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1 Datasets Discussion

Since our proposed world-space measure requires depth information during train-
ing, we conduct our experiments on the 7Scenes [5] and MegaDepth [3] datasets.
Unfortunately, other datasets used for localization benchmarks such as Aachen [4],
Cambridge Landmarks [2], CMU-Seasons [1], etc. do not provide the depth maps
that our world-space measure requires. It may seem that InLoc [6] is a good in-
door localization dataset for our method, as it provides RGBD frames captured
with a laser scanner. However, InLoc often has a single panoramic 3D scan per
room, which prohibits generation of pairs of images with meaningful visual sur-
face overlaps for training. Further, the panoramic images are cropped at exactly
30◦ intervals which also introduces bias to the pairwise visual overlap values.

2 Learning Asymmetric Measures

Adding to the results in Table 1 of the main paper, we report the ability of vector
embeddings to learn the asymmetric normalized surface overlap in Table 1. Both
here and in the main paper we evaluate vector embeddings on NSO(x 7→ y), but
while we trained on NSOsym(x,y) in the main paper, we train vectors to learn
NSO(x 7→ y) in this experiment. Because vector embeddings have to predict the
same value for both NSO(x 7→ y) and NSO(y 7→ x) we expect them to converge
to predicting the average of both measures, because — at least analytically —
this would lead to the smallest training error.

? Project page: www.github.com/nianticlabs/image-box-overlap

www.github.com/nianticlabs/image-box-overlap
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NSO(x 7→ y) with vectors

L1-Norm RMSE Acc.< 0.1

Notre-Dame 0.251 0.256 60.1%
Big Ben 0.440 0.364 25.2%
Venice 0.201 0.216 69.5%
Florence 0.163 0.174 72.2%

Table 1. Evaluation of vector embeddings, trained on normalized surface overlap. We
measure the discrepancy between the predicted and ground-truth asymmetric overlaps
on the test set.

The low accuracy on Big Ben in Table 1 could result form properties of
the Big Ben scene. Most random pairs of images have have non-zero overlap
(it should be noted that the underlying ground-truth SfM model assumes that
the Big Ben tower only has two sides due to symmetry). This is not the case
for the other scenes, where many image pairs have almost zero enclosure and
concentration, such that prediction of a symmetric overlap does not cause high
errors. Note also that we did not balance the training sets.

3 Interpretable Queries

Further to Section 4.2 in our main work, we demonstrate the interpretability of
our method on additional test queries from the MegaDepth dataset. We show
two different types of figures:

– Interpretability plots: For a query image from the test set what do the pre-
dicted enclosure and concentration of retrievals from the training set images
tell us about their relationship to one-another?

– Generalization plots: Does our embedding generalize to the images from the
test set and are pairwise relationship interpretations valid?

3.1 Interpretability Plots

These plots, Figures 5, 6, 7, 8, 9, 10, 11, 12 and 13, illustrate the interpretability
that we gain when using box embeddings trained with normalized visual over-
lap as the world-space measure. The key takeaway is that we can qualitatively
observe the relationship between the query and each of the retrieved images.
The relationships can be grouped into four categories: Given a query image, a
retrieval can be a:

– zoom-out
– crop-out or oblique-out
– close-up
– clone-like
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We show three different examples for the scenes V enice and Florence and
two examples for BigBen and NotreDame additionally to Figure 5 in the main
work. For each figure a single query and up to 36 retrieved images from the
training set are shown. They are placed into one of six buckets according to
the predicted normalized box overlap NBO(bx 7→ by) and NBO(by 7→ bx).
The vertical axis describes the enclosure, so NBO(bx 7→ by), or ”how much
surface from the query image is visible in the retrieved image”. The horizontal
axis describes the concentration NBO(by 7→ bx), in other words ”how much
surface of the retrieved image is visible in the query image”.

The numbers below each image are enclosure and concentration estimated
with box representations as well as ground-truth values estimated with semi-
dense depth maps.

3.2 Generalization Plots

The interpretability plots retrieve images from the training set of our box em-
beddings. Next, we demonstrate qualitatively that the learned representations
generalize to the images in the test set. Here the test set are images in MegaDepth
that do not have dense depth information. Hence, we can only report qualitative
results for this larger test set.

