Scene

oresentations for

Torsten Sattler

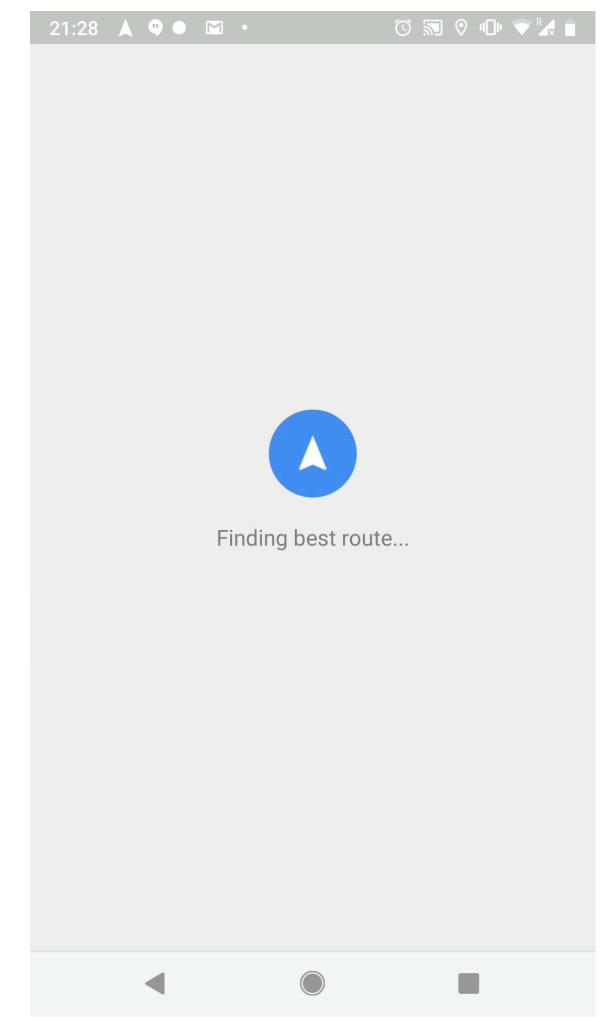
Czech Institute of Informatics, Robotics and Cybernetics Czech Technical University in Prague

