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1. Details of the Diffusion Model
The diffusion model that we use to regularise our NeRFs

is based on the architecture described in [2], as implemented
in the denoising-diffusion-pytorch [9] repository. This is
a UNet-based architecture with added self-attention layers.
We use 64, 128, 256 and 512 feature channels in the four
successive downsampling blocks of the UNet, and the re-
verse in the upsampling blocks; our network is constructed
with:

import denoising_diffusion_pytorch
model = denoising_diffusion_pytorch.Unet(

dim=64,
dim_mults=(1, 2, 4, 8),
channels=4

)

When converting depths to inverse depths for input to the
diffusion model – both when training the model and when
subsequently using it to train NeRFs – we clip depths to a
minimum of 20 cm to keep the range of possible inverse
depths finite. We then linearly transform that range of pos-
sible inverse depths so that it runs from -1 to 1, along with
the RGB channels which we also transform to the range [-1,
1]. The concatenation of these normalised inverse depth and
RGB channels forms the 4× 48× 48 input to the diffusion
model.

2. Diffusion Gradient Normalization Scheme
In practice we find that directly using the diffusion

model’s predicted noise as the negative gradient of a loss
tends to produce a somewhat brittle system, which over-
weights the diffusion model in some situations and under-
weights it in others. Therefore we use a normalisation
scheme to make the system more robust across different
scenes.

The diffusion model operates in disparity-space, and we
invert the rendered depth of the RGBD patches to produce

a valid input to the model. For a given pixel of the RGBD
image at inverse-depth z, the model’s predicted noise gives
us a gradient ∂Ldiff/∂z, and backpropagating this gradient
results in:
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Where d is depth and z = 1/d. We note that this means that
the gradients from the diffusion model get amplified in re-
gions closer to the camera due to the d2 in the denominator.
To counteract this, we scale the model’s gradients by the
disparity, which suppresses this effect. Empirically we find
this produces better results, and that not doing so tends to
lead to overly aggressive regularisation near to the camera
and overly weak regularisation far from it.

We also find that we obtain best results when we nor-
malise the gradients w.r.t. the RGB channels in the patch:
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This helps us control the size of the updates coming from
the diffusion model relative to those from the training im-
ages – we never want the former term to overpower the
latter. Again, we find empirically that this produces bet-
ter results. Not doing this results in occasional visual arti-
facts where the diffusion model outputs a very large gradi-
ent w.r.t. the RGB channels of the patch.

When backpropagating the gradients from the diffusion
model we use different weights for the gradient of the ren-
dered patch with respect to depth and with respect to color.
For LLFF we use weights of 4 × 10−7 for depth gradients,
and 3 × 10−6 for RGB gradients; for DTU we use weights
of 4× 10−6 for depth and 3× 10−5 for RGB.

3. Camera Pose Sampling
When rendering patches to pass into the diffusion model

we generate camera poses that are from roughly the same
perspective as the training poses.
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For LLFF we take a training pose and randomly perturb
its position. In particular we perturb each element of its po-
sition with uniformly distributed noise from U(−0.2, 0.2)
and we perturb its orientation with a random rotation
through an angle between 0 and π/5 radians.

Because the DTU dataset has images with much nar-
rower field of view, the above scheme tends to produce im-
ages in which the object of interest is not visible, unless the
noise is turned down to extremely low levels. So for exper-
iments on DTU we use a different approach in which we
randomly select a consecutive pair of training camera poses
and interpolate between them. The interpolation is done
by linearly interpolating the poses’ positions and slerping
their orientations, using a random interpolation weight so
that the final pose can be anywhere in between the first and
second input pose. Because of the object-centric nature of
this dataset, this tends to produce a pose that is also looking
at the object of interest.

With both LLFF and DTU, 25% of the time we use a
training pose for patch rendering, and sample the RGB com-
ponent of the RGBD patch directly from the training image
rather than by rendering it. This provides information flow
directly from the training images to the diffusion model,
rather than indirectly via the reconstruction. We find that
this tends to be helpful in the early stages of the NeRF fit-
ting process in which rendered RGBs are not yet accurate.

4. Distance Scaling

Our diffusion model was trained with metric depths, and
so when using the model to regularize NeRFs, the cam-
era poses should be roughly metric. For LLFF scenes we
judged an approximate distance by inspection of the SfM
point clouds.

In the LLFF dataset we also scale up all scenes so that
their bounds are at least 7.5 metres in size. This is so
that the distribution of depths becomes closer to that of the
room-scale Hypersim data on which the model was trained.
This affects the close-up object-centric scenes in LLFF –
the ‘flower’ and ‘orchids’ scenes.