So, we now retrieve images from the test set using a random query image from
the test set. Here, we plot retrieved images on a 2D grid, using enclosure and
concentration of the retrieved image as 2D coordinate, where the x-coordinate
denotes the concentration, and the y-coordinate denotes the enclosure.

These plots, Figures 14, 15, 16, 17 and 18, also provide interpretability, as
one can observe different clusters of images as zoom-outs, crop-outs, close-ups
and clones of the query in similar “quadrants” as Interpretability plots. We also
show some result on 7Scenes in Figures 19 and 20.

4 Predicting Relative Scale

Further to Section 4.4 in the main paper we evaluate the ability of our method
to predict useful relative scale. We show:

– Relative scale plots: Given pairs of images from the test set and their box
representations, can we estimate their relative scale difference? Relative scale
plots are further qualitative examples similar to Figure 1 and Figure 7 in
the main paper

– the computational efficiency of pre-scaling.
– a comparison between rescaling based on our pipeline and a homography

based approach

We illustrate that we can estimate geometric relationships between two im-
ages from the test set using our box embeddings. For two images from the test
set we can estimate the relative scale of the first image in the second image.
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Hence, we plot two test images and a rescaled version of the first image such
that any geometric verification between the two images is now easier to do due
to matching scale, Figures 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32.

This relative scale estimate is relatively accurate if the images have zoom-
in/zoom-out relationship. If the images are in crop-out/oblique-out to one-another,
then the rescaling is not necessarily going to make matching easier. So, image
pairs that seem to be failure cases in terms of estimated relative scale often have
low enclosure value (<80%), which means that these image pairs can be detected
and treated accordingly. To demonstrate that this filtering approach is effective,
we show failure cases with an enclosure of at least 80%.

4.1 Implementation Details and Efficiency

To measure the efficiency of pre-scaling images according to their relative scale,
we measure the processing times of two different pipelines that take a query
and its retrieved nearest neighbor as inputs. We assume that the box overlap of
two images needs to be computed for the retrieval of the nearest neighbor and
is therefore known. We compare (i) using a PnP + RANSAC pose estimation
pipeline based on SIFT features with 3 layers in each octave and (ii) comput-
ing the relative scale based on predicted box overlap, rescaling one image of a
pair accordingly and using a PnP + RANSAC pose estimation pipeline based
on SIFT features with only 1 layer in each octave. Both pipelines include the
detection and computation of SIFT features with OpenCV in Python using
cv2.xfeatures2d.SIFT_create(contrastThreshold=0.03,sigma=1.2)

and cv2.solvePnPRansac(flags=cv2.SOLVEPNP_P3P) to solve for pose. Aver-
aged over 100 runs the pipeline with three layers per octave needs 2.4 seconds,
while the same pipeline with one layer per octave takes 1.2 seconds. The com-
putation of the relative scale and resizing with OpenCV takes another 0.008
seconds on average. This means, that per image pair our pipeline saves more
than a second, or 49% compared to a strictly feature-based pipeline. We used
an Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz CPU on Ubuntu.

4.2 Homography-based Scale Estimation

Lastly, we compare our NSO-based scale estimate to a homography based scale
estimation in Figure 33. For the images from Figure 7 in the main paper we
estimate the relative scale with an OpenCV pipeline. We extract SIFT fea-
tures with cv2.xfeatures2d.SIFT_create() and estimate a homography with
cv2.findHomography(method=cv2.RANSAC,ransacReprojThreshold=5.0).

5 Further Localization Evaluations

In this section we provide more detail on our localization pipeline as well as
further evaluations of different embeddings for the localization task expanding
on Section 4.3 in the main paper.
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The pipeline used for localization consists of the following steps using OpenCV
in Python:

– Retrieve nearest neighbor according to retrieval function (see Tables 2, 3)
– Extract SIFT features with cv2.xfeatures2d.SIFT_create and default pa-

rameters except contrastThreshold=0.03 and sigma=1.2

– Use Lowe Ratio Test with threshold 0.9
– Infer 3D points from 2D matches in database image using corresponding

depth maps
– Get pose between 2D matches in query and 3D matches in retrieval using

cv2.solvePnPRansac with flags=cv2.SOLVEPNP_P3P and guess an initial
pose as the pose of the retrieved nearest neighbor with useExtrinsicGuess=1

– If matching fails use pose of nearest neighbor as prediction

5.1 7-Scenes

Figure 1 shows sorted rotation errors for each scene, similarly to Figure 6 in
the main paper, for different embeddings. Again, rotation error is computed per
query, when matched against 10-th and 30-th nearest neighbor from the training
set (gallery).

