

From VPS to SNAP

Beyond visual positioning: how localization turned out to provide efficient training of neural, semantic maps

Eduard Trulls / Research Scientist at Google Zurich ECCV'24 / Map-free Visual Relocalization Workshop

Google's **Visual Positioning Service** (VPS)

An image-based localization service available wherever we have StreetView

Outdoor localization

GPS suffers from reflections (multi-path). Compass is impacted by magnetic objects.

Improving the 'Blue Dot'

Image-based localization enables precise location and orientation

VPS enables large-scale AR

Sub-meter position and sub-deg orientation accuracy has drastic effect on AR use-cases

Try out yourself! See *LiveView*walking navigation in Google Maps

But it has many other use-cases!

VPS is also used to localize images from dashcams, monitor infrastructure, Google Lens, and user-contributed photos

Still a traditional, structure-based method

Large scale point-clouds from SV data are the foundation of VPS

Queries are localized by matching points from the query image to the model

Details? Large-scale, real-time visual-inertial localization revisited (Simon Lynen et al, IJRR'20)

Challenging cases for VPS

SNAP: **S**elf-Supervised **N**eural Maps

Paul-Edouard Sarlin Google / ETH Zürich

Eduard TrullsGoogle

Marc Pollefeys ETH Zürich

Jan Hosang
Google

Simon Lynen Google

SNAP: Self-Supervised Neural Maps for Visual Positioning and Semantic Understanding Conference on Neural Information Processing Systems (NeurIPS), 2023

What makes a map useful for localization?

Abstract enough to be robust to changes

Appearance, dynamic objects

While preserving geometric & semantic information

 What distinctive objects and layout do I observe in the scene?

SNAP: Self-Supervised Neural Maps

How? SNAP is **trained to align** these neural maps, in a **contrastive fashion**

Localizing opposing views using SNAP

What happens? SNAP learns to discover objects using only poses, without semantics

SNAP's neural map lifted to 3d using lidar

StreetView image encoder

close

depth

features

Monocular inference

Learning from pose supervision

Learning from pose supervision

Sampling negative poses with RANSAC

Training: 11 cities in 5 continents

Blue: validation Red: training

Test distribution: 6 cities

Comparison to other localization approaches

Sequence-to-Sequence

 $\Delta p = 30 \text{ cm}$ $\Delta R = 0.05^{\circ}$

Feature-colored lidar points (only for visualization)

The exhaustive likelihood is multi-modal. it captures the symmetry

Aerial-to-ground localization

Localization examples: failure case

Localization examples: failure case

Beyond localization

Self-supervised Neural Maps for Visual Positioning and Semantic Understanding

...while training only with poses!

SNAP's semantic map lifted to 3d using lidar

SNAP learns to discover objects

SNAP distinguishes trees vs poles without any supervision

Decoding explicit semantics

Qualitative results

Ground truth

Prediction

Summary and open challenges

- Summary
 - SNAP learns 2D neural maps directly from posed multi-modal imagery
 - Supervised with only poses, via contrastive learning
 - Localization serves as pre-training for high-level semantics without labels
- Limitations
 - Not as accurate for queries close to map images
 - Assumes known gravity and a location prior (3DOF not 6DOF)
 - Semantics are a good start, but true "foundation models" are still a few steps away
- What makes this possible?
 - A unique corpus with 200B+ posed StreetView images, co-registered with other modalities: aerial images, LiDAR, semantics, etc.
 - We collaborate with universities and host interns!
 - Reach out! {trulls,slynen}@google.com.
 - Open "research internships" call @ Google careers website: October 25