5. A note on LPIPS metrics

An earlier version of this paper used the Alex version of
LPIPS rather than the VGG version throughout. However,
our baselines in Table 1 of the main paper use the VGG
version, making the comparison unfair. After this oversight
was pointed out to us, we recomputed the LPIPS column in
Table 1 using the VGG version (and the ‘Average’ column,
which changes as a result). As a result, this paper (and its
supplementary) use LPIPS-Alex everywhere except for Ta-
ble 1, where LPIPS-VGG is used instead.

6. Visualizations of LLFF results
We show additional results on test views of the LLFF

dataset with 3, 6 and 9 training poses in Figures 2, 3, and 4,
respectively.

7. Quantitative Evaluation of LLFF Recon-
struction

The LLFF dataset was compiled by taking photographs
of a scene and recovering camera poses by running
Colmap [6]. Pseudo ground-truth depth maps can also be
computed with Colmap [7].

One could assume that this data would allow direct eval-
uation of reconstruction quality of our method. However,
we found that evaluating NeRF depth maps using the MVS
depth maps is problematic. First, Colmap estimates depth
data around distinct and textured regions and provides very
little geometry data around uniformly textured areas such
as many walls, floors, ceilings, etc. These areas are ex-
actly where our DDM improves the geometry estimation
in NeRFs. Secondly, Colmap depth estimation produces
noisy depths on reflective and transparent surfaces such as
glass walls and shiny tables. Discarding depths on such
surfaces by varying Colmap depth estimation parameters is
not straightforward as a more conservative set of parameters
also discards depth maps on uniformly textured areas.

In Figure 1 we show depths estimated by Colmap. The
top row shows the 4 out of 8 problematic scenes that are
unsuitable for reconstruction evaluation. These 4 scenes
are rooms with challenging geometries that are also within
Hypersim dataset distrubution. The remaining 4 scenes are
object-centric.

8. Visualizations of DTU results
Figure 5 shows some qualitative results on the DTU

dataset in addition to those given in the main paper.

9. Hypersim Patches
Figure 6 shows more examples of patches extracted from

the Hypersim dataset used for our DDM training. Fig-
ure 7 shows more examples of patches synthesized using
our DDM.

10. MipNeRF-360 Dataset Experiments
We also tested our model on the MipNeRF-360 [1]

dataset. This is a challenging dataset in the few-view
regime, because many areas of the scene are not visible in
many training views. This is in contrast to forward-facing
datasets such as LLFF in which most of the scene is visi-
ble from every training view. We find that for this reason,
NeRF reconstructions tend to fail catastrophically in the 3-
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Figure 1. LLFF dataset images and depths estimated using Colmap. Top-row shows room-scale scenes and bottom-row shows object-
centered scenes. Notice noisy depths in ceilings, glass surfaces, reflective surfaces and walls.

Method PSNR ↑ SSIM ↑ LPIPS-Alex ↓ Average ↓
9-view 18-view 27-view 9-view 18-view 27-view 9-view 18-view 27-view 9-view 18-view 27-view

Instant-NGP [4] 15.69 17.86 19.54 0.241 0.365 0.457 0.654 0.483 0.375 0.234 0.181 0.158
Geometric Baseline 15.19 19.94 22.06 0.283 0.484 0.583 0.536 0.343 0.273 0.220 0.146 0.123
DiffusioNeRF (Ours) 15.44 20.25 22.41 0.307 0.515 0.600 0.503 0.316 0.247 0.207 0.143 0.121

Table 1. Results for novel view synthesis task on Mipnerf-360 datasets with few input views [5, 10]. We report scores on PSNR, SSIM,
LPIPS and Average metrics averaged over all 8 scenes when NeRFs are fitted with 9, 18 and 27 training views. For each view/metric
combination the first and second scores are highlighted.

and 6-view cases, even with our geometric and diffusion-
based regularisers. Therefore we make the task easier by
tripling the number of training views from 3, 6 and 9 to 9, 18
and 27. We find that our geometric baseline is an improve-
ment over instant-NGP, and our diffusion-based regularizer
offers a further improvement over the geometric baseline.
Results are shown in table 1, and qualitative comparisons
against Instant NGP and Geometric Baseline are shown in
Figures 8, 9 and 10. As shown on the qualitative figures,
catastrophic failures still occur sometimes even with this
higher number of training views.

11. Synthetic Dataset Experiments

We also tested our model on the synthetic dataset in-
troduced in [3]. These scenes include a solid white back-
ground, so unlike real scenes it is now reasonable for a ray
to pass through the scene without being fully absorbed. For
this reason we set λfg – the weight for the loss term that
encourages the weights along each ray to sum to unity – to
zero. We also set the background color of our NeRF models
to white, matching the background on the training views.