When solving for the pose, retrieving 10-th nearest neighbor for matching
seems to be sufficient to estimate good pose for most of the scenes. However,
even in this setting we can see that Frustum overlap is under-performing com-
pared to embeddings trained with surface overlap. Only in Pumpkin scene with
10-th retrieved image, the frustum overlap is marginally better. Between sur-
face overlap-based embeddings the performance is quite comparable. There are
no systematic improvements nor deteriorations with relative scale correction as
captured scenes are all rooms with limited scale variation.

5.2 Megadepth

Figure 3 shows evaluation results for Venice and Florence scenes to complement
Figure 6 of the main paper.

In Table 2 we report median error translation and rotation error of estimated
pose for 100 images of the test set (that have corresponding depth maps) similar
to Table 2 in the main paper. The Megadepth scenes are not metric, so the scale
factor of translation errors is not known. Furthermore, all these errors are rela-
tively low, corresponding to accurate pose, so it is difficult to draw conclusions
from these results.

Hence, we also evaluated different embeddings with a larger test set which
consists of images in Megadepth that do not have depth maps. This results in
3165, 1931, 2255 and 1159 test set images for Big Ben, Notre-Dame, Venice and
Florence, respectively. Table 3 show median errors for the larger test set. As can
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Fig. 1. 7-Scenes pose rotation error. Each plot shows (sorted) rotation error
(capped at 90◦) when each test image is matched against 10-th and 30-th closest re-
trieved image for pose estimation. As we can see, normalized surface overlap methods
are superior to Frustum overlap.
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Fig. 2. 7-Scenes pose rotation error, comparison with DenseVLAD and
NetVLAD Each plot shows (sorted) rotation error (capped at 90◦) when each test
image is matched against 10-th and 30-th closest retrieved image for pose estimation.
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Fig. 3. Additional results to Fig. 6 on MegaDepth. Each plot shows (sorted) ro-
tation error (capped at 90◦) when each test image is matched against 10-th and 30-th
closest retrieved image for pose estimation. As we can see, box embeddings with sur-
face overlap measure tend to outperform alternatives, especially when rescaling images
according to estimated relative scale and for the 30-th neighbor. Results evaluated for
100 images from the test set.

Box Box Scaled Vector Vector
Training L NSO(x 7→ y) NSO(x 7→ y) NSOsym(x,y) Frustum

Retrieval func.

NBO(bx 7→ by)+

NBO(by 7→ bx)

NBO(bx 7→ by)+

NBO(by 7→ bx) Eucl. dist. Eucl. dist.

Notre-Dame .038, 0.79◦ .038, 0.87◦ .048, 1.02◦ .047, 1.05◦

Big Ben .067, 0.87◦ .067, 0.87◦ .070, 0.87◦ .096, 0.83◦

Venice .096, 1.01◦ .098, 1.23◦ .102, 0.87◦ .085, 0.91◦

Florence .081, 1.08◦ .079, 1.10◦ .072, 1.03◦ .048, 0.68◦

Table 2. Comparison of rotation and translation errors on the MegaDepth dataset,
where boxes learn surface overlap asymmetrically while vectors are trained symmetri-
cally. The first entry of each cell denotes the translation error up to scale, the second
entry is the rotation error in degrees. Results evaluated for 100 images from the test
set.
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be seen, correcting for scale using Box embeddings is superior to alternatives on
3 scenes.

Similarly, (sorted) rotation error evaluated for the larger test set could seen
in Figure 4. Here the error is computed against 1st nearest neighbor retrieval.
These plots indicate a similar conclusion. The surface overlap based embeddings
are outperformed by Frustum overlap embedding for Florence scene. Florence
scene has images that capture a large area with complex narrow streets, however
the training set consists of only 1471 images. We suspect that our CNNs need
more training data to learn generalizable surface overlaps.

