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1 Implementation

Reconstruction Loop. We start the reconstruction as explained in Sec. 3.3 of the
main paper. We repeat neural mapping and registration of new views until all
views have been registered, or less than 1% of additional views are registered
compared to the last relocalization stage. In each relocalization iteration, we
re-estimate the poses of all views, even if they have been registered before. We
also tried a variant that skips estimating poses that have been registered before.
But this version achieved slightly lower quality while not giving a significant
speed advantage. Re-estimating all poses gives the pipeline the ability to reduce
inaccuracies and to correct previous outlier estimates. We consider an image
to be registered successfully, if it has at least 500 inlier correspondences with
an inlier threshold of 10px. At the end of the reconstruction, we apply a more
conservative threshold of 1000 inliers to make sure only high quality poses are
kept. For each neural mapping iteration, we load the network weights of the
scene coordinate regression network of the previous mapping iteration and refine
further. We conclude the reconstruction loop with a final refit of the model, using
the standard ACE training parameters. In this last iteration, we start with a
randomly initialised network, rather than loading previous weights.

Neural Mapping. The ACE backbone predicts 512-dimensional features densely
for the input image, but sub-sampled by a factor of 8. Training images are
augmented using random scaling and rotation as well as brightness and contrast
changes as in ACE [3]. When filling the training buffer, we randomly choose
1024 features per training image, and we sample features from each training
image at most 10 times, i.e. for 10 different augmentations. During training, we
use a batch size of 5120 features. Our pose refinement MLP has 6 layers with
128 channels and a skip connection between layer 1 and 3. We optimize the
pose refinement MLP, and the relative scaling factor for the focal length, with
separate AdamW [10] instances and a learning rate of 10−3. In the seed iteration,
we optimize neither the seed pose (which is identity) nor the initial calibration
parameters.
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ACE uses a soft-clamped version of the reprojection error in Eq. 3 (main
paper) with a soft threshold that reduces from 50px to 1px throughout training.
We use the same, soft-clamped loss but keep the threshold fixed at 50px as we
saw no benefit when using the loss schedule but it complicates early stopping.
During the seed iteration, we switch from optimizing the Euclidean distance to
optimizing the reprojection error if the reprojection error of a scene coordinate
is lower than 10px. This hybrid objective is inspired by DSAC* [5].

When starting neural mapping from a set of initial poses, e.g . from Kinect-
Fusion, a sparse COLMAP reconstruction or in the final model refit of the re-
construction loop, we keep the pose refinement MLP frozen for the first 5000
iterations. The refinement MLP cannot predict sensible updates for an unini-
tialised scene representation, and the reconstruction would become unstable.
Note that this standby time is not required in all but the last training itera-
tion, as we initialise the scene coordinate regressor using the weights of the last
iteration, so the pose refiner can predict sensible updates right away.

Relocalization. For registering images to the scene reconstruction, we utilize the
pose optimization of ACE [3]. It consists of a PnP solver within a RANSAC loop.
ACE samples 64 pose hypotheses per image. If sampling a hypothesis fails, ACE
tries again, up to 1M times. After sampling, ACE ranks hypotheses according to
inlier counts using a reprojection error threshold of 10px. The best hypothesis
is refined by iteratively resolving PnP on the growing inlier set.

Usually, this procedure is fast, taking approximately 30ms per image. How-
ever, when the predicted image-to-scene correspondences are bad, sampling hy-
pothesis can take a long time due to the large number of re-tries. For ACE0, this
will happen often, namely when we try to register images that are not yet cov-
ered by the reconstruction. Thus, we decrease the number of re-tries to from 1M
to 16. When registering images throughout the reconstruction, we also decrease
the number of hypotheses drawn from 64 to 32. This yields registration times of
20ms per image, irrespective of whether the registration succeeds or fails.

Runtime Complexity. The reconstruction time depends on the number of images
but also on the spatial distribution of cameras. In the worst case, complexity
is O(n2). E.g . a long camera trajectory without intersections or loops would
require proportional to n ACE0 iterations, with n relocalizations in each step,
giving O(n2). The best case complexity is Ω(n), e.g . for a forward facing scene
where all images can be registered in 1-2 ACE0 iterations independent of the
number of images. In practise, we observe attractive run times of ACE0.

2 Benchmark

We benchmark the quality of each set of poses by training a NeRF model on the
train views and evaluating on the test views. We use Nerfstudio’s Nerfacto model
for this [14]. Where datasets already include a train/test split – as in 7-Scenes
– we use that split. Where a dataset does not already include a train/test split,
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we take every eighth view as a test view, which is a common choice for many
NeRF datasets.

Many scenes in this work have large test sets of several thousand images
or more. This can lead to long evaluation times due to the cost of rendering
thousands of test views with NeRF – much longer than the time to fit the NeRF
itself. For this reason we subsample very large test sets so that they contain no
more than 2k views. To ensure that this reduced test set is representative, we
do this by subsampling evenly throughout the full-size test set in a deterministic
manner. The code to compute the resulting splits will be included in our code
release.

We use Nerfacto’s default normalization of poses to fit into a unit cube, and
enable scene contraction so that distant elements of the scene can be modelled
more accurately. We train each scene for 30k iterations. For NeRF training and
evaluation we downscale the resolution so that the longest side of an image is
not greater than 640 pixels, as NeRFs often perform poorly with high-resolution
training images.

Where a pose for a test view is not provided by a given method, we use the
identity pose for that view. This results in a very low PSNR for that image,
penalising the method for its failure to provide a pose. This means that we
evaluate all methods on the full set of test views, even where they do not provide
poses for all such views. If a reconstruction results in multiple disconnected
components, we use the largest component in our benchmark and consider the
other frames as missing. This happens rarely for COLMAP, but more often for
RealityCapture (c.f. Sec. 4).

ACE0 pose estimates are generally available for all images, but we consider an
image registered if its confidence exceeds the threshold of 1000 inliers. However,
when evaluating test images we always take the estimated pose instead of the
identity pose as basis for the evaluation, even if the confidence is lower than
1000. Note that the question of whether a frame is considered “registered” or
not is still important when fitting the NeRF, as such images are excluded from
NeRF training. See Sec. 3 for further information about registration rates for
different methods.

