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Jason: I want to reconstruct Craigslist objects

me:
Ok, let’s first setup a NeRF baseline. 
Run SfM to get poses, and …

Images Cameras

COLMAP

3D Representation

Diff. Rendering + 
Optimization 

3D from images: the typical recipe

Jason (a couple 
days later):

Well, I tried really hard, but COLMAP keeps crashing…

(circa 2021)



Challenge: Classical SfM is not robust for Sparse-view Pose

Images Cameras 3D Representation

COLMAP
Diff. Rendering + 

Optimization 

10 Input Images
202 Input Images



Let’s learn sparse-view pose prediction!

RelPose, RelPose++ (Lin*, Zhang* et. al.)

RelPose: Predicting Probabilistic Relative

Rotation for Single Objects in the Wild

Jason Y. Zhang, Deva Ramanan, and Shubham Tulsiani

Carnegie Mellon University, Pittsburgh PA 15213, USA
jasonyzhang@cmu.edu

Abstract. We describe a data-driven method for inferring the camera
viewpoints given multiple images of an arbitrary object. This task is a
core component of classic geometric pipelines such as SfM and SLAM,
and also serves as a vital pre-processing requirement for contemporary
neural approaches (e.g. NeRF) to object reconstruction and view synthe-
sis. In contrast to existing correspondence-driven methods that do not
perform well given sparse views, we propose a top-down prediction based
approach for estimating camera viewpoints. Our key technical insight is
the use of an energy-based formulation for representing distributions over
relative camera rotations, thus allowing us to explicitly represent multi-
ple camera modes arising from object symmetries or views. Leveraging
these relative predictions, we jointly estimate a consistent set of camera
rotations from multiple images. We show that our approach outperforms
state-of-the-art SfM and SLAM methods given sparse images on both
seen and unseen categories. Further, our probabilistic approach signif-
icantly outperforms directly regressing relative poses, suggesting that
modeling multimodality is important for coherent joint reconstruction.
We demonstrate that our system can be a stepping stone toward in-
the-wild reconstruction from multi-view datasets. The project page with
code and videos can be found at jasonyzhang.com/relpose.

1 Introduction

Recovering 3D from 2D images of an object has been a central task in vi-
sion across decades. Given multiple views, structure-from-motion (SfM) based

Image 1 Image 2 Distribution of Recover a Joint Configuration 
of Camera Orientation

Fig. 1: Probabilistic Camera Rotation Estimation for Generic Objects. Left :
Given two images of the same object, we predict a conditional distribution of relative
camera viewpoint (rotation) that e↵ectively handles symmetries and pose ambiguities.
Right : Given a set of images, our approach outputs a configuration of camera rotations.
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Let’s learn sparse-view pose prediction!
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Abstract. We describe a data-driven method for inferring the camera
viewpoints given multiple images of an arbitrary object. This task is a
core component of classic geometric pipelines such as SfM and SLAM,
and also serves as a vital pre-processing requirement for contemporary
neural approaches (e.g. NeRF) to object reconstruction and view synthe-
sis. In contrast to existing correspondence-driven methods that do not
perform well given sparse views, we propose a top-down prediction based
approach for estimating camera viewpoints. Our key technical insight is
the use of an energy-based formulation for representing distributions over
relative camera rotations, thus allowing us to explicitly represent multi-
ple camera modes arising from object symmetries or views. Leveraging
these relative predictions, we jointly estimate a consistent set of camera
rotations from multiple images. We show that our approach outperforms
state-of-the-art SfM and SLAM methods given sparse images on both
seen and unseen categories. Further, our probabilistic approach signif-
icantly outperforms directly regressing relative poses, suggesting that
modeling multimodality is important for coherent joint reconstruction.
We demonstrate that our system can be a stepping stone toward in-
the-wild reconstruction from multi-view datasets. The project page with
code and videos can be found at jasonyzhang.com/relpose.