Box Box Scaled Vector Vector

Training L NSO(x 7→ y) NSO(x 7→ y) NSOsym(x,y) Frustum

Retrieval func.

NBO(bx 7→ by)+

NBO(by 7→ bx)

NBO(bx 7→ by)+

NBO(by 7→ bx) Eucl. dist. Eucl. dist.

Notre-Dame 0.84, 15.1◦ 0.81, 13.8◦ 0.27, 5.3◦ 0.98, 25.2◦

Big Ben 2.91, 58.0◦ 2.85, 53.9◦ 3.21, 62.4◦ 3.30, 69.8◦

Venice 3.20, 68.9◦ 3.24, 58.6◦ 1.83,33.8◦ 2.70, 65.6◦

Florence 1.44, 35.0◦ 1.33, 31.6◦ 0.37, 5.3◦ 0.75, 10.6◦

Table 3. Comparison of rotation and translation errors on the MegaDepth dataset for
test set without depth images, where boxes learn surface overlap asymmetrically while
vectors are trained symmetrically. The first entry of each cell denotes the translation
error up to scale, the second entry is the rotation error in degrees. Total number of
images in these test sets (in Figure order): 3165, 1931, 2255 and 1159.
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Fig. 4. Results on images without depth (MegaDepth) Each plot shows (sorted)
rotation error (capped at 90◦) when each test image is matched against the closest
retrieved image for pose estimation. As we can see, box embeddings with surface overlap
measure tend to outperform alternatives, especially when rescaling images according
to estimated relative scale. Total number of images in these test sets (in Figure order):
3165, 1931, 2255 and 1159.

Please note that we had to make an assumption that could not be verified
with the authors of MegaDepth at the time of submission. Though the camera
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intrinsics are provided for the original sized images, they must be adjusted when
working with the resized depth maps. The authors note that the image size of
the depths is slightly different (a few pixels) due to their SfM pipeline. However,
it is not clear if the depths are rescaled or cropped or both, and our observations
did not provide a definite answer to this question. In our experiments we assume
that the resized images in the depth dataset of MegaDepth are rescaled versions
of the original images in the SfM dataset. When estimating pose between query
and retrieval with our Pnp pipeline we adjust the camera intrinsics according to
this assumption.

6 Generalizability to Different Datasets

To investigate the ability of our method to generalize to new scenes we pro-
vide some qualitative evaluations on the Cambridge Landmarks dataset. We use
our model trained on the Notre Dame scene of MegaDepth and retrieve near-
est neighbors of queries from King’s College in Cambridge. Both queries and
data base images have never been seen during training. Figure 34 shows some
randomly picked examples. Note that we report qualitative results only, as the
Cambridge dataset does not provide per image 3D points limiting the appli-
cability of our pipeline requiring 2D-3D point correspondences between query
and retrieved image for PnP pose estimation. Nonetheless, it is apparent that
our method is able to generalize to an unseen dataset retrieving useful nearest
neighbors.

7 Box Dimensionality Ablation Study

We report the impact of the box dimensionality on the ability to predict nor-
malized surface overlap. We state the root mean squared error (RMSE) on
MegaDepth’s Big Ben scene in Table 4.

8D 16D 32D 64D

After 20 epochs 0.11/0.13/83% 0.11/0.14/83% 0.11/0.13/82%∗ 0.13/0.14/81%

After 31 epochs 0.11/0.14/83% 0.11/0.14/83% 0.11/0.12/83% 0.12/0.14/82%

* For this ablation study we trained all models using the same random seed including the 32D model, which is why
this result is slightly different from the result reported in the main paper.

Table 4. L1-Norm/RMSE/Accuracy<0.1 between predicted and ground truth
NSO(x 7→ y) on 1,000 random image pairs from the test set for different box di-
mensions.
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Fig. 5. Interpretability plot: Venice No. 1. Results of predicted and ground-truth en-
closure and concentration relative to the query image on the left. The numbers below
each image indicate the predicted and ground-truth concentration/enclosure. It can be
observed that the images in the upper left quadrant are close-ups of the query. The
images in the lower left quadrant are clones of the query. The retrieved clones pre-
serve the normals of the surfaces in the query. Images in the lower right quadrant are
zoom-outs of the scene in the query. The images in the upper right corner are mostly
oblique-outs and show the scene in the query from different angles. This caption applies
to all Interpretability plots unless otherwise stated.
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(58%/85%)