Relocalization. In the following, we give more information about the relocaliza-
tion experiment of Sec. 4.1 and Table 2(a) of the main paper. We conducted
the experiment on the 7-Scenes dataset adhering to its training / test split. Our
experiments utilize the pseudo ground truth (pGT) poses of KinectFusion that
come with the dataset, as well as the COLMAP pGT of [4]. The authors of [4]
obtained the COLMAP pGT by reconstructing the training images of each scene
with COLMAP from scratch. To make the pGT scale-metric, they aligned the
COLMAP reconstruction with the KinectFusion poses. To obtain poses for the
test images of each scene as well, they registered the test images to the training
reconstruction. Lastly, they ran a final round of bundle adjustment to refine the
test poses while keeping the training poses fixed.

In our experiment, we train the ACE relocalizer on the training images of each
scene. Firstly, we train ACE using the KinectFusion poses that come with the
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dataset. Secondly, we train ACE using the COLMAP pGT of [4]. We evaluate
both version of the relocalizer using the COLMAP pGT. As expected, ACE
trained with KinectFusion poses scores lower than ACE trained with COLMAP
pGT, when evaluating against COLMAP pGT. This confirms the finding of [4]
that KinectFusion and COLMAP produce different pose estimates.

Next, we run ACE0 on the training set of each scene to reconstruct it and
estimate the training poses. One output of ACE0 is an ACE relocalizer, trained
from scratch without poses, in a self-supervised fashion. We apply the ACE0 re-
localizer to the test images to estimate their poses - without any further model
refinement or joint optimization. The ACE0 reconstruction is scale-less, or only
roughly scaled based on the ZoeDepth estimate of the seed image. To enable
the scale-metric evaluation of Table 2(a) of the main paper, we align the ACE0
pose estimates to the test pseudo ground truth by fitting a similarity transform.
Specifically, we run RANSAC [6] with a Kabsch [7] solver on the estimated and
the ground truth camera positions with 1000 iterations. Due to the optimization
of the similarity transform, we might underestimate the true relocalization error.
For a fair comparison, we perform the exact same evaluation procedure for our
ACE baselines and fit a similarity transform although they have already been
trained with scale-metric poses. The effect of fitting the similarity transform is
small. ACE, trained on COLMAP pGT, achieves 97.1% average relocalization
accuracy when we fit the similarity transform, and 97.6% average accuracy with-
out fitting the transform. We compute accuracy as the percentage of test images
where the pose error is smaller than 5cm and 5◦ compared to ground truth.
The ACE0 relocalizer achieves 93.8% average accuracy when evaluated against
the COLMAP pGT. The accuracy differences are smaller than 1% for all scenes
except Stairs. This experiment shows that ACE0 is a viable self-supervised relo-
calizer, and that ACE0 poses are very close to COLMAP poses up to a similarity
transform - much closer than e.g . KinectFusion poses are to COLMAP poses.

3 Additional Results

More Qualitative Results. We show qualitative results in terms of estimated
poses for more scenes in Fig. 1. We show failure cases in Fig. 2 corresponding to
some of the limitations discussed in Section 5 of the main paper.

Additionally, we show synthesized views based on ACE0 poses. Correspond-
ing to our quantitative results in the main paper (Table 1, Table 2 (b), and
Table 3 of the main paper), we select one test image per scene that is represen-
tative of the view synthesis quality of ACE0 on that scene. More specifically, we
select the test image where ACE0 achieves its median PSNR value. For compari-
son, we synthesise the same image using the estimated poses of our competitors.
For synthesised images of 7-Scenes, see Fig. 3. For comparison with BARF and
NoPe-NeRF, the main paper reports results on a 200 image subset per scene. We
show the associated synthesized images in Fig. 4. For comparison with DUSt3R,
the main paper reports results on a 50 image subset per scene. We show the
associated synthesized images in Fig. 5. We show synthesized images for the
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Reconstruction Progress

Iteration 0 Iteration >10
COLMAP ACE0 (ours)

Mip-NeRF 360 -  Counter Mip-NeRF 360 -  Garden Mip-NeRF 360 -  Stump

7Scenes -  Chess 7Scenes - Office 7Scenes - Pumpkin

Tanks&Temples – Caterpillar (383 images)

Tanks&Temples – Caterpillar (11.4k images)

Tanks&Temples – Truck (251 images)

Tanks&Temples – Truck (7.5k images)

KinectFusion ACE0 (ours)

Fig. 1: More Reconstructed Poses. We show poses estimated by ACE0. We color
code the reconstruction iteration in which a particular view has been registered. We
show the ACE0 point cloud as a representation of the scene. We also compare our poses
to poses estimated by COLMAP (Mip-NeRF 360, Tanks and Temples) and KinectFu-
sion (7-Scenes).

MIP-NeRF 360 dataset in Fig. 6. We also show synthesized images for Tanks
and Temples, in Fig. 7 for Training scenes, in Fig. 8 for Intermediate scenes, and
in Fig. 9 for Advanced scenes.

More Quantitative Results. For completeness, we augment Table 1 in the main
paper with SSIM [17] and LPIPS [18] scores for the 7-Scenes dataset, c.f., Ta-
bles 1 and 2 respectively. Similarly, Tables 11 and 12 show SSIM [17] and LPIPS [18]
scores for the Mip-NeRF 360 dataset, augmenting Table 2 (b) in the main pa-
per. Furthermore, Tables 9 and 10 show SSIM [17] and LPIPS [18] scores for the
Tanks and Temples dataset, augmenting Table 3 in the main paper. In all cases,
SSIM and LPIPS behave very similar to PSNR in our experiments, and support
the conclusions of the main paper.

Analysis. We show variations of ACE0 in Table 3 alongside PSNR numbers and
reconstruction times for 7-Scenes.

