

# From VPS to SNAP

Beyond visual positioning: how localization turned out to provide efficient training of neural, semantic maps



Eduard Trulls / Research Scientist at Google Zurich ECCV'24 / Map-free Visual Relocalization Workshop

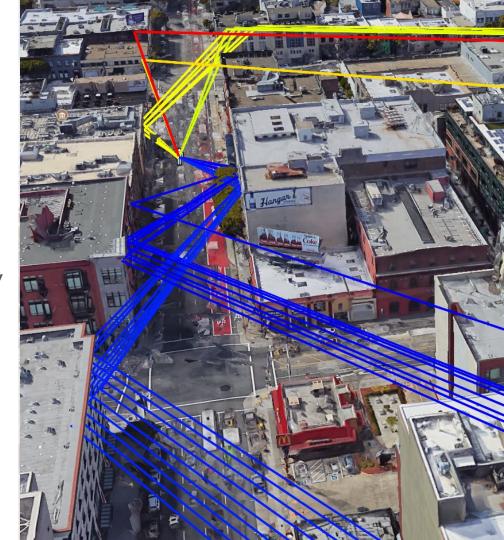
# Google's **Visual Positioning Service** (VPS)

An image-based localization service available wherever we have StreetView



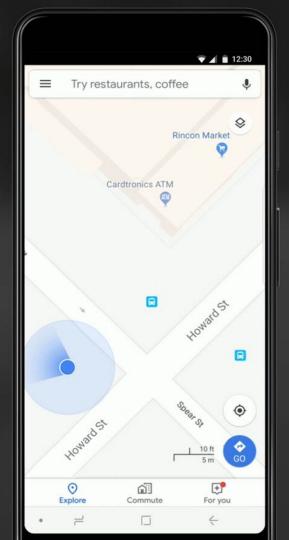
#### Outdoor localization

GPS suffers from reflections (multi-path). Compass is impacted by magnetic objects.



#### Improving the 'Blue Dot'

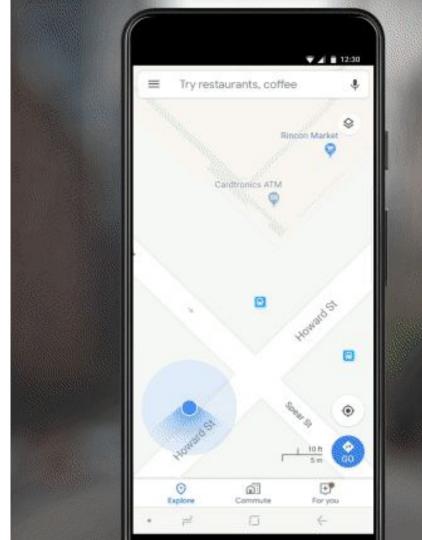
Image-based localization enables precise location and orientation



#### VPS enables large-scale AR

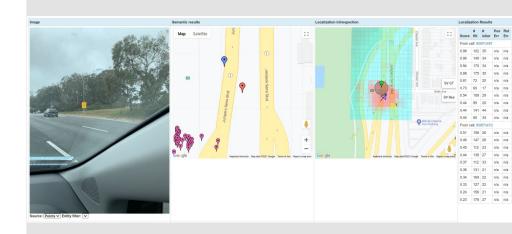
Sub-meter position and sub-deg orientation accuracy has drastic effect on AR use-cases

Try out yourself! See *LiveView*walking navigation in Google Maps



# But it has many other use-cases!

VPS is also used to localize images from dashcams, monitor infrastructure, Google Lens, and user-contributed photos