67%/63%
(58%/85%)

49%/55%
(67%/71%)

31%/61%
(59%/75%)

87%/66%
(74%/89%)

67%/73%
(57%/83%)

64%/71%
(67%/90%)

37%/74%
(31%/77%)

27%/78%
(43%/76%)

89%/85%
(78%/84%)

71%/84%
(76%/89%)

65%/89%
(45%/78%)

Fig. 6. Interpretability plot: Venice No. 2.
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Query

High concentration Low concentration
L

ow
en

cl
o
su

re

88%/15%
(87%/20%)

69%/16%
(69%/21%)

66%/11%
(75%/7%)

40%/5%
(0%/0%)

19%/10%
(1%/1%)

10%/6%
(0%/0%)

86%/32%
(71%/25%)

83%/22%
(82%/21%)

66%/22%
(56%/17%)

50%/23%
(48%/22%)

27%/17%
(12%/12%)

11%/33%
(10%/25%)

89%/49%
(83%/53%)

75%/41%
(70%/41%)

55%/40%
(64%/51%)

37%/36%
(27%/42%)

29%/46%
(31%/40%)

9%/38%
(8%/29%)

H
ig

h
en

cl
o
su

re

90%/51%
(83%/55%)

72%/50%
(58%/37%)

58%/63%
(50%/62%)

44%/54%
(48%/55%)

25%/61%
(27%/57%)

16%/55%
(11%/46%)

83%/71%
(79%/63%)

83%/78%
(76%/74%)

59%/76%
(57%/74%)

43%/68%
(44%/61%)

17%/79%
(32%/82%)

68%/87%
(70%/76%)

66%/87%
(70%/82%)

49%/88%
(65%/85%)

25%/85%
(35%/84%)

Fig. 7. Interpretability plot: Florence No. 1.
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Query

High concentration Low concentration

L
ow

en
cl

o
su

re 71%/31%
(79%/40%)

53%/29%
(79%/32%)

44%/32%
(69%/25%)

7%/25%
(17%/21%)

81%/47%
(79%/62%)

60%/39%
(76%/36%)

46%/38%
(67%/41%)

H
ig

h
en

cl
o
su

re

83%/62%
(77%/63%)

77%/54%
(79%/68%)

56%/55%
(66%/36%)

14%/57%
(30%/81%)

88%/79%
(75%/65%)

74%/75%
(78%/66%)

56%/77%
(82%/70%)

49%/81%
(74%/77%)

6%/77%
(10%/75%)

88%/85%
(78%/77%)

83%/88%
(76%/76%)

63%/92%
(76%/78%)

25%/85%
(54%/80%)

15%/86%
(24%/80%)

Fig. 8. Interpretability plot: Florence No. 2.
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Query

High concentration Low concentration
L

ow
en

cl
o
su

re

84%/16%
(74%/17%)

80%/13%
(76%/18%)

66%/17%
(61%/24%)

42%/14%
(60%/16%)

22%/5%
(23%/4%)

13%/7%
(5%/9%)

89%/19%
(79%/31%)

68%/20%
(71%/35%)

63%/22%
(55%/32%)

39%/25%
(43%/33%)

34%/21%
(39%/34%)

86%/42%
(73%/42%)

72%/42%
(74%/42%)

65%/48%
(71%/50%)

36%/36%
(52%/34%)

33%/48%
(34%/49%)

16%/45%
(37%/31%)

H
ig

h
en

cl
o
su

re

89%/62%
(73%/75%)

82%/64%
(71%/56%)

58%/62%
(48%/64%)

42%/58%
(44%/38%)

19%/55%
(35%/32%)

87%/78%
(75%/72%)

68%/74%
(64%/71%)

58%/78%
(56%/73%)

41%/73%
(43%/65%)

87%/84%
(75%/76%)

74%/93%
(76%/73%)

Fig. 9. Interpretability plot: Florence No. 3.
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Query

High concentration Low concentration
L

ow
en

cl
o
su

re

88%/17%
(89%/21%)

73%/12%
(71%/6%)