ACE0 picks 5 random seed images to start the reconstruction. We show
average statistics of ACE0 over five runs, starting off with different sets of seed
images each time. The standard deviation is low with 0.2 dB in PSNR, and
about 4 minutes in terms of reconstruction time.
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Pseudo Ground Truth All Frames 200 Frames 50 Frames
Fr

am
es

Kinect COLMAP COLMAP DROID-SLAM† ACE0 KF+ACE0 BARF NoPE-NeRF† ACE0 DUSt3R ACE0
Fusion (default) (fast) [15] (ours) (ours) [8] [2] (ours) [16] (Ours)

Chess 6k 0.69 0.86 0.86 0.76 0.84 0.84 0.55 0.51 0.82 0.66 0.70
Fire 4k 0.55 0.73 0.73 0.44 0.69 0.70 0.45 0.41 0.70 0.55 0.59

Heads 2k 0.69 0.82 0.82 0.78 0.81 0.81 0.54 0.52 0.80 0.69 0.79
Office 10k 0.72 0.85 0.84 failed 0.83 0.83 0.59 0.55 0.80 0.57 0.61

Pumpkin 6k 0.71 0.84 0.84 0.69 0.83 0.82 0.75 0.65 0.84 0.76 0.77
RedKitchen 12k 0.61 0.80 0.80 0.51 0.77 0.78 0.52 0.50 0.72 0.54 0.55

Stairs 3k 0.63 0.59 0.77 0.47 0.57 0.70 0.65 0.66 0.68 0.54 0.55
Average 0.66 0.78 0.81 N/A 0.76 0.78 0.58 0.54 0.76 0.62 0.65

Avg. Time realtime 38h 13h 18min 1h 7min 8.5h 47h 27min 4min* 16min

Table 1: 7-Scenes - SSIM (↑). We show the pose accuracy via view synthesis with
Nerfacto [14] as SSIM (↑) [17], and the reconstruction time. Results for All Frames
are color coded w.r.t. similarity to the COLMAP pseudo ground truth: > 0.05 better ,
within ±0.05 , > 0.05 worse , > 0.1 worse . For some competitors, we had to sub-
sample the images due to their computational complexity (right side). †Method needs
sequential inputs. ∗Results on more powerful hardware.

Pseudo Ground Truth All Frames 200 Frames 50 Frames

Fr
am

es

Kinect COLMAP COLMAP DROID-SLAM† ACE0 KF+ACE0 BARF NoPE-NeRF† ACE0 DUSt3R ACE0
Fusion (default) (fast) [15] (ours) (ours) [8] [2] (ours) [16] (Ours)

Chess 6k 0.37 0.17 0.17 0.33 0.18 0.18 0.80 0.76 0.20 0.42 0.36
Fire 4k 0.44 0.27 0.27 0.70 0.29 0.29 0.79 0.80 0.27 0.40 0.37

Heads 2k 0.42 0.26 0.26 0.32 0.26 0.27 0.75 0.70 0.28 0.40 0.28
Office 10k 0.42 0.25 0.24 failed 0.27 0.26 0.77 0.76 0.31 0.64 0.54

Pumpkin 6k 0.40 0.23 0.24 0.50 0.24 0.25 0.45 0.74 0.22 0.30 0.27
RedKitchen 12k 0.51 0.25 0.25 0.82 0.27 0.27 0.84 0.84 0.35 0.62 0.70

Stairs 3k 0.39 0.50 0.30 0.83 0.51 0.34 0.68 0.70 0.43 0.74 0.61
Average 0.42 0.28 0.25 N/A 0.29 0.26 0.73 0.76 0.29 0.50 0.45

Avg. Time realtime 38h 13h 18min 1h 7min 8.5h 47h 27min 4min* 16min

Table 2: 7-Scenes - LPIPS (↓). We show the pose accuracy via view synthe-
sis with Nerfacto [14] as LPIPS (↓) [18], and the reconstruction time. Results for
All Frames are color coded w.r.t. similarity to the COLMAP pseudo ground truth:
> 0.05 better (lower) , within ±0.05 , > 0.05 worse (higher) , > 0.1 worse (higher) .
For some competitors, we had to sub-sample the images due to their computational
complexity (right side). †Method needs sequential inputs. ∗Results on more powerful
hardware.
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Repetetive Structures
(7Scenes – Stairs)

Wide View Point Changes
(Mip-NeRF 360 – Room)

Large Scenes
(Tanks&Temples – Courthouse)

COLMAP
ACE0 (ours)

KinectFusion
ACE0 (ours)

Fig. 2: Failure Cases. Stairs: Parts of the reconstruction collapse due to visual
ambiguity. Room: ACE0 fails to register the views on the right due to low visual
overlap. Courthouse is too large to be represented well by a single MLP.

We pair ACE0 with different depth estimators, namely ZoeDepth [1] and
PlaneRCNN [9] but observe only small differences. The depth estimates are only
used for the seed iteration, and their impact fades throughout the reconstruction
process. Indeed, using ground truth depth, measured by a Kinect sensor, yields
no noteworthy advantage either.

We run a version of ACE0 that ingests ZoeDepth estimates for all frames
and uses them in all reconstruction iterations. Thus, rather than optimizing the
reprojection error of Eq. 3 of the main paper, we optimize the Euclidean dis-
tance to pseudo ground truth scene coordinates computed from depth estimates.
Accuracy is slightly lower, and reconstruction times longer. The depth estimates
are not multi-view consistent, and the model has problems to converge.

Omitting pose refinement during neural mapping leads to a drop in PSNR of
more than 2 dB. Refinement via an MLP that predicts updates has a small but
noticeable advantage over direct optimization of poses via back-propagation.

Finally, PNSR numbers with early stopping are similar to using the static
ACE training schedule, but reconstruction times are shorter.

More Scenes. As mentioned in the main paper, we removed two scenes from
the Tanks and Temples dataset because the COLMAP baseline was not able to
reconstruct them after days of processing or ran out of memory. This concerns
the Courthouse and the Museum scenes in the variation with 4k frames and
more. In Table 4 we show ACE0 results for these two scenes, COLMAP results
when using only a few hundred images, as well as other baselines.