The Visual Localization Problem

Compute exact position and orientation of query image

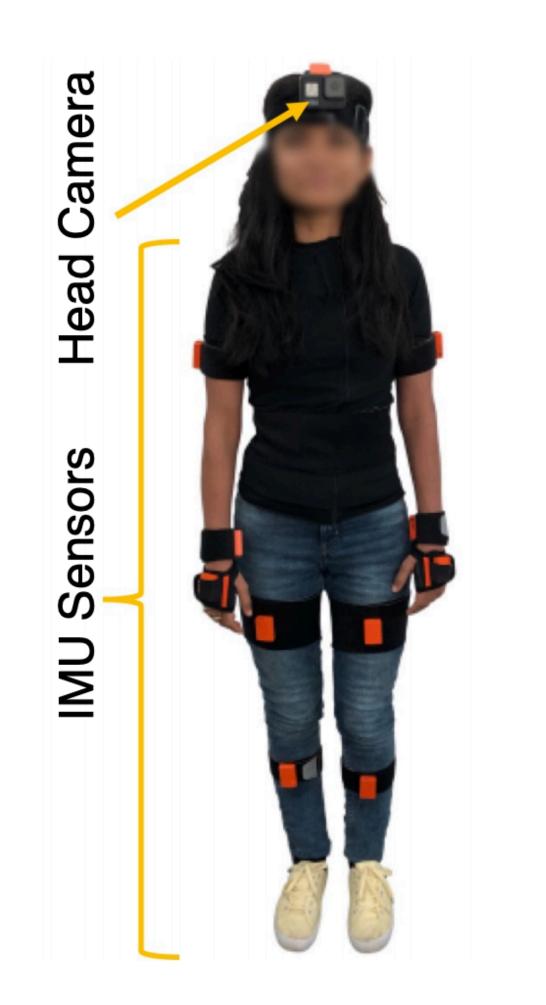
Applications: Augmented Reality

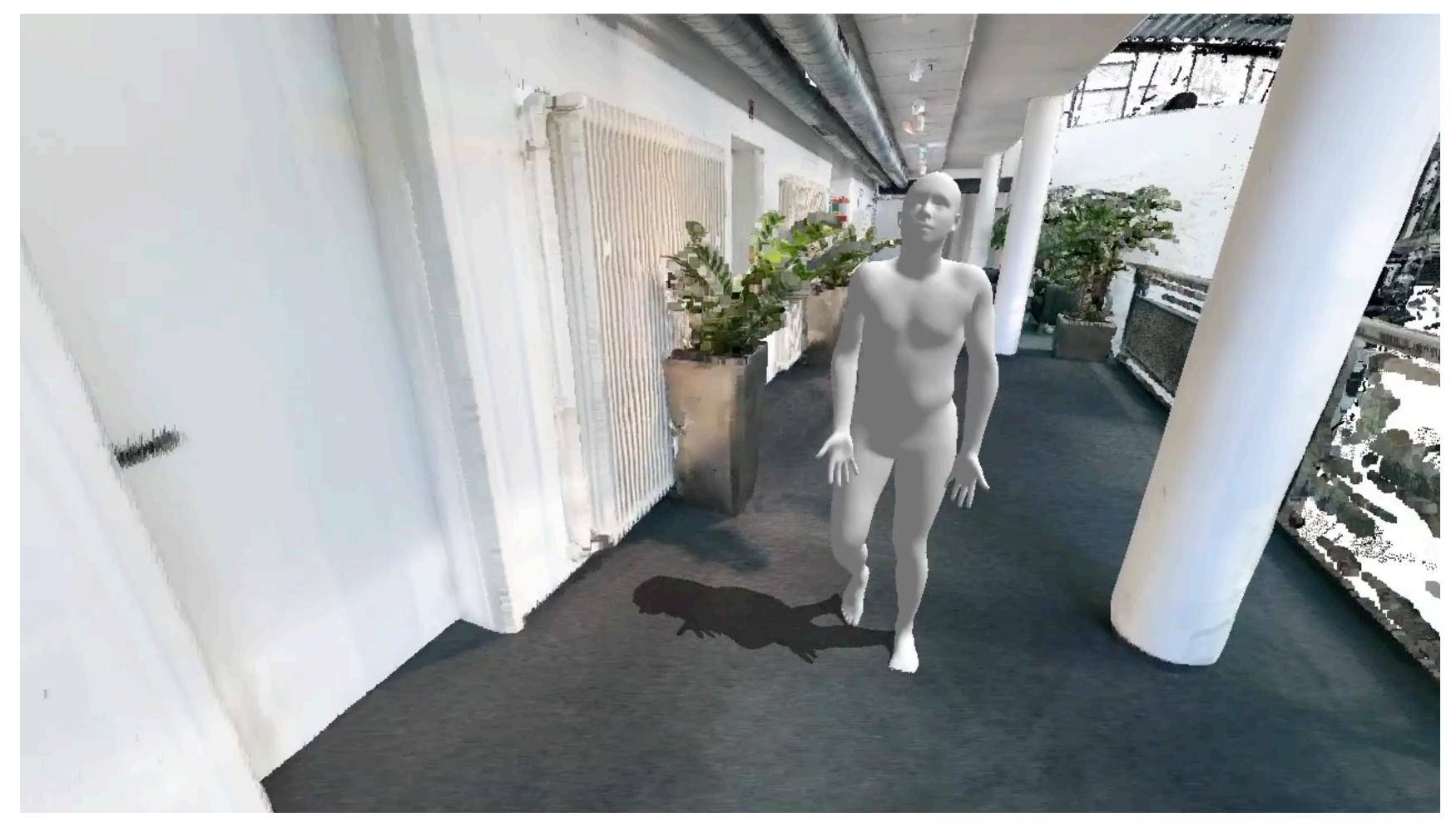
[Middelberg, Sattler, Untzelmann, Kobbelt, Scalable 6-DOF Localization on Mobile Devices, ECCV 2014]



