemorrhage, edema, and necrotizing vasculitis 54. These findings were present in 75.7% of patients 

that had iEEG procedures, versus 18.5% of patients without iEEG.  

Tissue reaction depends on multiple factors, including the electrode material, physical properties, such as 

stiffness, shape, texture and weight. It has been hypothesized that the mismatch between the hard 

biomaterial and soft brain tissue is a major contributor to the neuro-inflammatory response. Consequently, 

softer and more flexible biocompatible polymers, such as polyimide, are preferable. 49, 51-53, 55  

An important factor that can contribute to heightened tissue reaction is mechanical pressure exerted by the 

electrodes on the brain, especially when being compressed between the brain and skull plate. It is 

conceivable that the thicker the electrode the higher the pressure is. Compression of the cortical tissue 

compressed the cortical veins and interrupts cerebral blood flow, resulting in vasogenic edema and 

contributing to blood accumulation in the subarachnoid space 41-43. Subarachnoid blood can induce an 

acute meningeal reaction characterized by the presence of an inflammatory infiltrate. Consistent with the 

presence of inflammation, the use of anti-inflammatory medication (e.g. dexamathasone) has been shown 

to improve clinical outcomes 41, 56.  

Solution 

New thin film subdural electrodes:  EVOTM cortical electrodes 

To overcome the issues with silicone electrodes, NeuroOne has developed a new series of thin film 

electrodes with improved properties, the EVOTM cortical electrodes (Fig 1).    

EVO electrodes are thin (0.08 

mm), very flexible and very light 

(0.05 g including the tail and 

connector). The electrodes are made 

of polyimide as a substrate with 

platinum contacts (3mm diameter 

spaced 10 mm apart). Various 

configurations are available to suit 

the clinical needs (Fig 1). EVO 

electrodes are fabricated using an 

automated process and have fewer 

components than silicone electrodes. 

These may result in better signal 

quality, reliability and scalability. 

The cable assembly is disposable, 

reducing the potential for losing 

signal due to re-sterilized cables. It 

also saves hospital time to sterilize and 

store cables. The cable connectors are 

compatible with standard headboxes, 

with no need to purchase additional 

equipment.  

EVO electrodes’ properties minimize 

tissue reaction, potentially reducing complications 

Polyimide is a high-performance polymer characterized by increased flexibility as compared to 

silicone. Indeed, several measures of stiffness, including the Young’s module (how easy a material can 

EVOTM subdural electrodes are very flexible, about 7 times 

thinner than silicone counterparts, and very light. 
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deform), bending stiffness (resistance to deformation) and critical buckling load (force needed to bent the 

material), indicate that polyimide is much more flexible than silicone 52. In addition, polyimide has been 

shown to have excellent thermal stability (>500°C), biocompatibility, mechanical toughness and chemical 

resistance 57-60. These properties make polyimide an ideal material for the design of flexible electrodes.  

In pilot preclinical studies, EVO subdural electrodes have shown to elicit reduced immunological 

response as compared to commercially available silicone electrodes. When implanted in a pig brain for 7 

days, EVO subdural electrodes 

produced significantly less 

accumulation of macrophages and 

other immune system cells than 

silicone electrodes (Fig 2) 61, 62. 

Similarly, when implanted for 28 

days in sheep, EVO electrodes 

showed no or minimal tissue 

reaction, comparable to the control 

material (USDA high density 

polyethylene) (Fig 3) 63.   

The electrodes have a single tail exit, which has been suggested to reduce the possibilities for 

potential CFS leak and infection risks, thereby reducing the complications 39, 64. It may also improve 

patient comfort. 

Taken together, the minimal or reduced tissue reaction to EVO subdural electrodes and their single 

tail exit, have the potential to reduce complications and improve clinical outcomes.  

 

 

• EVOTM subdural electrodes show minimal or no tissue 

reaction following up to 30 days implantation in pre-

clinical studies. 