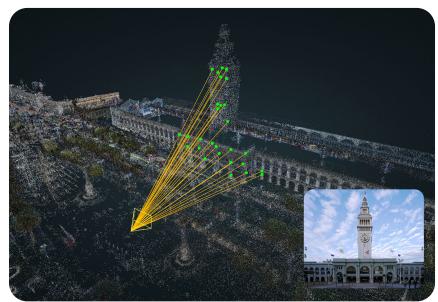




#### Still a traditional, structure-based method



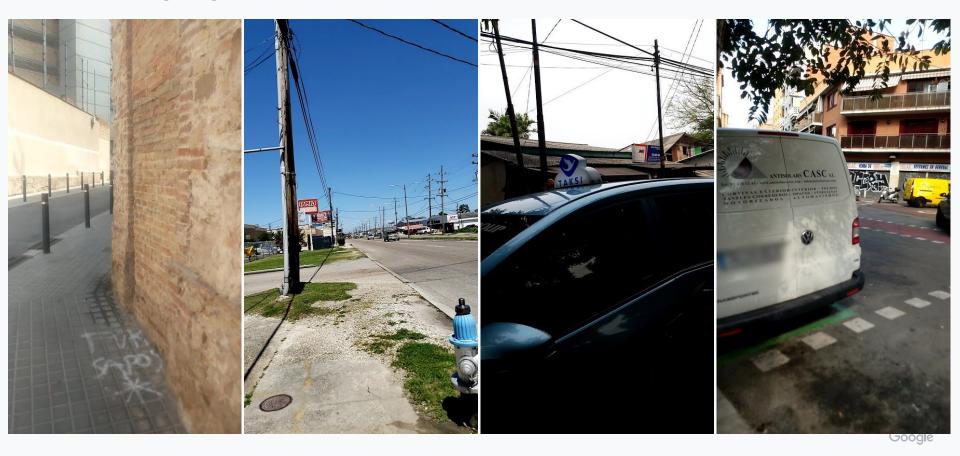
Large scale point-clouds from SV data are the foundation of VPS



Queries are localized by matching points from the query image to the model

Details? Large-scale, real-time visual-inertial localization revisited (Simon Lynen et al, IJRR'20)

# Challenging cases for VPS



#### SNAP: **S**elf-Supervised **N**eural Maps



Paul-Edouard Sarlin Google / ETH Zürich



**Eduard Trulls**Google



Marc Pollefeys ETH Zürich



Jan Hosang
Google



Simon Lynen Google

SNAP: Self-Supervised Neural Maps for Visual Positioning and Semantic Understanding Conference on Neural Information Processing Systems (NeurIPS), 2023

#### What makes a map useful for localization?

#### **Abstract enough** to be robust to changes

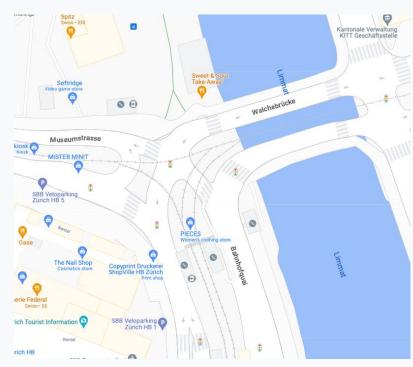
Appearance, dynamic objects

#### While preserving geometric & semantic information

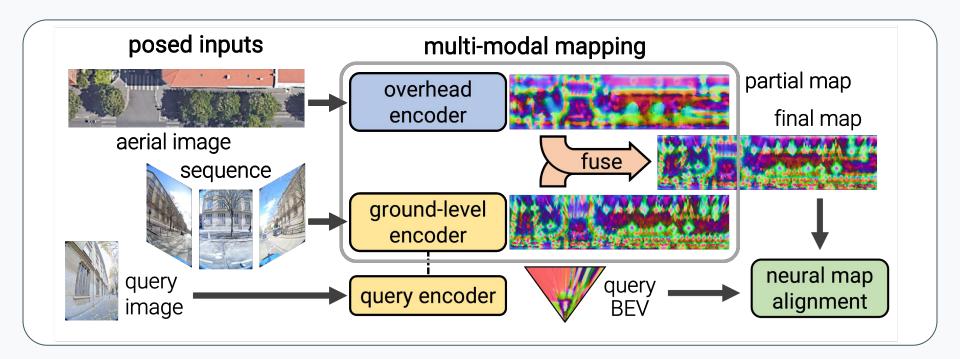
 What distinctive objects and layout do I observe in the scene?