AR navigation in Google Maps

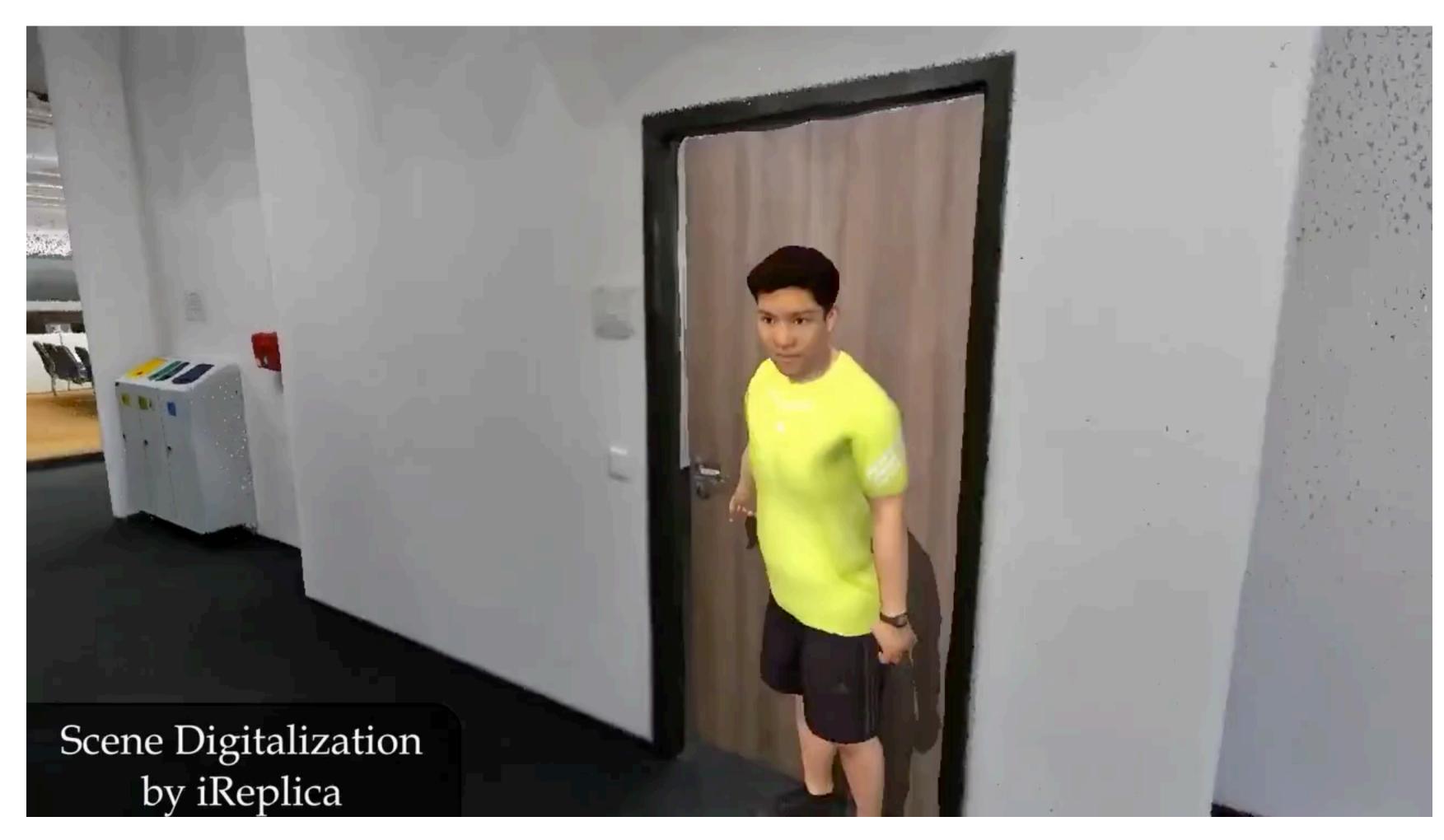
Applications: Performance Capture





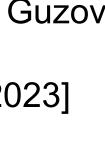
slide credit: Vladimir Guzov, Aymen Mir [Guzov*, Mir*, Sattler, Pons-Moll, Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021]

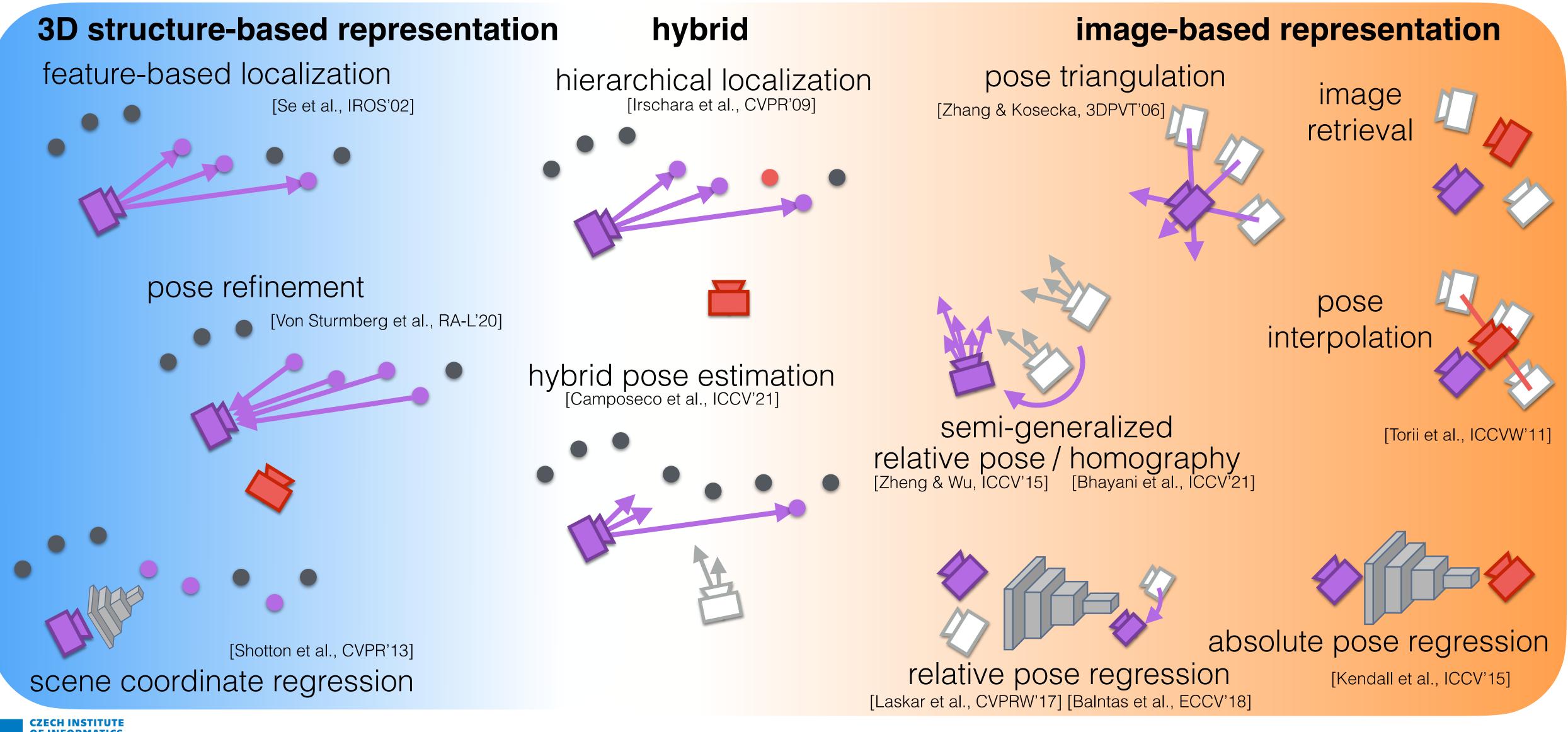
Applications: Visual Localization for Modeling Interactions