Registration Rates. Reconstruction algorithms do not always succeed in regis-
tering all input frames to the reconstruction. While high registration rates are
in general desirable, it is also disadvantageous to register images incorrectly.
Clearly, an algorithm that always returns the identity pose has a 100% regis-
tration rate but is not very useful. Therefore, in our main experimental results,
we compare algorithms based on PSNR numbers rather than registration rates.
The way we calculate PSNR numbers punishes an algorithm for any incorrect
estimate whether its considered “registered” or not, see Sec. 2 for details. Nev-
ertheless, we provide registration rates of ACE0 and COLMAP in Tables 5 and
6. Both algorithms achieve high registration rates for many scenes. Scenes with
low registration rates also show low PSNR numbers in our main experimental
results.
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PSNR (dB) Time (min)

Stability

Main Run 21.2 54
5 Randomized Runs 21.3±0.2 52±4

Depth Estimator

ZoeDepth (default) 21.2 54
PlaneRCNN 21.0 49
Ground Truth (Kinect) 21.3 58

Depth Usage

Seed only (default) 21.2 54
All Iterations 20.9 79

Pose Refinement

MLP (default) 21.2 54
Direct Pose Updates 20.7 61
No Refinement 18.9 63

Early Stopping

with (default) 21.2 54
without 21.3 64

Table 3: ACE0 Variations. We demonstrate the impact of various design and pa-
rameter choices as PSNR in dB and reconstruction time in minutes, on 7-Scenes.

150-500 Images 4k-22k Frames

COLMAP
(default)

Reality
Capture

ACE0
(ours)

Reality
Capture

ACE0
(ours)

Sparse COLMAP
+ACE0 (ours)

Courthouse 18.2 15.5 14.4 13.2 12.5 17.2
Museum 17.0 16.2 13.0 - 14.5 17.2

Table 4: Additional ACE0 Results. We provide results for two additional scenes
of Tanks and Temples where the COLMAP baseline did not finish the reconstruction
(with 4k+ frames) after running for more than 5 days or ran out of memory.



Scene Coordinate Reconstruction 9

7-Scenes ACE0
(ours)

COLMAP
(“fast”)

Mip-NeRF
360

ACE0
(ours)

COLMAP
(default)

Chess 100% 100% Bicycle 97.9% 100%
Fire 100% 100% Bonsai 100% 100%
Heads 100% 100% Counter 100% 100%
Office 100% 100% Garden 100% 100%
Pumpkin 100% 100% Kitchen 100% 100%
R.Kitchen 98.4% 100% Room 50.8% 100%
Stairs 100% 100% Stump 96.0% 100%

Table 5: Registration Rates on 7-Scenes and Mip-NeRF 360. We show the
percentage of registered images for ACE0 and COLMAP. Note that the way we calcu-
late PSNR numbers already accounts for registration rates below 100%.

150-500 Images 4k-22k Frames

ACE0
(ours)

COLMAP
(default)

ACE0
(ours)

COLMAP
(“fast”)

Sparse COLMAP
+ACE0 (ours)

T
ra

in
in

g

Barn 94.6% 100% 96.3% 100% 100%
Caterpillar 100% 100% 100% 100% 100%
Church 95.5% 100% 90.3% 99.2% 91.2%
Ignatius 100% 100% 100% 100% 100%
Meetingroom 100% 100% 94.8% 100% 99.2%
Truck 100% 100% 100% 100% 100%

In
te

rm
ed

ia
te

Family 100% 100% 100% 100% 100%
Francis 99.7% 100% 100% 100% 100%
Horse 100% 100% 100% 100% 100%
Lighthouse 94.5% 100% 93.3% 100% 97.8%
Playground 100% 100% 99.6% 100% 100%
Train 96.3% 100% 96.4% 100% 97.9%

A
dv

an
ce

d Auditorium 98.0% 98.7% 98.7% 99% 98.3%
Ballroom 100% 100% 100% 100% 97.8%
Courtroom 96.3% 100% 93.1% 100% 97.8%
Palace 25.7% 99% 56.0% 74.4% 77.2%
Temple 7.3% 100% 74.4% 100% 92.4%

Table 6: Registration Rates on Tanks and Temples. We show the percentage of
registered images for ACE0, COLMAP, and the combination of ACE0 and COLMAP.
Note that the way we calculate PSNR numbers already accounts for registration rates
below 100%.
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Fig. 3: View Synthesis Quality on 7-Scenes. For each scene, we show the test
image where ACE0 achieves its median PSNR value. For comparison, we show the
corresponding results of our baselines as well as the true test image (GT). These results
correspond to Table 1 (left) of the main paper. “COLMAP” refers to COLMAP with
default parameters.
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Fig. 4: View Synthesis Quality on 7-Scenes (200 Images Subset). For each
scene, we show the test image where ACE0 achieves its median PSNR value. For
comparison, we show the corresponding results of our baselines as well as the true test
image (GT). For all methods, we obtain these results on a subset of 200 images per
scene to achieve a reasonable training time of NoPe-NeRF. These results correspond
to Table 1 (right) of the main paper.
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Fig. 5: View Synthesis Quality on 7-Scenes (50 Images Subset). For each scene,
we show the test image where ACE0 achieves its median PSNR value. For comparison,
we show the corresponding results of our baselines as well as the true test image (GT).
For all methods, we obtain these results on a subset of 50 images per scene to prevent
DUSt3R from running out of GPU memory. These results correspond to Table 1 (right)
of the main paper.
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Fig. 6: View Synthesis Quality on the MIP-NeRF 360 dataset. For each scene,
we show the test image where ACE0 achieves its median PSNR value. For comparison,
we show the corresponding results of our baselines as well as the true test image (GT).
These results correspond to Table 2 (b) of the main paper.