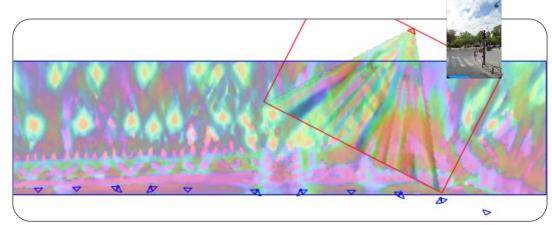


## SNAP: Self-Supervised Neural Maps



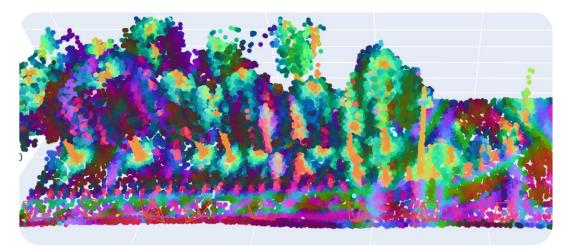
How? SNAP is **trained to align** these neural maps, in a **contrastive fashion** 





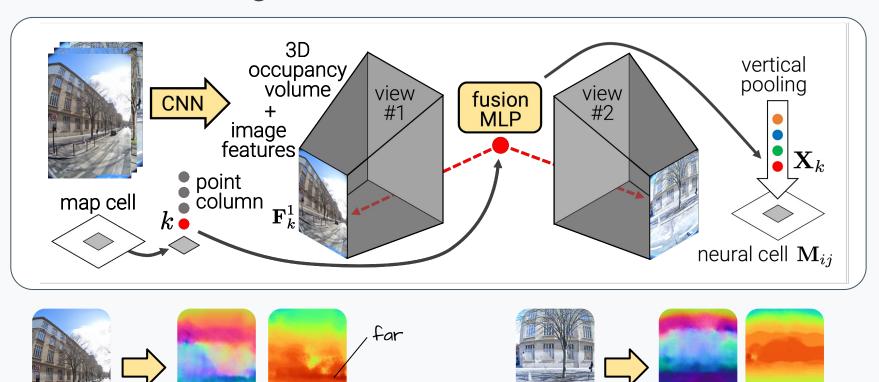
Localizing opposing views using SNAP

What happens? SNAP learns to discover objects using only poses, without semantics