1 Introduction

Recovering 3D from 2D images of an object has been a central task in vi-
sion across decades. Given multiple views, structure-from-motion (SfM) based

Image 1 Image 2 Distribution of Recover a Joint Configuration 
of Camera Orientation

Fig. 1: Probabilistic Camera Rotation Estimation for Generic Objects. Left :
Given two images of the same object, we predict a conditional distribution of relative
camera viewpoint (rotation) that e↵ectively handles symmetries and pose ambiguities.
Right : Given a set of images, our approach outputs a configuration of camera rotations.
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SparsePose (Sinha et. al.)
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Figure 2. Method Overview. We propose Sparse-View Camera Pose Regression and Refinement (SparsePose), which takes as input
few-views of an object from wide baselines, and predicts the camera poses. SparsePose is trained on a large scale dataset of “common
objects” to learn a prior over the 3D geometry of the scene and the object. Our method works by first predicting coarse initial camera poses
by performing cross-image reasoning. The initial camera pose estimates are then iteratively refined in an auto-regressive manner, which
learns to implicitly encode the 3D geometry of the scene based on sampled image features. For notational convenience and simplicity, we
use T to represent the rotations R and translations t in homogeneous coordinates (as used in the text).

f1

�1

Global feature 
reasoning

(Transformer)

Tinit

⨁ T(0)
1

T(0)
2

T(0)
4

T(0)
3

Initial poses

f2

f3

f4

Ninit⨁

⨁ Ninit⨁

Ninit⨁

Ninit⨁

⨁

⨁

Figure 3. Stage 1 architecture: We initialize the camera poses by
directly estimating the models using global reasoning, and directly
regressing the poses using pretrained features and joint-reasoning
over the source images. We note that

L
denotes a skip connection

(or addition) between the input and the output of the transformer
Tinit, and for learnable positional encoding �. For simplicity we
use T to represent the rotations R and translations t in homoge-
neous coordinates (as used in the text). A detailed approach of
stage 1 is in Section 3.1.

image symmetry [68, 69]. Recent progress has also en-
abled few-shot novel view synthesis, where images of the
scene from a novel viewpoint are generated conditioned on
only a small set of images [13, 16, 21, 23, 43, 52, 55, 67, 76].
Such methods are either trained to learn category-centric
features [21,52,68], or are trained on a large-scale dataset to
encode the 3D geometry of the scenes [55, 67], or propose
regularization schemes for neural radiance based methods
[13, 23, 43]. However, 3D consistency in these models is
learnt by augmentation rather than by construction, result-
ing in lower visual quality compared to our approach.
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Figure 4. Stage 2 architecture: After obtaining the initial cam-
era poses from Stage 1, we iteratively and autoregressively refine
the camera poses using a local feature reasoning module, which
learns the optimization dynamics of the camera poses. Since the
optimization is non-linear, the model iteratively updates the cam-
era poses by resampling points and predicting pose offsets. We
note that

L
denotes a skip connection between the input and the

output of the transformer Trefine, and for simplicity we use T to
represent the rotations R and translations t in homogeneous coor-
dinates (as used in the text). A detailed approach of stage 2 is in
Section 3.2.

3. Method

Estimating camera parameters typically involves predict-
ing the intrinsics (i.e. focal length, principal point, skew)
and extrinsics (i.e. rotation, translation) from a set of im-
ages. In this paper, we only consider the task of estimat-
ing extrinsics; we assume the intrinsics are known as they
can be calibrated once for a camera a priori and are often
provided by the camera manufacturer. More formally, our
goal is to jointly predict the rotation Rc2SO(3) and transla-
tion tc2R3 for all input images Cc. Our proposed method

PoseDiffusion (Wang et. al.)
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Figure 2: PoseDiffusion overview. Training is supervised given a multi-view dataset of images and camera poses to learn
a diffusion model D✓ to model p(x|I). During inference the reverse diffusion process is guided through the gradient that
minimizes the Sampson Epipolar Error between image pairs, optimizing geometric consistency between poses.

between camera poses are often category-specific or ob-
ject centric [19, 59, 31, 58, 57]. Recently, RelPose [62]
shows category-agnostic camera pose estimation, however,
is limited to predicting rotations. The concurrent work
SparsePose [47] first regresses camera poses followed by
iterative refinement, while RelPose++ [23] decouples the
ambiguity in rotation estimation from translation prediction
by defining a new coordinate system.