4 Baselines and Competitors

COLMAP. We run COLMAP in three variations: Default, fast, and “Sparse
COLMAP + Reloc + BA”. Fast uses parameters recommended for large image
collections beyond 1000 images [13]. “Sparse COLMAP + Reloc + BA” uses
default parameters to obtain the initial reconstruction, and fast parameters to
register the remaining frames. We provide the parameters of the mapper of the
default variation in Table 13. For the fast version, we provide the parameters
that have been changed compared to default in Table 14. We also include the
parameters of the feature extractor and the matcher shared by both variations
in Tables 15 and 16.

As additional comparison to further optimize for efficiency, for the Tanks
and Temples dataset we also computed in Table 3 in the main paper and the
second to last column of Tables 9 and 10 a COLMAP variant “Sparse COLMAP
+ Reloc + BA”. As presented at the end of Section 4.3 in the main paper, this
variant builds on the sparse reconstruction results, and performs the following
steps:
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150 – 500 Images

4k – 22k Frames

Fig. 7: View Synthesis Quality on Tanks and Temples (Training Scenes).
For each scene, we show the test image where ACE0 achieves its median PSNR value.
For comparison, we show the corresponding results of our baselines as well as the true
test image (GT). These results correspond to Table 3 of the main paper. Top: Results
based on 150-500 images per scenes. Bottom: Results based on 4k-22k frames sampled
from the full video.



Scene Coordinate Reconstruction 15

Fa
m
ily

Fr
an
ci
s

Ho
rs
e

Li
gh
th
ou

se
Pl
ay
gr
ou

nd
Tr
ai
n

Fa
m
ily

Fr
an
ci
s

Ho
rs
e

Li
gh
th
ou

se
Pl
ay
gr
ou

nd
Tr
ai
n

150 – 500 Images

4k – 22k Frames

Fig. 8: View Synthesis Quality on Tanks and Temples (Intermediate Scenes).
For each scene, we show the test image where ACE0 achieves its median PSNR value.
For comparison, we show the corresponding results of our baselines as well as the true
test image (GT). These results correspond to Table 3 of the main paper. Top: Results
based on 150-500 images per scenes. Bottom: Results based on 4k-22k frames sampled
from the full video.
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Fig. 9: View Synthesis Quality on Tanks and Temples (Advanced Scenes).
For each scene, we show the test image where ACE0 achieves its median PSNR value.
For comparison, we show the corresponding results of our baselines as well as the true
test image (GT). These results correspond to Table 3 of the main paper. Top: Results
based on 150-500 images per scenes. Bottom: Results based on 4k-22k frames sampled
from the full video.
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1. (Custom database surgery to prefix the old image names from the “Sparse
COLMAP” model to avoid name clashes.)

2. Feature extraction (colmap feature_extractor ...) of the new images
using the same parameters as COLMAP default and fast, cf ., Table 15.

3. Vocabulary tree matching (colmap vocab_tree_matcher) of the new images
to the old images and each other, using the same parameters as COLMAP
default and fast, cf ., Table 16.

4. Image registration (colmap image_registrator ...) of the new images to
the old images and each other, given the matches computed in the previous
step. The parameters for this step (cf ., Table 17) were set to match the
mapper parameters used in COLMAP fast, (cf ., Table 14).

5. A final BA step (colmap bundle_adjuster ...) to refine the poses of the
whole scene. Parameters were set similarly to COLMAP fast, cf ., Table 18.

Note, such an algorithm heavily relies on the fact, that the sparse set of images
has been selected so that it represents the entire scene, and would need further
iterative optimization for datasets where the spatial distribution of images is not
known beforehand (e.g ., not sequential data or data without priors from other
sensors, such as GPS or WiFi).

NoPe-NeRF. We estimate poses with NoPe-NeRF by using the official code
at https://github.com/ActiveVisionLab/nope-nerf. We modify the code
to ingest both training and test views, since we aim at estimating the poses
of all images jointly. For Mip-NeRF 360 scenes, we use all images per each
scene reconstruction. As NoPe-NeRF assumes ordered image sequence, we sorted
the images by name for training. For 7-Scenes, using all frames is prohibitively
expensive. For example, the Chess scene has 6000 frames and the implementation
just freezes when using them all. The majority of experiments in the NoPe-NeRF
paper were done with a few hundred frames, so we subsampled the 7-Scenes scans
to extract a total of 200 frames per each scene.

DUSt3R. We follow the official code at https://github.com/naver/dust3r to
reconstruct scenes within the 7-Scenes dataset from uncalibrated and unposed
cameras. When comparing to DUSt3R, we run ACE0 without the initialisation
from a standard Kinect v1 focal length. That is, like DUSt3R, ACE0 estimates
the focal length from scratch in the last column of Table 1 of the main paper. The
DUSt3R framework cannot process all available images of a scene due to GPU
memory constraints. By following the guidelines from the official repository, we
configured the system to utilize a sliding window approach (w=3), enabling the
accommodation of 50 frames within the 16GB memory capacity of a NVIDIA®

V100 [11] GPU. As a second version, we attempted to reconstruct 50 frames
using a NVIDIA® A100-40GB GPU in conjunction with the leaner 224x224
pre-trained model and an exhaustive matching configuration. We were not able
to pair the full 512x512 model with exhaustive matching, even on a A100-40GB.
Of the two configurations that fit into memory, the second one yields the most
accurate poses under our experimental settings. Thus, we report the superior

https://github.com/ActiveVisionLab/nope-nerf
https://github.com/naver/dust3r
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results in Table 1 of our main paper. For further insight, we have compiled the
experimental statistics in Table 7.

7-Scenes DUSt3R512 DUSt3R224

Chess 16.2 18.9
Fire 13.4 18.8
Heads 13.4 18.4
Office 10.2 12.5
Pumpkin 21.0 21.7
R.Kitchen 11.5 13.8
Stairs 16.3 15.3

Config. S.W. E.M.
Hardware V100 A100
Memory 16GB 40GB
Recon. Time 3min 4min

Table 7: DUSt3R on 7-Scenes S.W. denotes the sliding window configuration (win-
dow=3). E.M. denotes the exhaustive matching configuration. The performance is eval-
uated in PSNR (dB) using the same experiments described in Section 4.1 of the main
paper. In the bottom part of the table, we show the configuration, GPU hardware,
GPU memory, and reconstruction time for 50 frames on each scene.