65%/17%
(61%/10%)

11%/8%
(0%/0%)

90%/30%
(90%/30%)

72%/28%
(68%/24%)

66%/20%
(62%/10%)

38%/31%
(38%/29%)

93%/45%
(94%/49%)

75%/38%
(73%/36%)

62%/36%
(64%/24%)

49%/40%
(48%/41%)

17%/44%
(16%/35%)

H
ig

h
en

cl
o
su

re

91%/61%
(93%/65%)

82%/56%
(79%/62%)

61%/61%
(68%/56%)

38%/58%
(35%/53%)

30%/65%
(35%/78%)

9%/66%
(7%/74%)

93%/77%
(89%/84%)

74%/77%
(74%/78%)

53%/83%
(50%/81%)

49%/78%
(48%/79%)

24%/79%
(22%/81%)

9%/79%
(11%/81%)

95%/91%
(94%/88%)

67%/91%
(80%/92%)

54%/88%
(52%/88%)

39%/90%
(36%/90%)

22%/86%
(23%/88%)

13%/85%
(14%/83%)

Fig. 10. Interpretability plot: Big Ben No. 1.
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Query

High concentration Low concentration
L

ow
en

cl
o
su

re

85%/9%
(82%/14%)

73%/14%
(69%/16%)

65%/8%
(57%/4%)

38%/16%
(36%/16%)

20%/7%
(43%/22%)

16%/8%
(37%/24%)

92%/23%
(94%/28%)

76%/21%
(69%/22%)

54%/20%
(53%/22%)

49%/18%
(46%/21%)

28%/33%
(26%/30%)

88%/45%
(85%/40%)

81%/47%
(81%/36%)

59%/47%
(60%/46%)

50%/45%
(49%/41%)

29%/44%
(24%/36%)

14%/43%
(11%/34%)

H
ig

h
en

cl
o
su

re

93%/62%
(90%/53%)

80%/60%
(81%/49%)

64%/62%
(81%/86%)

46%/64%
(46%/55%)

27%/57%
(30%/53%)

16%/64%
(13%/49%)

91%/73%
(87%/52%)

83%/68%
(86%/54%)

62%/68%
(80%/84%)

39%/83%
(43%/73%)

20%/80%
(29%/71%)

6%/78%
(8%/75%)

91%/91%
(92%/86%)

74%/85%
(81%/66%)

59%/91%
(68%/84%)

38%/87%
(55%/78%)

33%/87%
(43%/83%)

Fig. 11. Interpretability plot: Big Ben No. 2.
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Query

High concentration Low concentration
L

ow
en

cl
o
su

re

85%/9%
(87%/8%)

83%/6%
(83%/5%)

64%/8%
(80%/12%)

36%/9%
(48%/8%)

18%/6%
(23%/6%)

9%/11%
(8%/4%)

87%/23%
(84%/21%)

73%/33%
(75%/34%)

56%/30%
(57%/33%)

42%/33%
(49%/37%)

33%/29%
(37%/30%)

12%/33%
(18%/35%)

87%/43%
(82%/46%)

80%/35%
(75%/39%)

59%/34%
(62%/37%)

35%/38%
(37%/39%)

30%/48%
(30%/52%)

12%/35%
(20%/38%)

H
ig

h
en

cl
o
su

re

90%/57%
(88%/56%)

80%/58%
(76%/58%)

63%/59%
(66%/58%)

47%/53%
(48%/53%)

93%/79%
(91%/77%)

82%/75%
(79%/77%)

90%/84%
(88%/83%)

83%/88%
(77%/87%)

Fig. 12. Interpretability plot: Notre Dame No. 1.
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Query

High concentration Low concentration

L
ow

en
cl

o
su

re

83%/5%
(88%/9%)

74%/6%
(80%/6%)

57%/7%
(56%/6%)

34%/15%
(33%/14%)

21%/8%
(29%/17%)

7%/16%
(30%/9%)

70%/28%
(83%/27%)

51%/30%
(64%/34%)

36%/18%
(45%/9%)

32%/26%
(34%/17%)

12%/24%
(25%/15%)

74%/47%
(68%/42%)

59%/45%
(75%/35%)

35%/36%
(77%/72%)

31%/38%
(34%/22%)