Diffusion Model. Diffusion models are a category of gen-
erative models that, inspired by non-equilibrium thermody-
namics [48], approximate the data distribution by a Markov
Chain of diffusion steps. Recently, they have shown im-
pressive results on image [49, 16], video [46, 17], and even
3D point cloud [29, 30, 33] generation. Their ability to ac-
curately generate diverse high-quality samples has marked
them as a promising tool in various fields.

3. PoseDiffusion

Problem setting. We consider the problem of estimating
intrinsic and extrinsic camera parameters given correspond-
ing images of a single scene (e.g. frames from an object-
centric video, or free-form pictures of a scene).

Formally, given a tuple I =
�
Ii
�N

i=1
of N 2 N in-

put images Ii 2 R3⇥H⇥W , we seek to recover the tuple
x =

�
xi
�N

i=1
of corresponding camera parameters xi =

(Ki, gi) consisting of intrinsics Ki ⇢ R3⇥3 and extrinsics
gi 2 SE(3) respectively. We defer the details of the camera
parametrization to Sec. 3.4.

Extrinsics gi map a 3D point pw 2 R3 from world
coordinates to a 3D point pc 2 R3 = gi(pw) in cam-
era coordinates. Intrinsics Ki then perspectivelly project
pc to a 2D point ps 2 R2 in the screen coordinates with
Kipc ⇠ �[ps; 1], � 2 R where “⇠” indicates homoge-
neous equivalence.

3.1. Preliminaries of Diffusion models

Diffusion models [16, 48, 49] are a class of likelihood-
based models. They model a complex data distribution by
learning to invert a diffusion process from data to a sim-
ple distribution, usually by means of noising and denoising.
The noising process gradually converts the data sample x
into noise by a sequence of T 2 N steps. The model is then
trained to learn the denoising process.

A Denoising Diffusion Probabilistic Model (DDPM)
specifically defines the noising process to be Gaussian.
Given a variance schedule �1, ..., �T of T steps, the nois-
ing transitions are defined as follows:

q(xt | xt�1) = N (xt;
p

1 � �txt�1, �tI), (1)

where I is the identity matrix. The variance schedule is set
so that xT follows an isotropic Gaussian distribution, i.e.,
q(xT ) ⇡ N (0, I). Define ↵t = 1 � �t and ↵̄t =

Q
t

i=1 ↵i,
then a closed-form solution [16] exists to directly sample xt

given a datum x0:

xt ⇠ q(xt | x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I). (2)

The reverse p✓(xt�1|xt) is still Gaussian if �t is small
enough. Therefore, it can be approximated by a model D✓:

p✓(xt�1 | xt) = N (xt�1;
p

↵tD✓(xt, t), (1 � ↵t)I). (3)

3.2. Diffusion-aided Bundle Adjustment

PoseDiffusion models the conditional probability distri-
bution p(x|I) of the samples x (i.e. camera parameters)
given the images I. Following the diffusion framework [48]
(discussed above), we model p(x|I) by means of the de-
noising process. More specifically, p(x|I) is first estimated
by training a diffusion model D✓ on a large training set
T = {(xj , Ij)}S

j=1 of S 2 N scenes with ground truth im-
age batches Ij and their camera parameters xj . At inference

Energy-based modelingRegression + 3D-based refinement Denoising diffusion
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Abstract. We describe a data-driven method for inferring the camera
viewpoints given multiple images of an arbitrary object. This task is a
core component of classic geometric pipelines such as SfM and SLAM,
and also serves as a vital pre-processing requirement for contemporary
neural approaches (e.g. NeRF) to object reconstruction and view synthe-
sis. In contrast to existing correspondence-driven methods that do not
perform well given sparse views, we propose a top-down prediction based
approach for estimating camera viewpoints. Our key technical insight is
the use of an energy-based formulation for representing distributions over
relative camera rotations, thus allowing us to explicitly represent multi-
ple camera modes arising from object symmetries or views. Leveraging
these relative predictions, we jointly estimate a consistent set of camera
rotations from multiple images. We show that our approach outperforms
state-of-the-art SfM and SLAM methods given sparse images on both
seen and unseen categories. Further, our probabilistic approach signif-
icantly outperforms directly regressing relative poses, suggesting that
modeling multimodality is important for coherent joint reconstruction.
We demonstrate that our system can be a stepping stone toward in-
the-wild reconstruction from multi-view datasets. The project page with
code and videos can be found at jasonyzhang.com/relpose.