The results are shown in table 2. We find our full model
to outperform both Instant-NGP and our geometric baseline
on all metrics with 3, 6, and 9 training views. However, the
improvements over Instant-NGP are relatively modest. This
may suggest that part of the benefit of our model is that it
creates robustness against inaccuracies in the intrinsics and
extrinsics of the training data, a source of error which is
absent in synthetic datasets such as this one.

Qualitative comparisons against Instant NGP and the Ge-
ometric Baseline are shown in Figures 11, 12 and 13.

12. DiffusionSDF

Since our diffusion model-based regularizer can be used
with any model which can differentiably render RGBD
patches, we also tried using it with SDF (signed distance
function)-based models. Models based on fitting an SDF
generally reconstruct more accurate geometry than do mod-
els that fit a density field. We integrated our regularizer with
the MonoSDF [11] code. To better isolate the effect of our
regularizer, we switched off the smoothing, depth and nor-
mals regularization terms in MonoSDF.

When training on few views, we found that results were
often quite poor, with the geometry often looking less
smooth rather than more smooth (in contrast to the be-
haviour observed when using our regularizer with Instant-
NGP). It is possible that the problem occurs because SDF-
based methods must generally be fit with a lower learning
rate than density-based methods to prevent instabilities dur-
ing training. Spreading out the fitting process over many
steps helps the SDF to remain valid during the optimiza-
tion process (i.e. to satisfy to a good approximation the
Eikonal condition ∥∇f(x)∥ = 1, where f(x) is the signed
distance function). Our patch-based regularizer generates
large, highly localized gradients in the part of the scene that
the current patch is looking at. The injection of these gra-
dients makes it difficult for the SDF to remain valid. It is
likely that this could be addressed by lowering the learn-
ing rate still further, but fitting MonoSDF to a single scene
with our patch-based regularizer already takes 1 day, so the
running time would become prohibitive.

Therefore we conclude that our regularizer is not well-
suited for combination with SDF-based models. Neverthe-
less, we show qualitative results on a single scene from the

3



Method PSNR ↑ SSIM ↑ LPIPS-Alex ↓ Average ↓
3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

Instant-NGP [4] 16.31 19.71 22.57 0.653 0.767 0.819 0.388 0.211 0.136 0.136 0.060 0.053
Geometric Baseline 16.37 19.84 22.73 0.670 0.774 0.826 0.358 0.201 0.129 0.133 0.057 0.050

DiffusioNeRF (Ours) 16.45 20.42 23.45 0.681 0.787 0.838 0.323 0.177 0.115 0.120 0.053 0.047

Table 2. Results for novel view synthesis task on the blender synthetic dataset with few input views. We report scores on PSNR, SSIM,
LPIPS and Average metrics averaged over all 8 scenes when NeRFs are fitted with 3, 6 and 9 training views. For each view/metric
combination the first and second scores are highlighted.

DTU dataset, with and without our regularizer in Figure 14.

13. 3D Voxel Grid Regularization

As discussed in the conclusion of the main paper, we
have also begun to experiment with using diffusion mod-
els to regularise the model directly in 3D, rather than by
regularising 2D rendered patches. This is an appealing ap-
proach because each voxel requires just one evaluation of
the colour and density, whereas each pixel in a patch re-
quires hundreds of such evaluations to render it using ray-
marching. Additionally it allows the regulariser direct ac-
cess to the 3D geometry of the scene, which may be more
informative than only being able to see 2D projections of
it. In this section we describe some early results of these
experiments. We use the KLEVR toy dataset introduced
in Neural Semantic Fields (NeSF) [8]. KLEVR consists
of synthetic renders of simple geometric shapes on a gray
plane against a white background; we show three example
scenes from the dataset in Figure 15.

We wish to train a DDM model to learn the 3D geometry
of KLEVR directly, so we require 3D training data. To gen-
erate the training data for a given scene from KLEVR, we
backproject the ground-truth depth maps provided as part of
the dataset and accumulate them across all views to form a
point cloud. We then voxelise the point cloud into a voxel
grid of size 128× 128× 128. Each voxel stores four chan-
nels. The first three are RGB colour channels as in our 2D
experiments, and the fourth is occupancy. We set the oc-
cupancy of each voxel based on the distance to the nearest
point in the point cloud; it is normalised to between zero
and one.

To train the model we pick random 48 × 48 × 48 3D
chunks of the voxel grid – analogously to the way we pick
random 2D patches when training our 2D model – and train
the model as usual, by applying noise and tasking the model
to predict the noise. The architecture of the diffusion model
is unchanged, except for the extra dimensionality of its in-
puts and outputs.