SNAP's neural map lifted to 3d using lidar

# StreetView image encoder

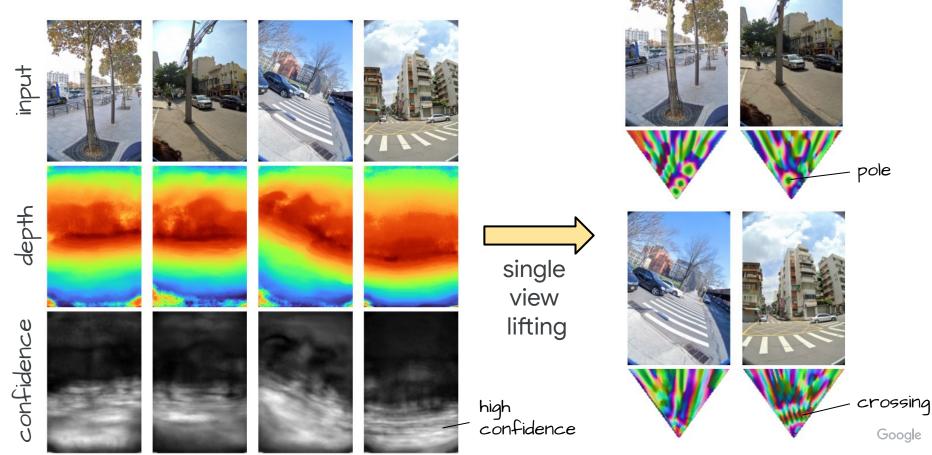


close

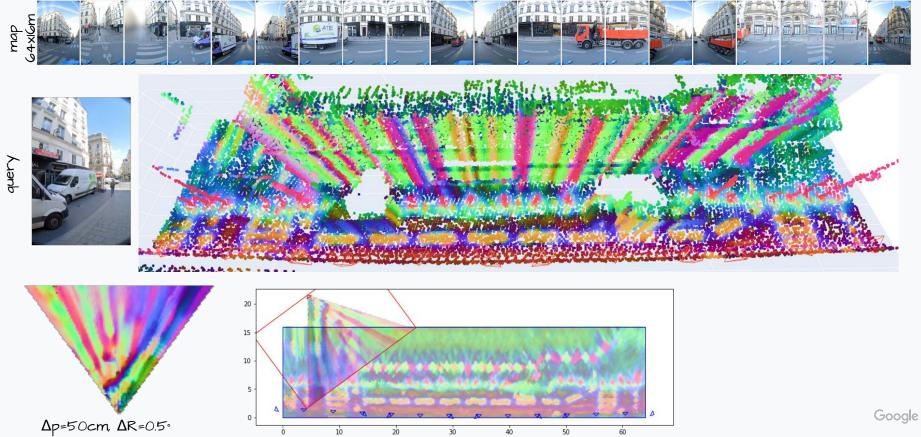
depth

features

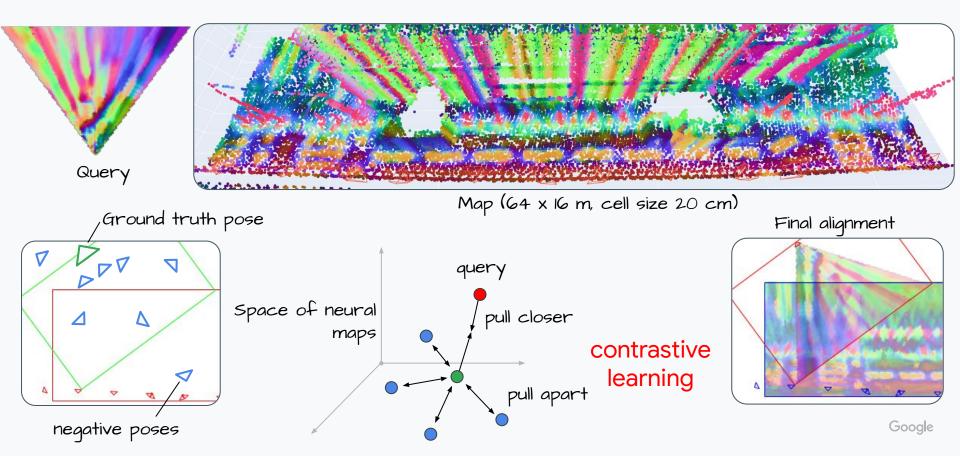
#### Monocular inference



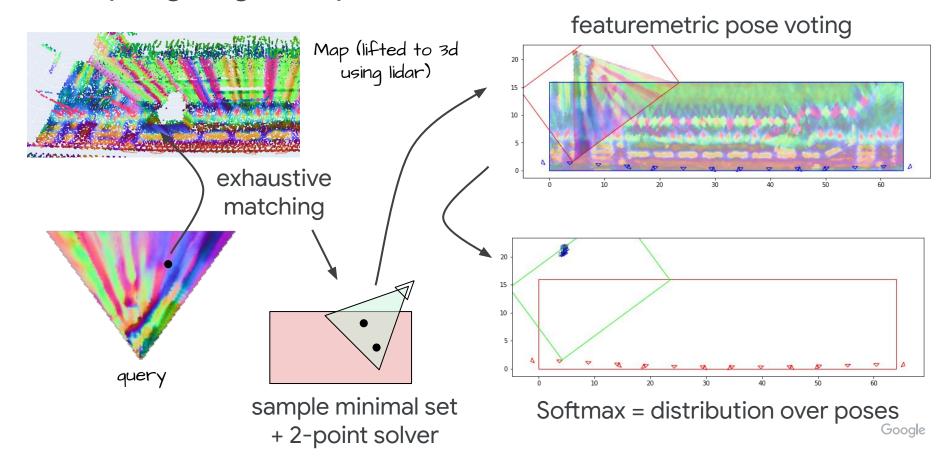
# Learning from pose supervision



# Learning from pose supervision



## Sampling negative poses with RANSAC

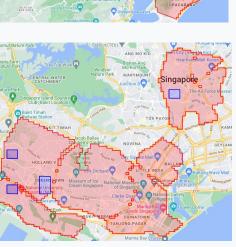