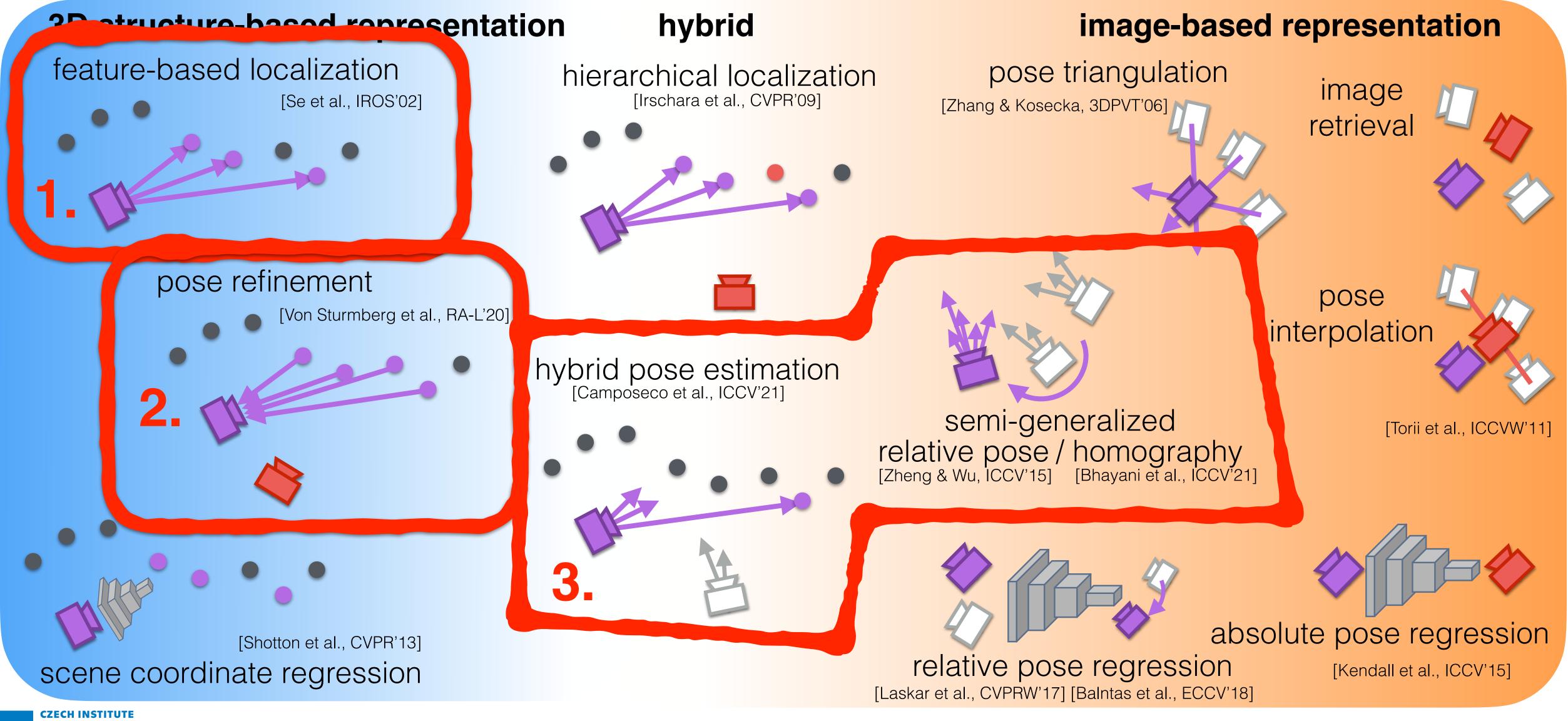


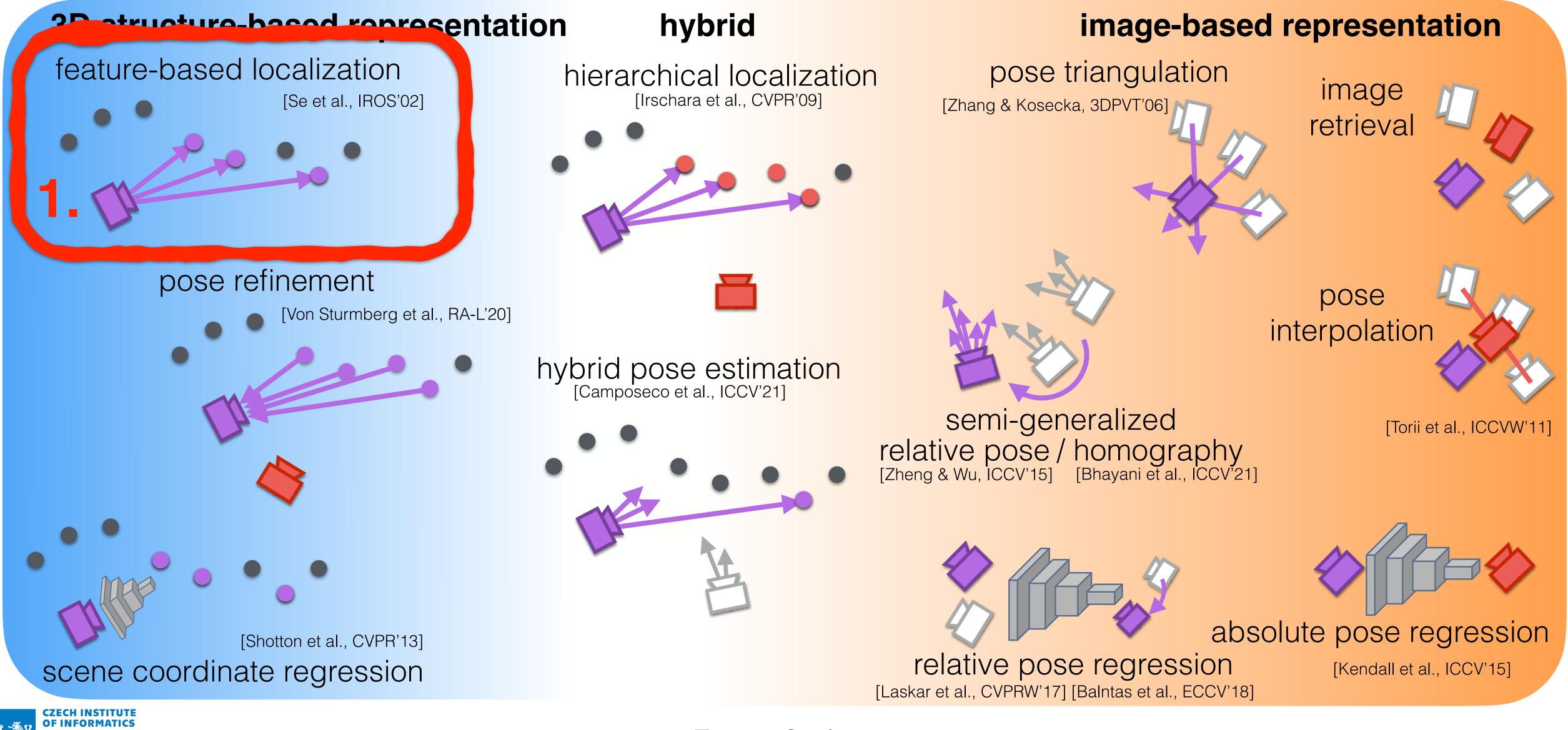
[Guzov, Chibane, Marin, He, Sattler, Pons-Moll, Interaction Replica: Tracking human-object interaction and scene changes from human motion, arXiv 2023]

