Google

From VPS to SNAP

Beyond visual positioning: how localization turned out
to provide efficient training of neural, semantic maps

Eduard Trulls / Research Scientist at Google Zurich
ECCV'24 / Map-free Visual Relocalization Workshop
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Google's Visual Positioning
Service (VPS)

An image-based localization service
available wherever we have StreetView




Qutdoor localization

GPS suffers from reflections
(multi-path). Compass is impacted by
magnetic objects.
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— Try restaurants, coffee

Improving the 'Blue Dot

Image-based localization
enables precise location
and orientation




VPS enables large-scale AR

Sub-meter position and sub-deg
orientation accuracy has drastic
effect on AR use-cases

Try out yourself! See LiveView
walking navigation in Google Maps




But it has many other
use-cases!

VPS is also used to localize images
from dashcams, monitor
infrastructure, Google Lens, and
user-contributed photos
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Still a traditional, structure-based method

Large scale point-clouds from SV data are Queries are localized by matching points
the foundation of VPS from the query image to the model

Details? Large-scale, real-time visual—-inertial localization revisited (Simon Lynen et al, IJRR'20)



Challenging cases for VPS




SNAP: Self-Supervised Neural Maps

Paul-Edouard Sarlin  Eduard Trulls Marc Pollefeys Jan Hosang Simon Lynen
Google / ETH Zurich Google ETH Zurich Google Google

SNAP: Self-Supervised Neural Maps for Visual Positioning and Semantic Understanding
Conference on Neural Information Processing Systems (NeurlPS), 2023



What makes a map useful for localization?

Abstract enough to be robust to changes

While preserving geometric & semantic information

Neither aerial, hor ground-level imager'\/ itself makes For a good map

Appearance, dynamic objects

What distinctive objects and layout
do | observe in the scene?
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The right level of detail and abstraction is key



SNAP: Self-Supervised Neural Maps
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Aerial and ground-level images are complementary



How? SNAP is trained to align

these neural maps, in a
contrastive fashion

What happens? SNAP learns to
discover objects using only
poses, without semantics

SNAP's neural map ifted to 3d using lidar



StreetView image encoder
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Monocular inference
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Learnlng from pose superV|3|on
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Learning from pose supervision
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Sampling negative poses with RANSAC

featuremetric pose voting

Gk Mop (lifted to 3d
’ using lidar)

exhaustive 3

matching

sample minimal set Softmax = distribution over poses
+ 2-point solver Google



Blue: validation

Training: 11 cities in 5 continents ¢ aining
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Test distribution: 6 cities
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Localization examples

query

map images At=0.4m AR=0.2°




Localization examples

query
At=0. 3m AR=0.3°
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Localization examples

query
At=0.5m AR=1.4°

map images




Localization examples

query

mamages At=0.1m AR=1.1°




Comparison to other localization approaches
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Sequence-to-Sequence
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Aerial-to-ground localization
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oerial input image

O

12.5 A1

15.0 . :’ ; " ' by . o % .

10.0 -
75 1
5.0 1
25 1
0.0 -

25 &

15.0
125
10.0 -
75 1
5.0 1
25 1
0.0 1
254 &

aerial map error: Ap=52cm, AR=07- Google



Localization examples: failure case
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Localization examples: failure case

15.2m AR=80.0°
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Beyond localization

Self-supervised Neural Maps
for Visual Positioning
and Semantic Understanding

...wWhile training only with

poses!

SNAP's semantic map ifted to 3d using lidar



SNAP learns to discover objects

Ground truth

+-SNE visuadlization

B crosswalk [ road building pole WM traffic_sign  EE street_light of neural maps
I sidewalk W terrain fence tree M traffic_light

® road @ building street light @ pole @ tree

SNAP distinguishes trees vs poles
without any supervision




Decodlng explicit semantics
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Qualitative results
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Summary and open challenges

e Summary
o SNAP learns 2D neural maps directly from posed multi-modal imagery
o Supervised with only poses, via contrastive learning
o Localization serves as pre-training for high-level semantics without labels

e Limitations
o Not as accurate for queries close to map images
o Assumes known gravity and a location prior (3DOF not 6DOF)
o Semantics are a good start, but true "foundation models" are still a few steps away

e What makes this possible?
o A unique corpus with 200B+ posed StreetView images, co-registered with other
modalities: aerial images, LIDAR, semantics, etc.
o We collaborate with universities and host interns!
m Reach out! {trulls,slynen}@google.com.
m Open "research internships” call @ Google careers website: October 25