1 Introduction

Recovering 3D from 2D images of an object has been a central task in vi-
sion across decades. Given multiple views, structure-from-motion (SfM) based

Image 1 Image 2 Distribution of Recover a Joint Configuration 
of Camera Orientation

Fig. 1: Probabilistic Camera Rotation Estimation for Generic Objects. Left :
Given two images of the same object, we predict a conditional distribution of relative
camera viewpoint (rotation) that e↵ectively handles symmetries and pose ambiguities.
Right : Given a set of images, our approach outputs a configuration of camera rotations.

ar
X

iv
:2

20
8.

05
96

3v
2 

 [c
s.C

V
]  

3 
O

ct
 2

02
2

SparsePose (Sinha et. al.)

.

.

.

Einit

Einit

Einit

{C1,C2 . . .CC}

f1

f2

fC

Cr
os

s-
im

ag
e 

re
as

on
in

g
(T

ra
ns

fo
rm

er
   

   
   

)
.
.
.

T(0)
1

T(0)
2

T(0)
C

.

.

.
.
.
.

Stage 1: Initial camera poses

T i
n
it

...

Stage 2: Iterative pose refinement

T(0)
C T(1)

C T(t)
C

�T(0)
C �T(1)

C

f (0)
1

f (0)
2

f (0)
C

.

.

.

f (1)
1

f (1)
2

f (1)
C

f (t)
1

f (t)
2

f (t)
C

.

.

.

Joint 
reasoning

Tref

Npose .
.
.

Joint 
reasoning

Tref

Npose

Joint 
reasoning

Tref

Npose...

�T(t)
C...

Project and 
sample features

�
f (0)
C [ ]

� �
f (1)
C [ ]

� �
f (t)
C [ ]

�

Figure 2. Method Overview. We propose Sparse-View Camera Pose Regression and Refinement (SparsePose), which takes as input
few-views of an object from wide baselines, and predicts the camera poses. SparsePose is trained on a large scale dataset of “common
objects” to learn a prior over the 3D geometry of the scene and the object. Our method works by first predicting coarse initial camera poses
by performing cross-image reasoning. The initial camera pose estimates are then iteratively refined in an auto-regressive manner, which
learns to implicitly encode the 3D geometry of the scene based on sampled image features. For notational convenience and simplicity, we
use T to represent the rotations R and translations t in homogeneous coordinates (as used in the text).
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Figure 3. Stage 1 architecture: We initialize the camera poses by
directly estimating the models using global reasoning, and directly
regressing the poses using pretrained features and joint-reasoning
over the source images. We note that

L
denotes a skip connection

(or addition) between the input and the output of the transformer
Tinit, and for learnable positional encoding �. For simplicity we
use T to represent the rotations R and translations t in homoge-
neous coordinates (as used in the text). A detailed approach of
stage 1 is in Section 3.1.

image symmetry [68, 69]. Recent progress has also en-
abled few-shot novel view synthesis, where images of the
scene from a novel viewpoint are generated conditioned on
only a small set of images [13, 16, 21, 23, 43, 52, 55, 67, 76].
Such methods are either trained to learn category-centric
features [21,52,68], or are trained on a large-scale dataset to
encode the 3D geometry of the scenes [55, 67], or propose
regularization schemes for neural radiance based methods
[13, 23, 43]. However, 3D consistency in these models is
learnt by augmentation rather than by construction, result-
ing in lower visual quality compared to our approach.
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Figure 4. Stage 2 architecture: After obtaining the initial cam-
era poses from Stage 1, we iteratively and autoregressively refine
the camera poses using a local feature reasoning module, which
learns the optimization dynamics of the camera poses. Since the
optimization is non-linear, the model iteratively updates the cam-
era poses by resampling points and predicting pose offsets. We
note that

L
denotes a skip connection between the input and the

output of the transformer Trefine, and for simplicity we use T to
represent the rotations R and translations t in homogeneous coor-
dinates (as used in the text). A detailed approach of stage 2 is in
Section 3.2.