# Training: 11 cities in 5 continents

Blue: validation Red: training







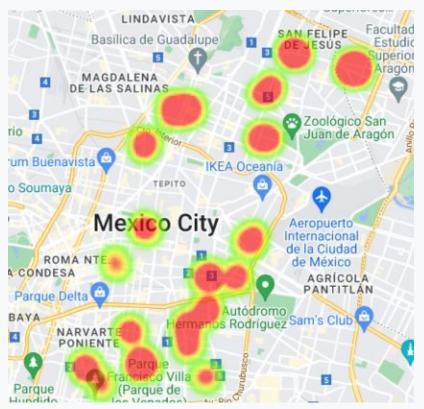




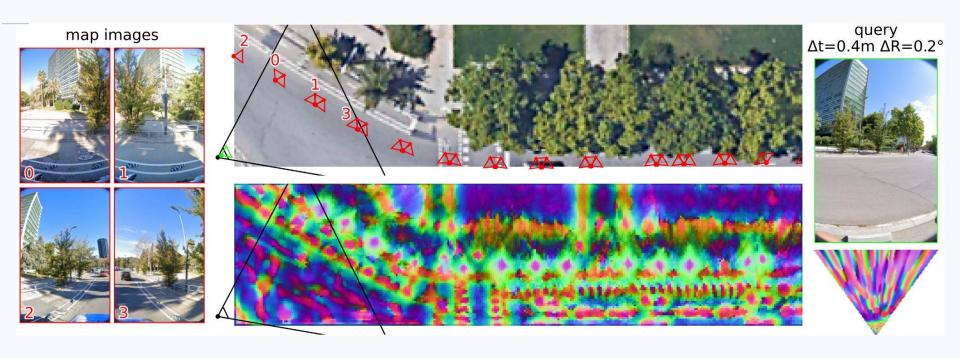


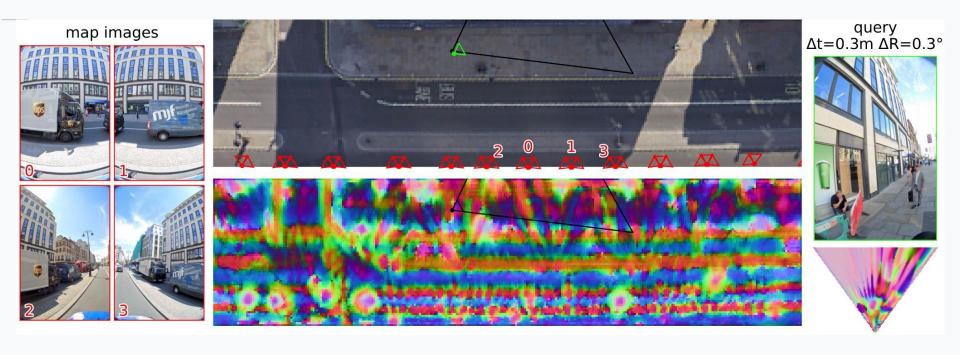


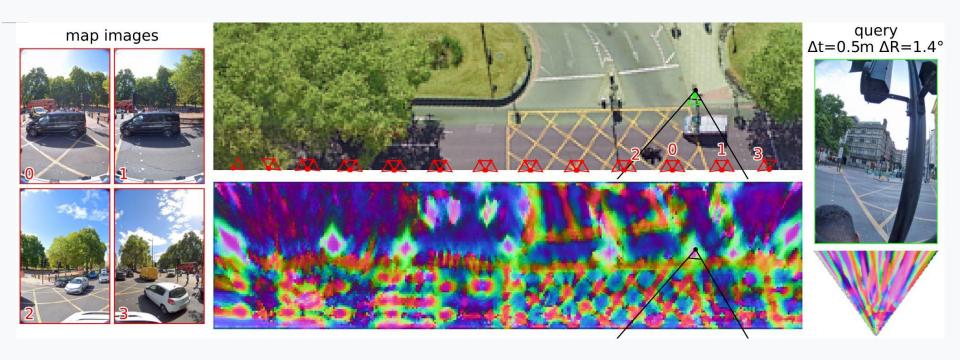
#### Test distribution: 6 cities

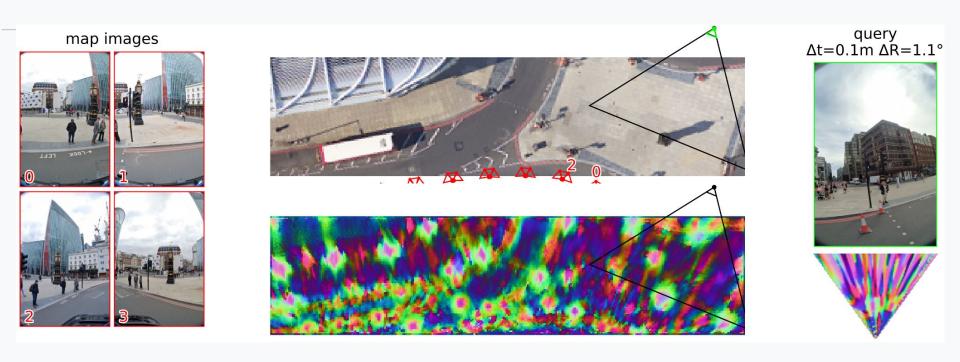




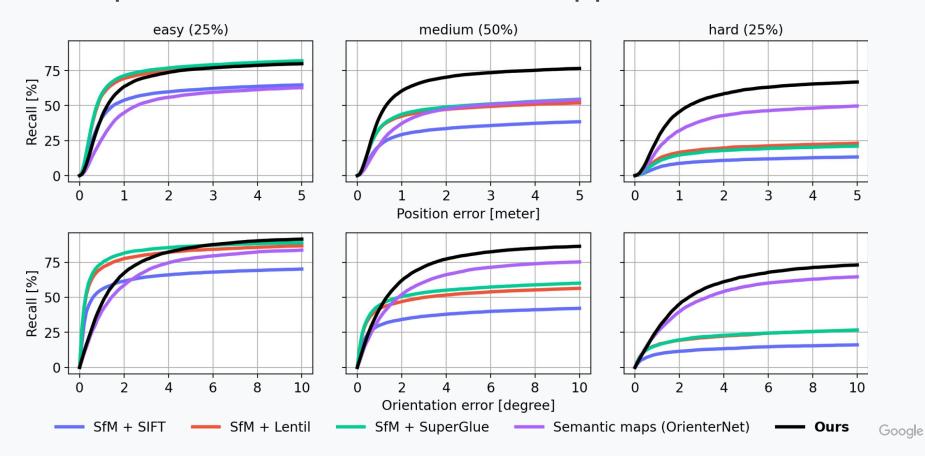