15%/38%
(37%/25%)

H
ig

h
en

cl
o
su

re

76%/62%
(59%/43%)

64%/49%
(84%/50%)

40%/54%
(51%/55%)

30%/62%
(45%/54%)

76%/81%
(89%/79%)

55%/82%
(84%/61%)

48%/82%
(82%/89%)

28%/67%
(28%/72%)

52%/96%
(82%/81%)

41%/93%
(81%/89%)

29%/90%
(76%/88%)

Fig. 13. Interpretability plot: Notre Dame No. 2.
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(
i)

(
ii)

(
iii)(

iv)

Fig. 14. Generalization plot: Big Ben. In this caption we expand on details and expla-
nations of Fig.5 (Right) from the main paper. We show a query image from the test
set (lower left corner) and the concentration and enclosure between randomly sampled
test images from the MegaDepth SfM data set for which no depth maps are provided.
The query image shows Big Ben from the view of the Westminster Bridge. (i) It can
be observed that close-ups on the tower clock are clustered around the coordinates
(80,15) which is consistent with our terminology of retrievals with high concentration
and low enclosure. (ii) The images in the upper right corner show the waterfront side
of Westminster Palace. These are crop-outs of the query image. In fact, the tower in
the lower left corner of the query is one of the two towers that mark the corners of
the water-front side of the palace. The retrievals in the upper right quadrant of the
cluster therefore extends the view of the query. (iii) The images in the lower right
area of the cluster clearly show zoom outs, with the pointy bell tower visible in all
images. (iv) Lastly, one can observe that the images in the clone − like category are
in fact similar views on Big Ben. Note that some of the retrievals are rotated images
and sometimes cause outlier predictions. This caption applies to all generalization plots
unless otherwise stated.
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Fig. 15. Generalization plot: Venice. We show a query image from the test set (lower
left corner) and the concentration and enclosure between randomly sampled test images
from the MegaDepth SfM dataset for which no depth maps are provided. The query
image shows the side view on Saint Mark’s Basilica. One can observe the front of the
Basilica from a very oblique angle in the left-most fifth of the image.
The images in the left upper corner show images with high concentration and low
enclosure. According to our classification these are close-ups. Especially around the
coordinates (80, 10) one can clearly observe zoomed in views on the side of the Basilica.
The right upper quarter of the cluster consist of the crop-outs and oblique-outs. Note
the images around the coordinate (10,25). These are mostly front views on the Basilica,
and correspond to the left-most part of the query image–from a very different angle.
Lastly, observe that images in the left lower corner are similar to the query, and images
around (20,60) are zoom-outs.
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Fig. 16. Generalization plot: Florence. Because the scene is very complex, streets are
narrow, and there are not many images of the same view we show two scenes from
Florence.
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Fig. 17. Generalization plot: Notre Dame.
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Fig. 18. Generalization plot: Big Ben NSOsym. We show a query from the test set and
report the predicted symmetric normalized surface overlap on a subset of test images.
Because the embedding space measure is symmetric concentration and enclosure are
equal for a given image. It can be observed that nearby images show similar views on
the scene. However, the distance between the retrievals is not interpretable.
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Fig. 19. Generalization plot: 7 Scenes/Chess. Examples from a different dataset. Note
how images in the lower right quadrant show the chess table zoomed out, while the
images in the upper right corner show the table from a different angle. All images are
from the test set.
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Fig. 20. Generalization plot: 7 Scenes/Fire
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87 % / 29% 97% / 33 %

98 % / 5% 65% / 30 %

83 % / 5% 73% / 14 %

79 % / 5% 76% / 27 %

82 % / 5% 93% / 39 %

Fig. 21. Relative scale plot: Venice No. 1. Illustrated are several examples of how
our method can estimate geometric relationships between images. For each pair the
enclosure and concentration are calculated from which the relative estimated scaled
can be derived. Based on that scale, the first image is resized and shown in the third
position. The resized images match the scale of the scene in the first image to the
scale in the second image. Note, that the resized images are sometimes very small,
and the reader is encouraged to zoom into the images. The two numbers below each
image pair show the estimated enclosure and concentration. Note that although some
scale estimates are inaccurate, overwhelmingly the rescaling does not increase the scale
difference between the two images, but only reduces it. This caption applies to all
Relative scale plots.
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95 % / 27% 69% / 18 %