DROID-SLAM. We estimated poses for the 7-Scenes (using only the RGB im-
ages), Tanks and Temples, and Mip-NeRF 360 datasets using the official code
from: https://github.com/princeton-vl/DROID-SLAM. In our experiments we
used the same parameters that the DROID-SLAM authors chose to evaluate the
method on the ETH-3D dataset and resized the input images to a resolution hav-
ing an area of 384× 512 pixels, while preserving the aspect ratio. As the SLAM
method requires sequential input, we sorted the images by name, although that
does not remove all jumps from the datasets. For example, each scene in the
7-Scenes dataset is composed of a sequence of disjoint scans observing the same
area, and the algorithm might have difficulties in tracking accurately around the
discontinuities.

Reality Capture®. We also reconstructed scenes from the Tanks and Temples
dataset using Reality Capture®, as discussed in Section 4.3 in the main paper.
For completeness, extending the PSNR results in Table 3 in the main paper, we
also computed SSIM [17] and LPIPS [18] scores in Tables 9 and 10 respectively.
On the sparse images (150-500), Reality Capture performs one order of magni-
tude faster than COLMAP but with slightly worse pose quality. When we ran
it on Tanks and Temples with thousands of frames, Reality Capture produced
a high number of disconnected components. We use the largest component as
basis for our evaluation and regard all other frames as missing, as described in
Section 2.

https://github.com/princeton-vl/DROID-SLAM
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Name value

Max features per mpx 10 000
Max features per image 40 000
Image overlap Medium
Image downscale factor 1
Max feature reprojection error 2.0
Force component rematch Yes
Background feature detection No
Background thread priority Low
Preselector features 10 000
Detector sensitivity Medium
Distortion model Brown3

Table 8: Reality Capture alignment settings. We used the default settings for
our experiments, except for settings in bold.

We used Reality Capture version 1.3.2.117357 with the default alignment
parameters3, cf ., Table 8.

The runtimes in Tables 9 and 10 were measured for the iv) alignment step
only, excluding the steps i) starting the software, ii) checking license, iii) im-
porting images from local SSD before, and v) exporting poses as XMP, vi) saving
the project to local SSD and vii) closing the software after the iv) alignment step.
In order to find a good balance between CPU and GPU compute power, all our
Reality Capture experiments were run on cloud machine with 48 logical CPU
cores (Intel® Skylake, Xeon@2.00Ghz), a single NVIDIA® T4 [12] GPU and
312GB RAM.
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Fr
am

es DROID-

Fr
am

es DROID- Sparse Sparse
COLMAP Reality SLAM† ACE0 COLMAP Reality SLAM† ACE0 COLMAP + COLMAP +
(default) Capture [15] (ours) (fast) Capture [15] (ours) Reloc + BA ACE0 (ours)

T
ra

in
in

g

Barn 410 0.77 0.61 0.61 0.54 12.2k 0.77 0.56 0.49 0.58 0.84 0.79
Caterpillar 383 0.63 0.49 0.51 0.57 11.4k 0.72 0.60 0.62 0.67 0.72 0.70
Church 507 0.64 0.56 0.41 0.57 19.3k 0.29 - 0.34 0.54 0.66 0.59
Ignatius 264 0.69 0.46 0.50 0.65 7.8k 0.77 0.58 0.61 0.75 0.78 0.75
Meetingroom 371 0.67 0.62 0.48 0.63 11.1k 0.67 0.63 0.55 0.54 0.76 0.72
Truck 251 0.76 0.60 0.59 0.72 7.5k 0.83 0.59 0.69 0.80 0.83 0.81
Average 364 0.69 0.56 0.52 0.61 14.6k 0.68 0.59 0.55 0.65 0.76 0.73
Avg Time 1h 3min 5min 1.1h 74h 14h 18min 2.2h 8h 1.8h

In
te

rm
ed

ia
te

Family 152 0.77 0.62 0.58 0.68 4.4k 0.83 0.66 0.67 0.63 0.84 0.82
Francis 302 0.84 0.74 0.77 0.74 7.8k 0.77 0.71 0.80 0.79 0.86 0.83
Horse 151 0.77 0.70 0.58 0.74 6.0k 0.79 0.72 0.69 0.82 0.85 0.83
Lighthouse 309 0.65 0.56 0.52 0.62 8.3k 0.70 0.59 0.68 0.68 0.72 0.73
Playground 307 0.54 0.51 0.23 0.50 7.7k 0.53 0.45 0.32 0.62 0.65 0.63
Train 301 0.62 0.45 0.39 0.54 12.6k 0.73 0.41 0.51 0.63 0.74 0.63
Average 254 0.70 0.60 0.51 0.64 7.8k 0.73 0.59 0.61 0.70 0.78 0.75
Avg Time 32min 2min 3min 1.3h 48h 11h 14min 2.2h 5h 1h

A
dv

an
ce

d

Auditorium 302 0.74 0.39 0.58 0.66 13.6k 0.50 - 0.58 0.71 0.80 0.70
Ballroom 324 0.46 0.47 0.30 0.51 10.8k 0.48 - 0.25 0.57 0.54 0.41
Courtroom 301 0.61 0.50 0.32 0.52 12.6k 0.43 - 0.32 0.52 0.67 0.59
Palace 509 0.54 0.43 0.41 0.34 21.9k 0.50 - 0.38 0.37 0.57 0.46
Temple 302 0.68 0.52 0.43 0.22 17.5k 0.44 - 0.45 0.50 0.76 0.58
Average 348 0.61 0.46 0.41 0.45 15.6k 0.47 - 0.39 0.53 0.67 0.55
Avg Time 1h 2min 4min 1h 71h 27min 2.8h 10h 2.1h