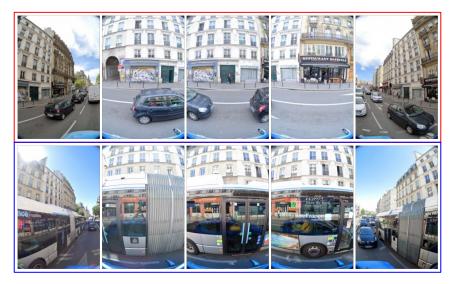


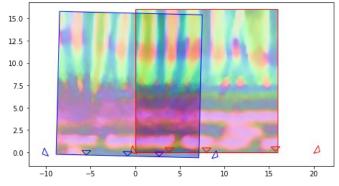


#### Comparison to other localization approaches

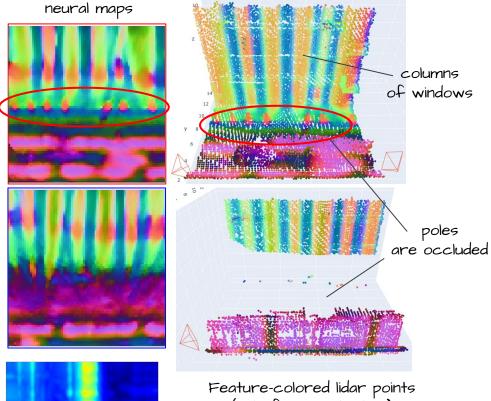


#### Sequence-to-Sequence





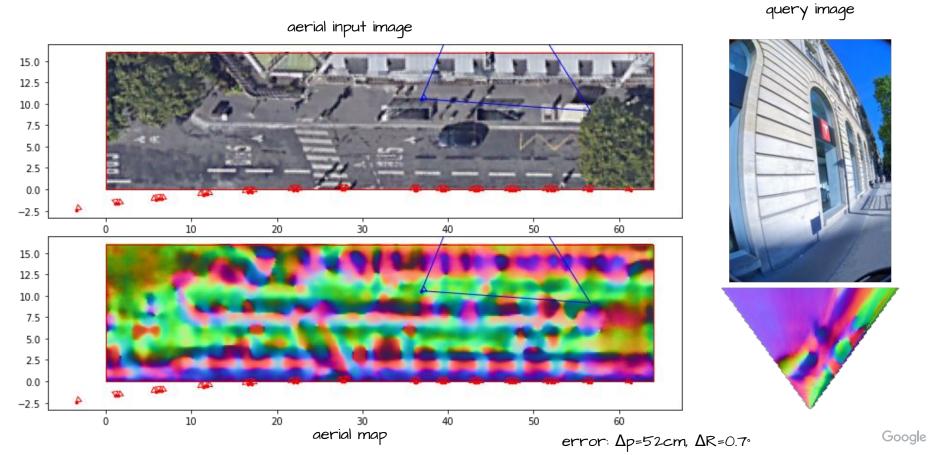
 $\Delta p = 30 \text{ cm}$  $\Delta R = 0.05^{\circ}$ 



Feature-colored lidar points (only for visualization)

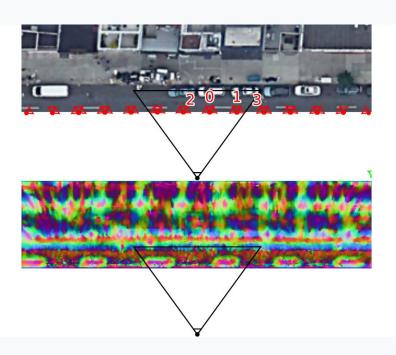