• This could potentially reduce post-operative 

complications. 
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Initial clinical use feedback 

EVO subdural electrodes have successfully been tested in bench and pre-clinical studies and have 

passed all mechanical, electrical, electrochemical and biocompatibility testing, according to the 

International Electrotechnical Commission 60601 and the International Organization for Standardization 

(ISO) 10993 standards, resulting in FDA clearance for use in clinical practice.  

To assess the initial user experience with these new electrodes, NeuroOne conducted a post-market 

study 63. Data were collected using a questionnaire as well as unstructured oral feedback from surgeons 

and operating room staff during surgical procedures performed between November 23, 2020 and 

November 4, 2021. Data were collected from 14 centers, which included the Mayo Clinics in Rochester 

MN and Jacksonville FL, Stanford CA, Memorial Hermann Hospital in Houston, TX and others. 7 

surgeons and OR staff members responded to questionnaires, while the remainders provided oral feedback 

only. A total of 60 electrodes of different sizes and shapes (e.g. 1x2, 1x6, 1x8, 2x8, 2x6, 4x4 arrays) were 

used in 25 procedures for:  

(a) Monitoring and mapping in DRE patients undergoing evaluation for potential surgical resection. 

In these cases, the electrodes were kept in place for the duration of the monitoring phase (~8 days 

in average). In some patients, both subdural (EVO) and depth electrodes (commercially available) 

were placed during the same procedure.  

(b) Monitoring and mapping in patients undergoing epileptic or tumor tissue resection. In these cases, 

the electrodes were used intraoperatively, for short period of times (~ 30 min to several hours).  

The feedback questionnaire contained 6 questions, rated on a scale of 1 to 5, with 5 being the 

highest. The questions were intended to evaluate a) properties of the electrodes such as thickness, 

flexibility, weight, b) features such as ease of placement, conformability to the brain areas and c) 

performance, asking for a qualitative signal recording quality. (Table 1) 
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Users (neurosurgeons; n=7) provided ratings 

between 4 and 5 for most questions (Table 1), 

demonstrating remarkable user experience and 

illustrating the importance of a product that is 

flexible, light, easy to use in places that are not 

easily accessible, and conforms well to brain 

convolutions.  

Table 1. Summary of post-market user 

feedback data 

Question 

(Ratings scale 1-5: 1 lowest, 5 highest) 

Average (range) 

n=7 users 

1. Electrode thickness and flexibility 4.8 (5) 

2. Lighter than current competitive electrodes 5 (5) 

3. Cable connections simple, reliable 3.4 (1-5) 

4. Ease of placement onto targeted locations 4.5 (3-5) 

5. Conformability with the targeted anatomy 4.7 (3-5) 

6. Recording quality and signal clarity 5 (5) 

Conclusions 

• EVO cortical electrodes are the only known FDA cleared thin film subdural electrodes.  

• EVO cortical electrodes are thin, flexible and almost weightless  

• Disposable cable assembly eliminates potential signal failures and saves hospital resources and 

time  

• Compatibility with standard headboxes ensures no need for additional equipment 

• In preclinical studies, EVO cortical electrodes have shown reduced tissue immunological response 

as compared to silicon counterparts 

• Initial clinical use during surgical procedures received remarkable user feedback with indications 

of greater flexibility, ease of placement and conformability to brain gyrations, when compared to 

silicone based cortical electrodes.  

• Signal quality was rated as excellent.  

These properties have the potential to (a) reduce complications resulting from lack of conformability and 

tissue reaction, (b) allow placement in spaces with reduced accessibility, (c) be amenable to less invasive 

procedures, (d) reduce the size of the craniotomy, (e) shorten patient recovery. While it is too early to 

evaluate complication rates with these electrodes, we believe that the new thin film electrodes provide a 

much-needed solution in clinical practice that may ultimately benefit the patient.   

Thin film subdural electrode technology for intracranial EEG is feasible for surgical implantation and may 

have the potential to minimize invasiveness of subdural recordings and improve surgical outcomes. 

EVOTM subdural electrodes received exceptional 

user feedback during initial clinical use, with 

indications of greater flexibility, ease of placement 

and conformability to brain gyrations, when 

compared to silicone based cortical electrodes. 
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