69 % / 30% 94% / 30 %

63 % / 11% 93% / 9 %

95 % / 13% 95% / 36 %

88 % / 9% 85% / 29 %

Fig. 22. Relative scale plot: Venice No 2.
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84% / 10% 80% / 7%

Fig. 23. Relative scale plot: Unsuccessful cases for Venice scene (test image pairs here
were found by querying the database for images that had enclosure > 0.6 and 0.05 <
concentration < 0.4).
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90 % / 37% 93% / 38 %

91 % / 33% 88% / 38 %

95 % / 26% 95% / 24 %

87 % / 5% 95% / 31 %

92 % / 39% 96% / 38 %

Fig. 24. Relative scale plot: Big Ben No. 1.
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95 % / 24% 95% / 24 %

92 % / 24% 87% / 5 %

89 % / 21% 95% / 32 %

89 % / 21% 96% / 38 %

95 % / 24% 97% / 28 %

Fig. 25. Relative scale plot: Big Ben No. 2.
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90 % / 12% 88% / 39 %

89 % / 34% 93% / 39 %

91 % / 37% 94% / 38 %

89 % / 36% 91 % / 40%

Fig. 26. Relative scale plot: Less successful cases Big Ben (18 out of 95 pairs shown in
the document).
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88 % / 38% 91% / 39 %

82 % / 26% 81% / 5 %

92 % / 6% 87% / 32 %

71 % / 6% 70% / 10 %

81 % / 37% 91% / 39 %

Fig. 27. Relative scale plot: Florence No. 1.
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65 % / 32% 81% / 25 %

69 % / 22% 64% / 33 %

88 % / 36% 66% / 38 %

82 % / 34% 74% / 16 %

74 % / 37% 83% / 37 %

Fig. 28. Relative scale plot: Florence No. 2.
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82 % / 34% 87% / 32 %

89 % / 29% 81% / 37 %

88 % / 36% 80% /39 %

82 % / 26%

Fig. 29. Relative scale plot: Less successful cases Florence (7 out of 57 pairs shown in
the document).
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91 % /30% 80% / 5 %

91 % / 5% 93% / 37 %

77 % / 36% 81% / 15 %

85 % / 39% 94% / 34 %

94 % / 5% 77% / 39 %

Fig. 30. Relative scale plot: Notre Dame No. 1.
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92 % / 10% 68% / 31 %

96 % / 28% 89% / 8 %

87 % / 14% 78% / 17 %

78 % / 13% 71% / 37 %

83 % / 38% 87% / 9 %

Fig. 31. Relative scale plot: Notre Dame No. 2.
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64 % / 37% 83% / 35 %

81 % / 39% 85% / 39 %

60 % / 35% 84% / 39 %

79 % / 38% 73% / 39 %

Fig. 32. Relative scale plot: Less successful cases Notre Dame (11 out of 61 pairs shown
in the document).
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0.37 0.25

0.25 failed

0.14 0.09

0.38 0.41

0.67 failed

0.70 0.83

0.48 0.50

failed failed
Fig. 33. Comparison of NSO-based scale estimation (left) to a local feature based
pipeline (right). Compare the area of the resized image on the left hand size to the
area in the red polygon on the right. A scale of 0.37 means that the resized height and
width are 0.37 times the size of the original height and width. Note that differences in
the two approaches are to be expected. For instance, Normalized Surface Overlap is
trained on pixels with depth, so pixels that show sky are not considered in the ground
truth. Further, homography estimation is limited to planar surfaces, as opposed to
NSO from which the overall scale difference of the scene is inferred.
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84% 82% 83% 84%

83% 84% 83% 70%

Fig. 34. Generalizability to a new dataset: A model trained on MegaDepth’s Notre
Dame is used to retrieve nearest neighbors from Cambridge’s King’s College. The top
image of each example is the query and the bottom image is the retrieved image.
Below each query-retrieval pair is the predicted symmetric normalized surface overlap
NSOsym(x,y) = 1

2
(NSO(x 7→ y) + NSO(y 7→ x)). Queries are from the provided test

split, and retrievals from the train split. The last example shows a failure case.
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