slide credit: Vladimir Guzov









Classical Representation: SfM Point Clouds

3D point triangulated from \geq 2 images: 3D position + local feature descriptors

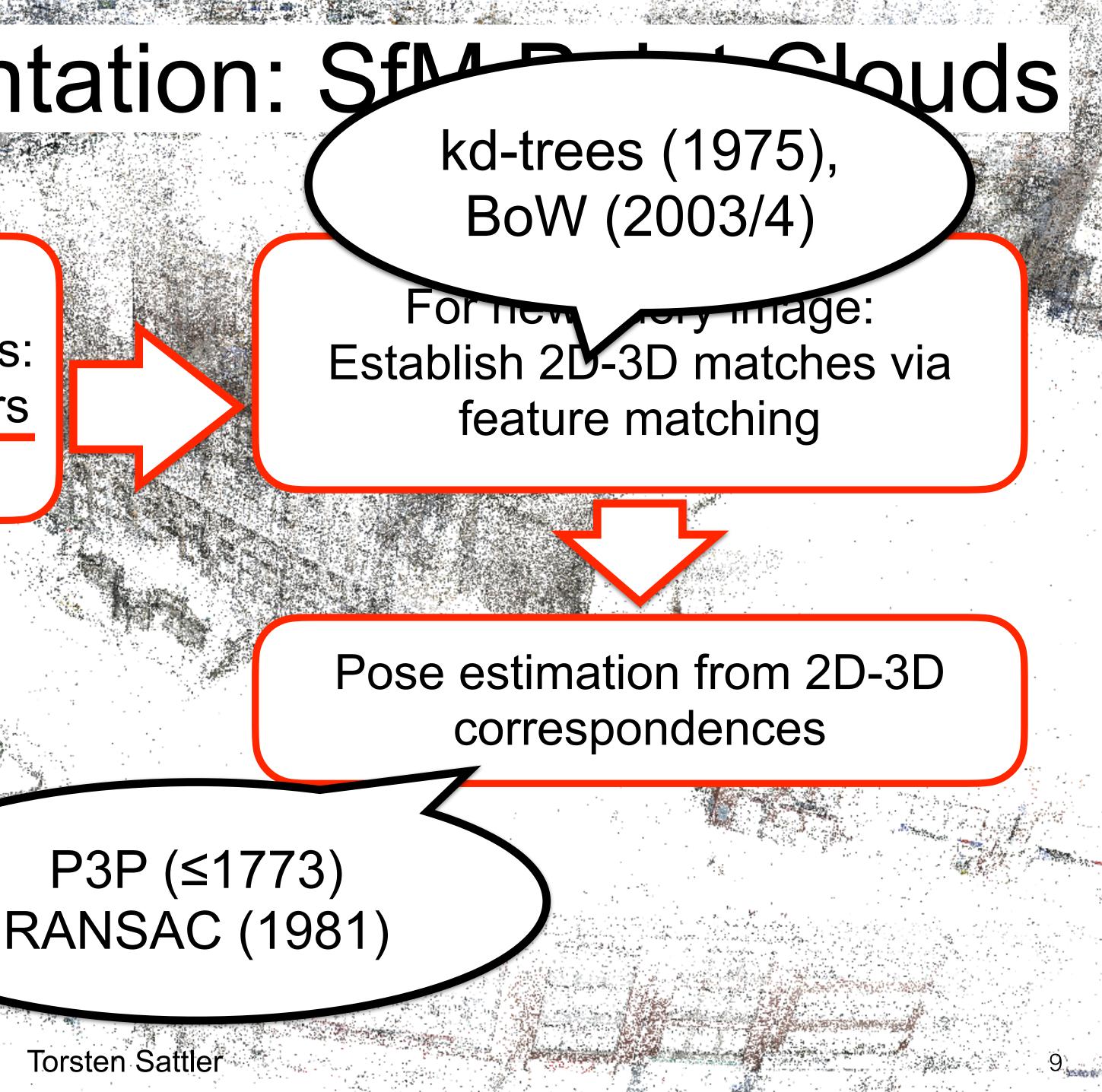
For new query image: Establish 2D-3D matches via feature matching