3. Method

Estimating camera parameters typically involves predict-
ing the intrinsics (i.e. focal length, principal point, skew)
and extrinsics (i.e. rotation, translation) from a set of im-
ages. In this paper, we only consider the task of estimat-
ing extrinsics; we assume the intrinsics are known as they
can be calibrated once for a camera a priori and are often
provided by the camera manufacturer. More formally, our
goal is to jointly predict the rotation Rc2SO(3) and transla-
tion tc2R3 for all input images Cc. Our proposed method

PoseDiffusion (Wang et. al.)
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Dataset of cameras x & images I Input: Images I
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Figure 2: PoseDiffusion overview. Training is supervised given a multi-view dataset of images and camera poses to learn
a diffusion model D✓ to model p(x|I). During inference the reverse diffusion process is guided through the gradient that
minimizes the Sampson Epipolar Error between image pairs, optimizing geometric consistency between poses.

between camera poses are often category-specific or ob-
ject centric [19, 59, 31, 58, 57]. Recently, RelPose [62]
shows category-agnostic camera pose estimation, however,
is limited to predicting rotations. The concurrent work
SparsePose [47] first regresses camera poses followed by
iterative refinement, while RelPose++ [23] decouples the
ambiguity in rotation estimation from translation prediction
by defining a new coordinate system.

Diffusion Model. Diffusion models are a category of gen-
erative models that, inspired by non-equilibrium thermody-
namics [48], approximate the data distribution by a Markov
Chain of diffusion steps. Recently, they have shown im-
pressive results on image [49, 16], video [46, 17], and even
3D point cloud [29, 30, 33] generation. Their ability to ac-
curately generate diverse high-quality samples has marked
them as a promising tool in various fields.

3. PoseDiffusion

Problem setting. We consider the problem of estimating
intrinsic and extrinsic camera parameters given correspond-
ing images of a single scene (e.g. frames from an object-
centric video, or free-form pictures of a scene).

Formally, given a tuple I =
�
Ii
�N

i=1
of N 2 N in-

put images Ii 2 R3⇥H⇥W , we seek to recover the tuple
x =

�
xi
�N

i=1
of corresponding camera parameters xi =

(Ki, gi) consisting of intrinsics Ki ⇢ R3⇥3 and extrinsics
gi 2 SE(3) respectively. We defer the details of the camera
parametrization to Sec. 3.4.

Extrinsics gi map a 3D point pw 2 R3 from world
coordinates to a 3D point pc 2 R3 = gi(pw) in cam-
era coordinates. Intrinsics Ki then perspectivelly project
pc to a 2D point ps 2 R2 in the screen coordinates with
Kipc ⇠ �[ps; 1], � 2 R where “⇠” indicates homoge-
neous equivalence.

3.1. Preliminaries of Diffusion models

Diffusion models [16, 48, 49] are a class of likelihood-
based models. They model a complex data distribution by
learning to invert a diffusion process from data to a sim-
ple distribution, usually by means of noising and denoising.
The noising process gradually converts the data sample x
into noise by a sequence of T 2 N steps. The model is then
trained to learn the denoising process.

A Denoising Diffusion Probabilistic Model (DDPM)
specifically defines the noising process to be Gaussian.
Given a variance schedule �1, ..., �T of T steps, the nois-
ing transitions are defined as follows:

q(xt | xt�1) = N (xt;
p

1 � �txt�1, �tI), (1)

where I is the identity matrix. The variance schedule is set
so that xT follows an isotropic Gaussian distribution, i.e.,
q(xT ) ⇡ N (0, I). Define ↵t = 1 � �t and ↵̄t =

Q
t

i=1 ↵i,
then a closed-form solution [16] exists to directly sample xt

given a datum x0:

xt ⇠ q(xt | x0) = N (xt;
p

↵̄tx0, (1 � ↵̄t)I). (2)

The reverse p✓(xt�1|xt) is still Gaussian if �t is small
enough. Therefore, it can be approximated by a model D✓:

p✓(xt�1 | xt) = N (xt�1;
p

↵tD✓(xt, t), (1 � ↵t)I). (3)

3.2. Diffusion-aided Bundle Adjustment

PoseDiffusion models the conditional probability distri-
bution p(x|I) of the samples x (i.e. camera parameters)
given the images I. Following the diffusion framework [48]
(discussed above), we model p(x|I) by means of the de-
noising process. More specifically, p(x|I) is first estimated
by training a diffusion model D✓ on a large training set
T = {(xj , Ij)}S

j=1 of S 2 N scenes with ground truth im-
age batches Ij and their camera parameters xj . At inference

Energy-based modelingRegression + 3D-based refinement Denoising diffusion

Parametrization for Prediction: global extrinsics (+ intrinsics)

Innovations in uncertainty modeling, joint 3D inference, etc..