While fitting NeRFs, we then use the diffusion model
to regularise the NeRF by sampling the model on a random
48×48×48 grid, feeding the sampled grid into the diffusion
model, and backpropagating the negative of the predicted
noise through the NeRF. This is just the same approach as

we use in our 2D experiments, except that we backpropa-
gate into the sampled 3D grid, rather than into a rendered
patch. To convert the density (which ranges from zero to
infinity) to an occupancy (which ranges from zero to one)
for input to the diffusion model, we normalise the density
using:

ζ(r) = 1− exp(−γσ(r)) (3)

where ζ is the occupancy of the voxel whose centre is at
position r, σ(r) is the density evaluated at that position, and
γ is a hyperparameter controlling how high the density must
be for us to consider a voxel to be occupied; we set it to 0.1.

Although we have used a very simple dataset, early re-
sults are promising and merit further investigation on more
realistic data. We show an example result in Figure 17, in
which the model successfully improves the geometry of the
fitted NeRF. Because the three training views are from very
similar positions, the geometry in Figure 17(b) is poorly
constrained and is smeared out parallel to the look vectors
of the training views. However, when our 3D regularizer is
used, the results are substantially improved (Figure 17(c)).
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Ground Truth RegNeRF Geometric Baseline Ours

Figure 2. Additional qualitative results for the task of novel view synthesis on LLFF dataset. NeRF models are trained with 3 views and
rendered from one of the test views. Our DDM model encourages more realistic geometry as seen in the depth maps.
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Ground Truth RegNeRF Geometric Baseline Ours

Figure 3. Additional qualitative results for the task of novel view synthesis on LLFF dataset. NeRF models are trained with 6 views and
rendered from one of the test views.
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Ground Truth RegNeRF Geometric Baseline Ours

Figure 4. Additional qualitative results for the task of novel view synthesis on LLFF dataset. NeRF models are trained with 9 views and
rendered from one of test views.
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RGB NeuS VolSDF MonoSDF Geometric
Baseline Ours

Figure 5. Additional qualitative comparison of our method against SOTA on geometry reconstruction evaluated on DTU dataset.
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Figure 6. Example RGBD patches in the training set of the DDM model extracted from Hypersim dataset. Depths are shown as normalized
inverse depths for visualization purposes.

Figure 7. Example RGBD patches generated with our DDM model trained on Hypersim dataset. Depths are shown as normalized inverse
depths for visualization purposes.
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Ground Truth Instant NGP Geometric Baseline Ours

Figure 8. Additional qualitative results for the task of novel view synthesis on MipNeRF-360 dataset. NeRF models are trained with 9
views and rendered from one of test views.
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Ground Truth Instant NGP Geometric Baseline Ours

Figure 9. Additional qualitative results for the task of novel view synthesis on MipNeRF-360 dataset. NeRF models are trained with 18
views and rendered from one of test views.
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Ground Truth Instant NGP Geometric Baseline Ours

Figure 10. Additional qualitative results for the task of novel view synthesis on MipNeRF-360 dataset. NeRF models are trained with 27
views and rendered from one of test views.
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Ground Truth Instant NGP Geometric Baseline Ours

Figure 11. Additional qualitative results for the task of novel view synthesis on NeRF Synthetic Blender dataset. NeRF models are trained
with 3 views and rendered from one of test views.
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Ground Truth Instant NGP Geometric Baseline Ours

Figure 12. Additional qualitative results for the task of novel view synthesis on NeRF Synthetic Blender dataset. NeRF models are trained
with 6 views and rendered from one of test views.
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Ground Truth Instant NGP Geometric Baseline Ours

Figure 13. Additional qualitative results for the task of novel view synthesis on NeRF Synthetic Blender dataset. NeRF models are trained
with 9 views and rendered from one of test views.
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Figure 14. Rendered training view (left), depth maps (middle) and normals (right) for the DTU ‘skull’ scene. The top row shows the
baseline plus our diffusion regularizer, the middle row shows the baseline alone, and the bottom row shows the ground truth.

Figure 15. Training views of three different scenes in the KLEVR dataset.
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Figure 16. Three voxel grids generated by the DDM, showing each voxel of occupancy greater than 1/2 as a point.

(a) (b) (c)

Figure 17. Results for regularisation of the Hypersim dataset with a 3D diffusion model, showing (a) the three training views we use to
train NGP on this scene, (b) a point cloud extracted from a NeRF fitted without our 3D regulariser, (c) a point cloud extracted from a NeRF
fitted using our 3D regulariser.
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