Table 9: Tanks and Temples - SSIM (↑). We show the pose accuracy via view
synthesis with Nerfacto [14] as SSIM (↑) [17], and the reconstruction time. We color
code results compared to COLMAP, default and fast, respectively: > 0.05 better ,
within ±0.05 , > 0.05 worse , > 0.1 worse . †Method needs sequential inputs.
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Fr
am

es DROID-

Fr
am

es DROID- Sparse Sparse
COLMAP Reality SLAM† ACE0 COLMAP Reality SLAM† ACE0 COLMAP + COLMAP +
(default) Capture [15] (ours) (fast) Capture [15] (ours) Reloc + BA ACE0 (ours)

T
ra

in
in

g

Barn 410 0.21 0.36 0.42 0.51 12.2k 0.19 0.53 0.63 0.42 0.13 0.18
Caterpillar 383 0.29 0.39 0.38 0.32 11.4k 0.18 0.29 0.26 0.23 0.18 0.19
Church 507 0.31 0.38 0.64 0.38 19.3k 0.79 - 0.94 0.39 0.26 0.36
Ignatius 264 0.21 0.34 0.35 0.25 7.8k 0.15 0.27 0.25 0.16 0.14 0.16
Meetingroom 371 0.33 0.36 0.60 0.38 11.1k 0.31 0.37 0.50 0.45 0.21 0.27
Truck 251 0.18 0.31 0.34 0.22 7.5k 0.11 0.37 0.24 0.14 0.11 0.13
Average 364 0.26 0.36 0.46 0.34 14.6k 0.29 0.37 0.47 0.30 0.17 0.22
Avg Time 1h 3min 5min 1.1h 74h 14h 18min 2.2h 8h 1.8h

In
te

rm
ed

ia
te

Family 152 0.17 0.25 0.32 0.24 4.4k 0.12 0.21 0.23 0.27 0.11 0.13
Francis 302 0.15 0.23 0.23 0.28 7.8k 0.24 0.23 0.17 0.18 0.11 0.13
Horse 151 0.21 0.23 0.41 0.23 6.0k 0.17 0.21 0.27 0.14 0.11 0.13
Lighthouse 309 0.36 0.43 0.57 0.37 8.3k 0.29 0.45 0.32 0.34 0.27 0.26
Playground 307 0.45 0.41 0.72 0.48 7.7k 0.45 0.55 0.82 0.34 0.32 0.33
Train 301 0.29 0.46 0.60 0.37 12.6k 0.20 0.64 0.45 0.29 0.18 0.30
Average 254 0.27 0.34 0.47 0.33 7.8k 0.24 0.38 0.38 0.26 0.18 0.21
Avg Time 32min 2min 3min 1.3h 48h 11h 14min 2.2h 5h 1h

A
dv

an
ce

d

Auditorium 302 0.31 0.76 0.60 0.43 13.6k 0.75 - 0.64 0.37 0.21 0.37
Ballroom 324 0.43 0.38 0.68 0.39 10.8k 0.44 - 0.92 0.33 0.34 0.46
Courtroom 301 0.34 0.42 0.70 0.44 12.6k 0.61 - 0.79 0.43 0.24 0.34
Palace 509 0.56 0.77 0.87 0.78 21.9k 0.60 - 0.84 0.72 0.51 0.67
Temple 302 0.30 0.53 0.75 0.82 17.5k 0.65 - 0.70 0.53 0.21 0.44
Average 348 0.39 0.57 0.72 0.57 15.6k 0.61 - 0.78 0.47 0.30 0.46
Avg Time 1h 2min 4min 1h 71h 27min 2.8h 10h 2.1h

Table 10: Tanks and Temples - LPIPS (↓). We show the pose accuracy
via view synthesis with Nerfacto [14] as LPIPS (↓) [18], and the reconstruction
time. We color code results compared to COLMAP, default and fast, respectively:
> 0.05 better (lower) , within ±0.05 , > 0.05 worse (higher) , > 0.1 worse (higher) .
†Method needs sequential inputs.

18. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR (2018)
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Pseudo GT DROID-SLAM† BARF NoPe-NeRF† ACE0
(COLMAP) [15] [8] [2] (ours)

Bicycle 0.68 0.20 0.22 0.24 0.47
Bonsai 0.89 0.18 0.31 0.36 0.83
Counter 0.82 0.25 0.26 0.27 0.77
Garden 0.86 0.38 0.27 0.26 0.77
Kitchen 0.87 0.28 0.34 0.33 0.80
Room 0.91 0.34 0.36 0.38 0.61
Stump 0.40 0.23 0.23 0.21 0.40
Average 0.78 0.26 0.28 0.30 0.67

Table 11: Mip-NeRF 360 - SSIM (↑).
Pose quality in SSIM (↑) [17], higher is
better. Best in bold. †Method needs se-
quential inputs.

Pseudo GT DROID-SLAM† BARF NoPe-NeRF† ACE0
(COLMAP) [15] [8] [2] (ours)

Bicycle 0.20 0.80 0.82 0.85 0.33
Bonsai 0.06 0.74 0.86 0.66 0.11
Counter 0.10 0.64 0.83 0.76 0.12
Garden 0.08 0.38 0.84 0.84 0.12
Kitchen 0.06 0.71 0.84 0.74 0.11
Room 0.05 0.85 0.83 0.59 0.43
Stump 0.45 0.85 0.79 0.81 0.36
Average 0.14 0.71 0.83 0.75 0.23