(difficult for global models to leverage local cues e.g. correspondences)

But is this a good representation for learning-based prediction?

Can we re-parametrize camera estimation as a local prediction task?
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Key Idea: Represent cameras via per-pixel rays in a common coordinate frame

Can analytically recover pinhole camera parameters given predicted rays

Plucker Ray 
Parametrization



Camera Prediction via Ray Regression
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Cameras as Rays: Pose Estimation via Ray Diffusion. Zhang*, Lin*, Ramanan, Tulsiani. In ICLR 2024



Camera Prediction via Ray Diffusion
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Cameras as Rays: Pose Estimation via Ray Diffusion. Zhang*, Lin*, Ramanan, Tulsiani. In ICLR 2024



Visualizing Reverse Diffusion
Input Images
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Visualizing Reverse Diffusion
Input Images

3D Rays

Directions Moments





Quantitative: Rotation Accuracy (% < 15°)



Quantitative: Cam Center Accuracy (% < 0.1)



Modeling Uncertainty

Input Images Ray Regression Ray Diffusion (100 
Samples)



Early Stopping in Reverse Diffusion

Published as a conference paper at ICLR 2024

Figure 12: Early Stopping Ablation for Backward Diffusion on CO3D with 8 Images. We find empirically
that stopping the backward diffusion process early yields slightly improved results. Here, we visualize the
accuracy of the predicted X0 after each iteration of backward diffusion, starting from complete noise (T = 100)
to the final recovered rays X0. For all experiments, we use the X0 predicted at T = 30.
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At each diffusion timestep, we 
obtain a denoised ray prediction

Pose accuracy increases initially, 
but drastically drops later

Hypothesis: For accuracy metrics, 
we want modes, not samples



In-the-wild Generalization



Dense Prediction for Pose (and 3D) Estimation

Dust3r (CVPR 24), Mast3r (ECCV 24)

Pointmap prediction from image pairs + 
global alignment 

Ace-Zero (ECCV 24)

Rethinking SfM pipeline via Scene 
coordinate regression



Challenges due to 
unobserved aspects, 

pose outliers

Were cameras the only missing piece for Sparse-view 3D?

Images Cameras 3D Representation

RayDiffusion, Dust3r
Diff. Rendering + 

Optimization 



Analysis by Generative Synthesis

Large camera errors are 
not easily corrected!

Sparse-view Pose Estimation and Reconstruction via Analysis by Generative Synthesis. Zhao & Tulsiani, In NeurIPS 2024 (on Arxiv soon)



Analysis by Generative Synthesis

Sparse-view Pose Estimation and Reconstruction via Analysis by Generative Synthesis. Zhao & Tulsiani, In NeurIPS 2024 (on Arxiv soon)



Piecing it together: Analysis by Generative Synthesis

Sparse-view Pose Estimation and Reconstruction via Analysis by Generative Synthesis. Zhao & Tulsiani, In NeurIPS 2024 (on Arxiv soon)



Piecing it together: Analysis by Generative Synthesis

Sparse-view Pose Estimation and Reconstruction via Analysis by Generative Synthesis. Zhao & Tulsiani, In NeurIPS 2024 (on Arxiv soon)



Piecing it together: Analysis by Generative Synthesis

Sparse-view Pose Estimation and Reconstruction via Analysis by Generative Synthesis. Zhao & Tulsiani, In NeurIPS 2024 (on Arxiv soon)



Piecing it together: Analysis by Generative Synthesis

Sparse-view Pose Estimation and Reconstruction via Analysis by Generative Synthesis. Zhao & Tulsiani, In NeurIPS 2024 (on Arxiv soon)



Input Initial Pose Ours (w/ 3D)SPARF Zoom In

Input Initial Pose Ours (w/ 3D)SPARF



Thank you! Jason Amy Qitao Deva