Pose estimation from 2D-3D correspondences

Classical Representation: SP

(1999)Qulated from ≥ 2 images: 3D position + local feature descriptors

SIFT



Classical Representation: SfM Point Clouds

sten Sattler

Classical Representation: SfM Point Clouds

Advantages:

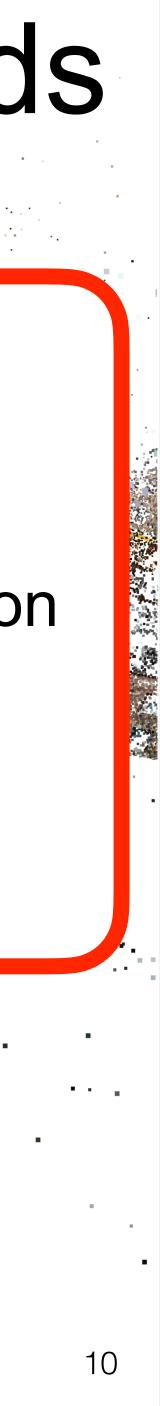
EfficientScalable

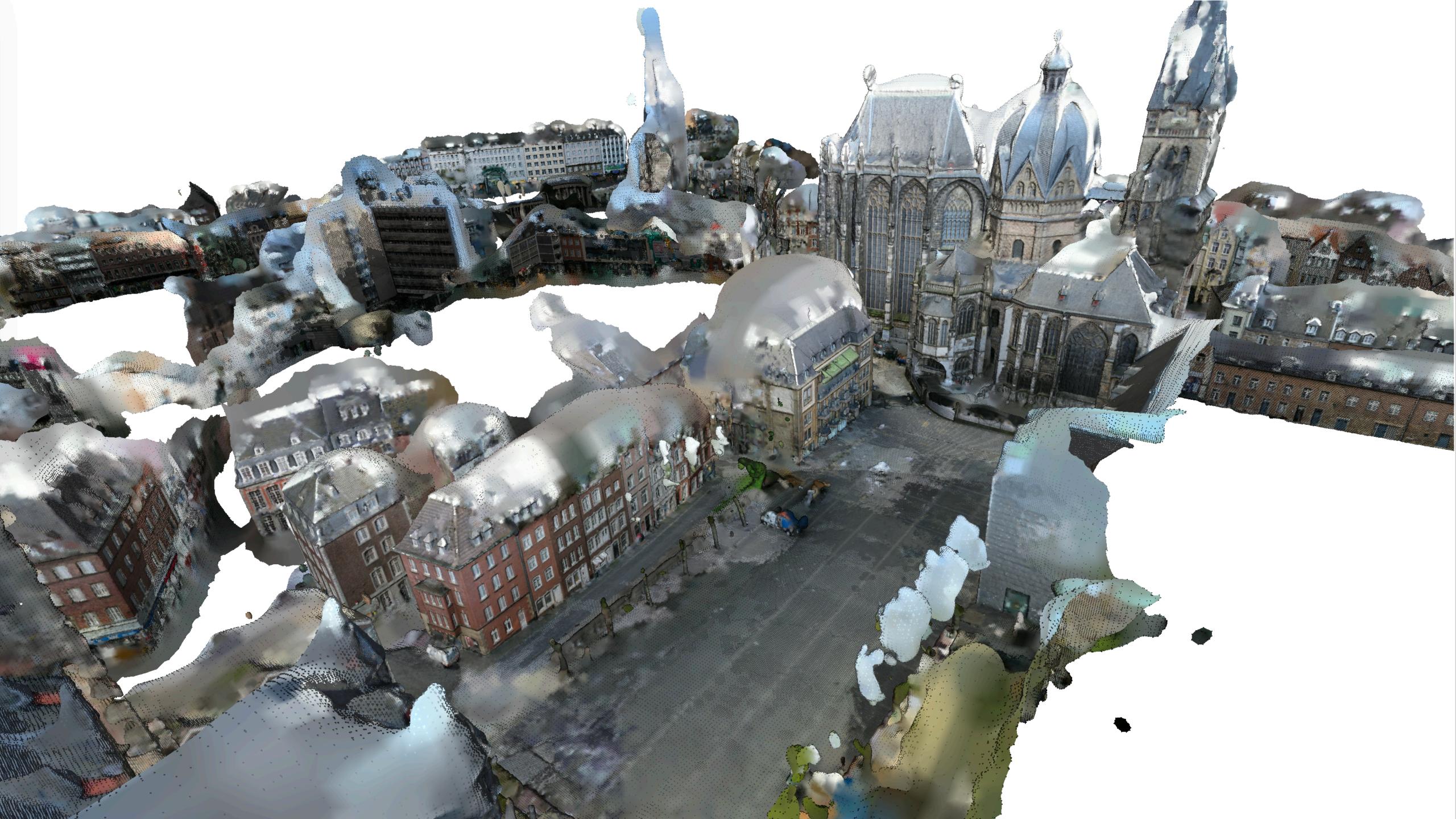
Quite robust to condition changes Easily compressible

Disadvantages:

Specialized & sparse representation Needs to be recomputed when changing features

sten Sattler

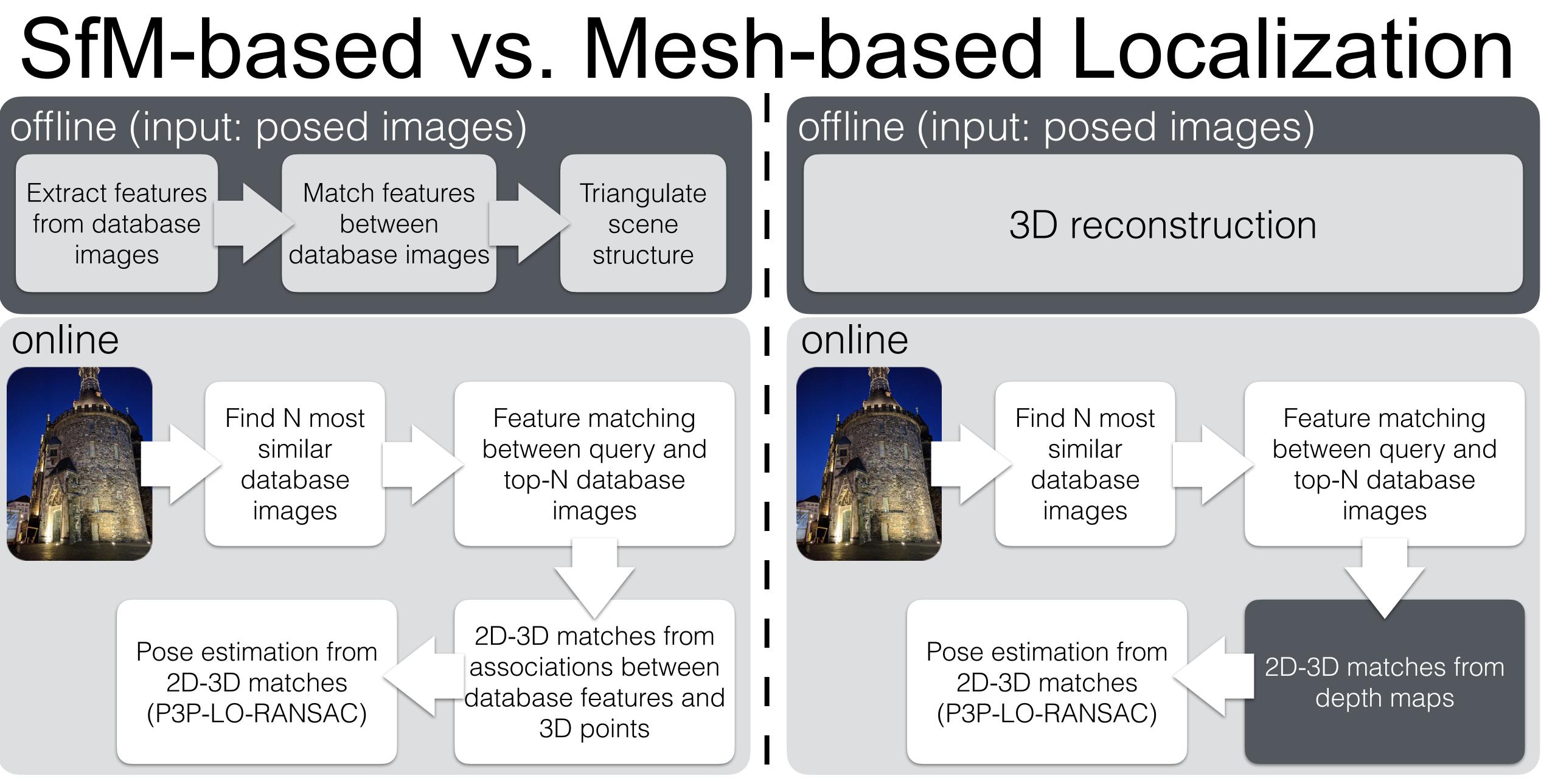




from database

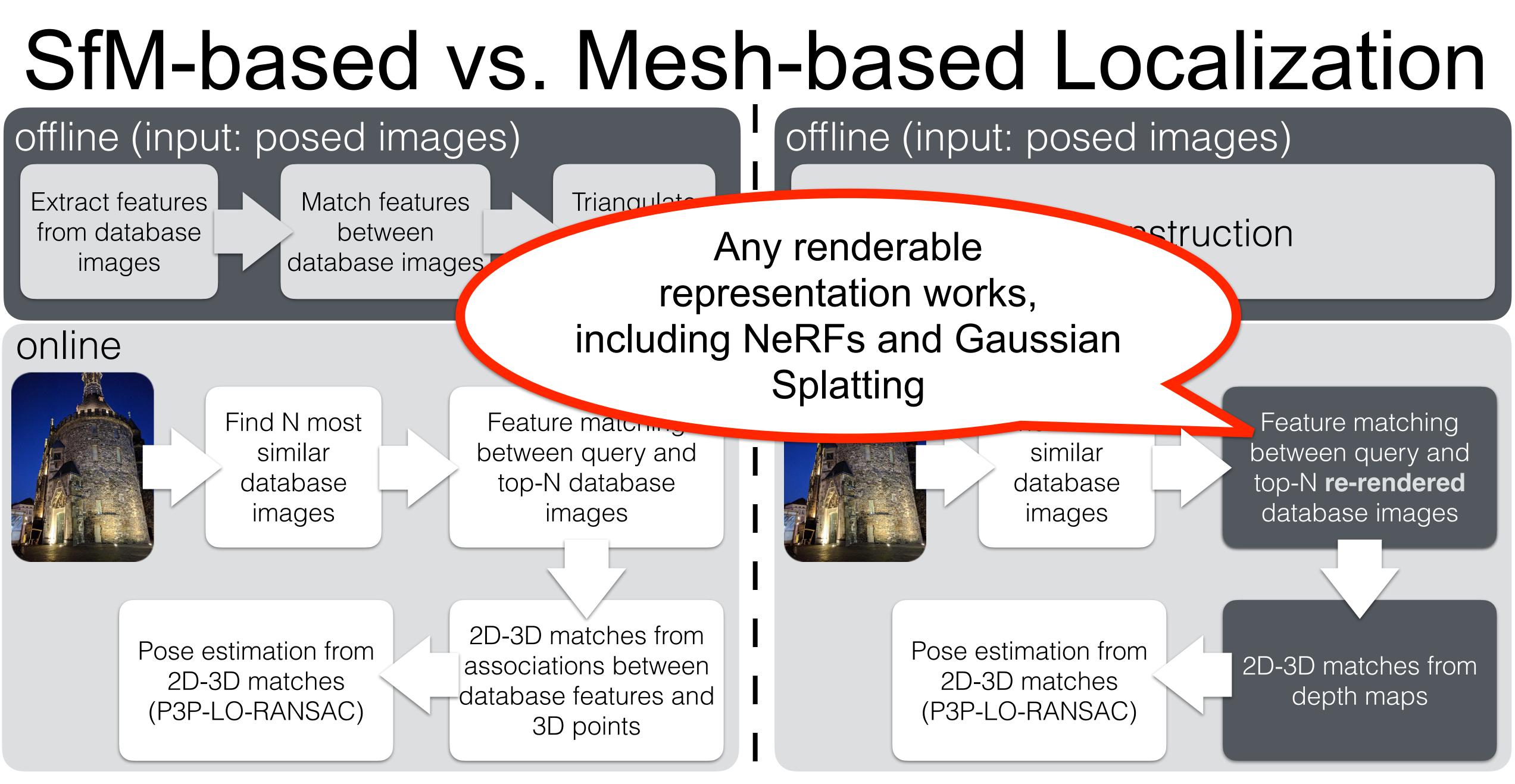
Match features between

scene structure