Table 12: Mip-NeRF 360 - LPIPS (↓).
Pose quality in LPIPS (↓) [18], lower is
better. Best in bold. †Method needs se-
quential inputs.
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random_seed 0
Mapper.min_num_matches 15
Mapper.ignore_watermarks 0
Mapper.multiple_models 1
Mapper.max_num_models 50
Mapper.max_model_overlap 20
Mapper.min_model_size 10
Mapper.init_image_id1 -1
Mapper.init_image_id2 -1
Mapper.init_num_trials 200
Mapper.extract_colors 1
Mapper.num_threads -1
Mapper.min_focal_length_ratio 0.1
Mapper.max_focal_length_ratio 10
Mapper.max_extra_param 1
Mapper.ba_refine_focal_length 1
Mapper.ba_refine_principal_point 0
Mapper.ba_refine_extra_params 1
Mapper.ba_min_num_residuals_for_multi_threading 50000
Mapper.ba_local_num_images 6
Mapper.ba_local_function_tolerance 0
Mapper.ba_local_max_num_iterations 25
Mapper.ba_global_use_pba 0
Mapper.ba_global_pba_gpu_index -1
Mapper.ba_global_images_ratio 1.1
Mapper.ba_global_points_ratio 1.1
Mapper.ba_global_images_freq 500
Mapper.ba_global_points_freq 250000
Mapper.ba_global_function_tolerance 0
Mapper.ba_global_max_num_iterations 50
Mapper.ba_global_max_refinements 5
Mapper.ba_global_max_refinement_change 0.0005
Mapper.ba_local_max_refinements 2
Mapper.ba_local_max_refinement_change 0.001
Mapper.snapshot_images_freq 0
Mapper.fix_existing_images 0
Mapper.init_min_num_inliers 100
Mapper.init_max_error 4
Mapper.init_max_forward_motion 0.95
Mapper.init_min_tri_angle 16
Mapper.init_max_reg_trials 2
Mapper.abs_pose_max_error 12
Mapper.abs_pose_min_num_inliers 30
Mapper.abs_pose_min_inlier_ratio 0.25
Mapper.filter_max_reproj_error 4
Mapper.filter_min_tri_angle 1.5
Mapper.max_reg_trials 3
Mapper.local_ba_min_tri_angle 6
Mapper.tri_max_transitivity 1
Mapper.tri_create_max_angle_error 2
Mapper.tri_continue_max_angle_error 2
Mapper.tri_merge_max_reproj_error 4
Mapper.tri_complete_max_reproj_error 4
Mapper.tri_complete_max_transitivity 5
Mapper.tri_re_max_angle_error 5
Mapper.tri_re_min_ratio 0.2
Mapper.tri_re_max_trials 1
Mapper.tri_min_angle 1.5
Mapper.tri_ignore_two_view_tracks 1

Table 13: COLMAP’s default incremental mapper options. Bold denotes options later
changed in the fast version, cf ., Table 14.



24 E. Brachmann et al.

Mapper.ba_global_images_ratio 1.2
Mapper.ba_global_points_ratio 1.2
Mapper.ba_global_points_freq 200000
Mapper.ba_global_max_num_iterations 20
Mapper.ba_global_max_refinements 3

Table 14: The incremental mapper options we used when running COLMAP fast.
Other parameters were not changed, and can be seen in Table 13. Parameters were
recommended for large image collections of more than 1000 images by [13].

random_seed 0
descriptor_normalization l1_root
ImageReader.mask_path -
ImageReader.camera_model SIMPLE_PINHOLE
ImageReader.single_camera 1
ImageReader.single_camera_per_folder 0
ImageReader.single_camera_per_image 0
ImageReader.existing_camera_id -1
ImageReader.camera_params f, cx, cy from dataset
ImageReader.default_focal_length_factor 1.2
ImageReader.camera_mask_path -
SiftExtraction.num_threads -1
SiftExtraction.use_gpu 1
SiftExtraction.gpu_index -1
SiftExtraction.max_image_size 3200
SiftExtraction.max_num_features 8192
SiftExtraction.first_octave -1
SiftExtraction.num_octaves 4
SiftExtraction.octave_resolution 3
SiftExtraction.peak_threshold 0.0066̇
SiftExtraction.edge_threshold 10
SiftExtraction.estimate_affine_shape 0
SiftExtraction.max_num_orientations 2
SiftExtraction.upright 0
SiftExtraction.domain_size_pooling 0
SiftExtraction.dsp_min_scale 0.166̇
SiftExtraction.dsp_max_scale 3
SiftExtraction.dsp_num_scales 10

Table 15: COLMAP’s feature_extractor options. Bold denotes options changed
w.r.t. default. Ran on an NVIDIA® V100 [11] GPU.
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random_seed 0
SiftMatching.num_threads -1
SiftMatching.use_gpu 1
SiftMatching.gpu_index -1
SiftMatching.max_ratio 0.8
SiftMatching.max_distance 0.7
SiftMatching.cross_check 1
SiftMatching.max_error 4
SiftMatching.max_num_matches 32768
SiftMatching.confidence 0.999
SiftMatching.max_num_trials 10000
SiftMatching.min_inlier_ratio 0.25
SiftMatching.min_num_inliers 15
SiftMatching.multiple_models 0
SiftMatching.guided_matching 0
SiftMatching.planar_scene 0
SiftMatching.compute_relative_pose 0
VocabTreeMatching.num_images 100
VocabTreeMatching.num_nearest_neighbors 5
VocabTreeMatching.num_checks 256
VocabTreeMatching.num_images_after_verification 0
VocabTreeMatching.max_num_features -1

VocabTreeMatching.vocab_tree_path https://demuc.de/colmap/

vocab_tree_flickr100K_words256K.bin

Table 16: COLMAP’s default vocab_tree_matcher options used. Ran on an
NVIDIA® V100 [11] GPU.

Mapper.ba_global_images_ratio 1.2
Mapper.ba_global_points_ratio 1.2
Mapper.ba_global_max_num_iterations 20
Mapper.ba_global_max_refinements 3
Mapper.ba_global_points_freq 200000

Table 17: The image_registrator options used for COLMAP in the “Sparse
COLMAP + Reloc + BA” step. Bold denotes options changed w.r.t. default. Pa-
rameters set to match Table 14, as recommended for large image collections of more
than 1000 images by [13].

BundleAdjustment.max_num_iterations 20
Table 18: The bundle_adjuster options used for COLMAP in the “Sparse COLMAP
+ Reloc + BA” step. Bold denotes options changed w.r.t. default. Parameters set to
match Table 14, as recommended for large image collections of more than 1000 images
by [13].
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