The exhaustive likelihood is multi-modal. it captures the symmetry

#### Aerial-to-ground localization



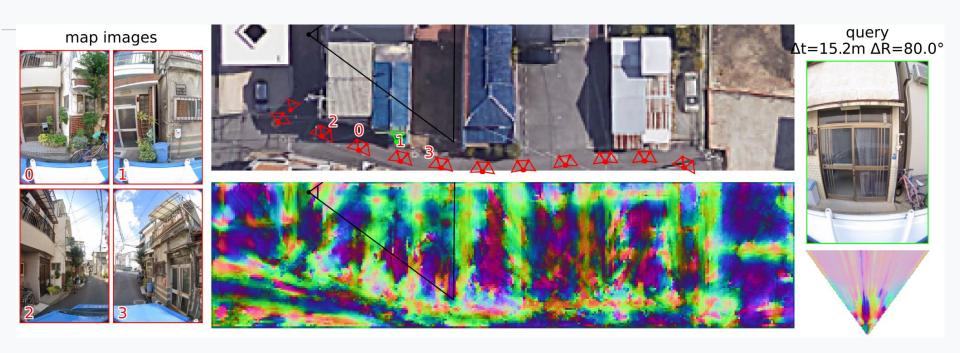
# Localization examples: failure case







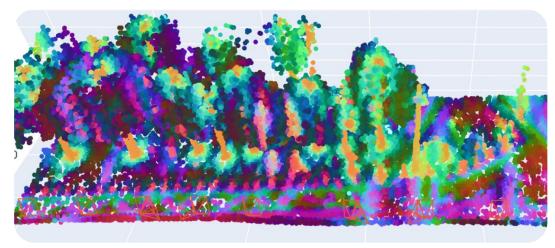
# Localization examples: failure case



#### Beyond localization

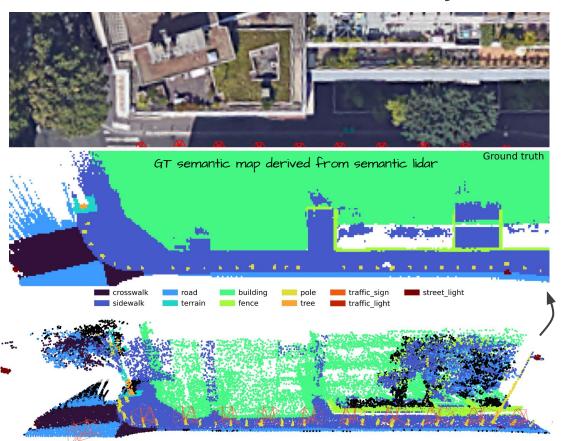
Self-supervised Neural Maps for Visual Positioning and Semantic Understanding

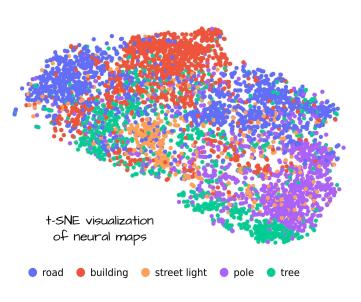
...while training only with poses!



SNAP's semantic map lifted to 3d using lidar

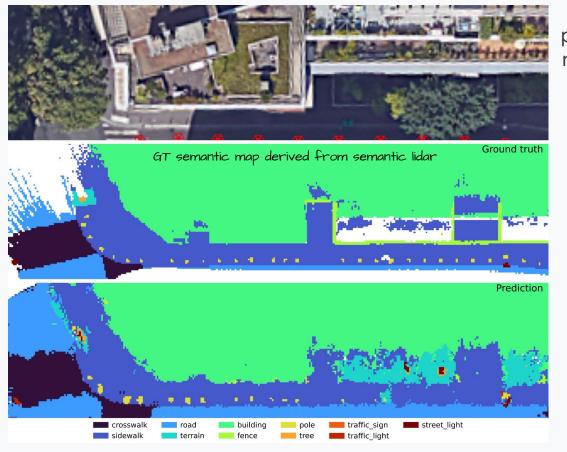
#### SNAP learns to discover objects

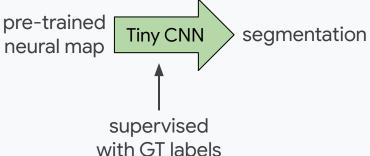


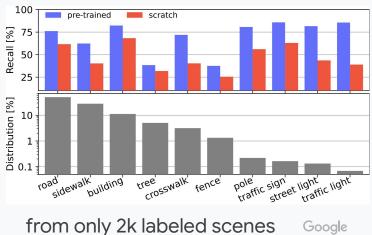


SNAP distinguishes trees vs poles without any supervision

# Decoding explicit semantics

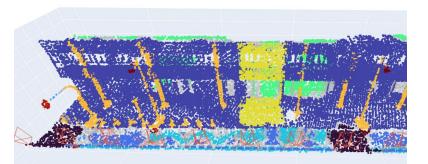




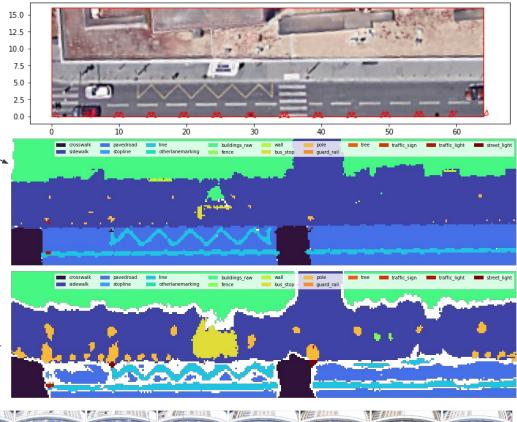


#### Qualitative results

Ground truth



Prediction





## Summary and open challenges

- Summary
  - SNAP learns 2D neural maps directly from posed multi-modal imagery
  - Supervised with only poses, via contrastive learning
  - Localization serves as pre-training for high-level semantics without labels
- Limitations
  - Not as accurate for queries close to map images
  - Assumes known gravity and a location prior (3DOF not 6DOF)
  - Semantics are a good start, but true "foundation models" are still a few steps away
- What makes this possible?
  - A unique corpus with 200B+ posed StreetView images, co-registered with other modalities: aerial images, LiDAR, semantics, etc.
  - We collaborate with universities and host interns!
    - Reach out! {trulls,slynen}@google.com.
    - Open "research internships" call @ Google careers website: October 25