[Panek, Kukelova, Sattler, MeshLoc: Mesh-Based Visual Localization, ECCV 2022] Torsten Sattler

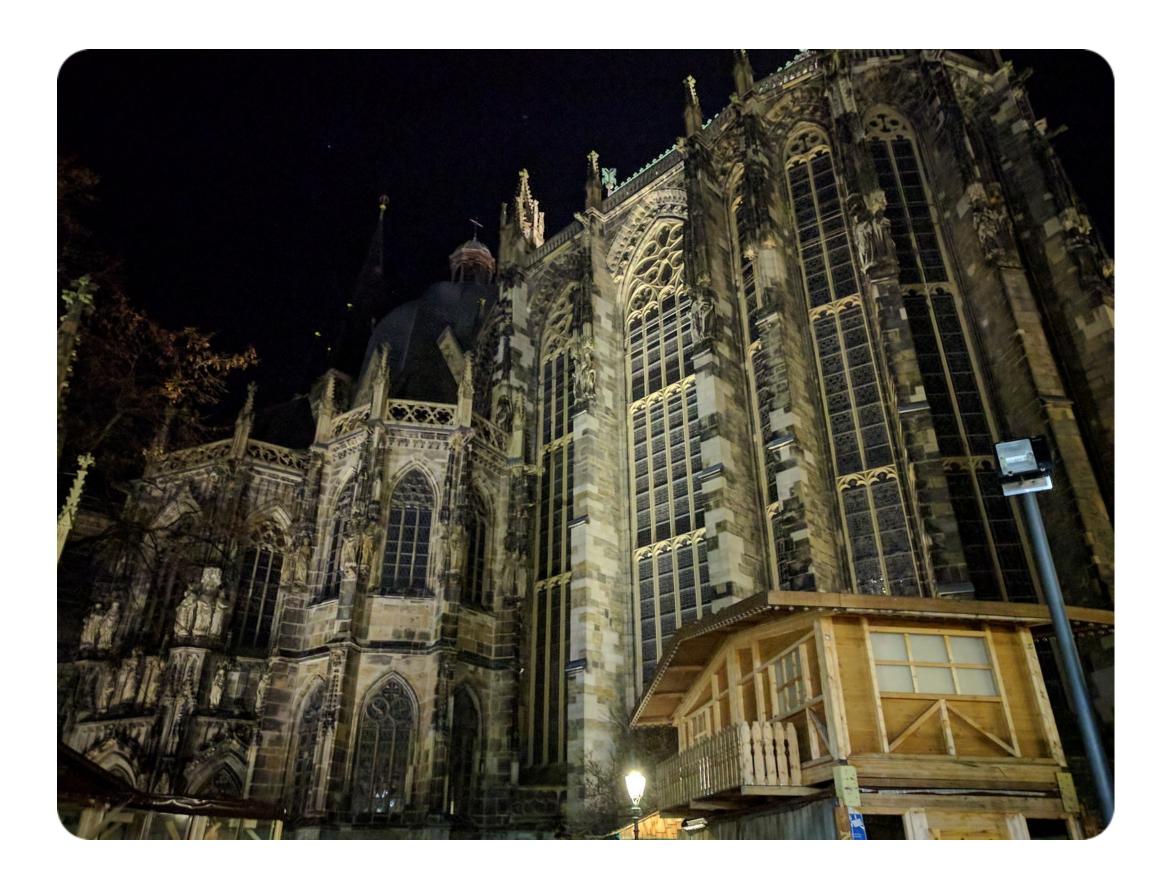
11



[Panek, Kukelova, Sattler, MeshLoc: Mesh-Based Visual Localization, ECCV 2022] Torsten Sattler

11

Matching Against Rendered Images

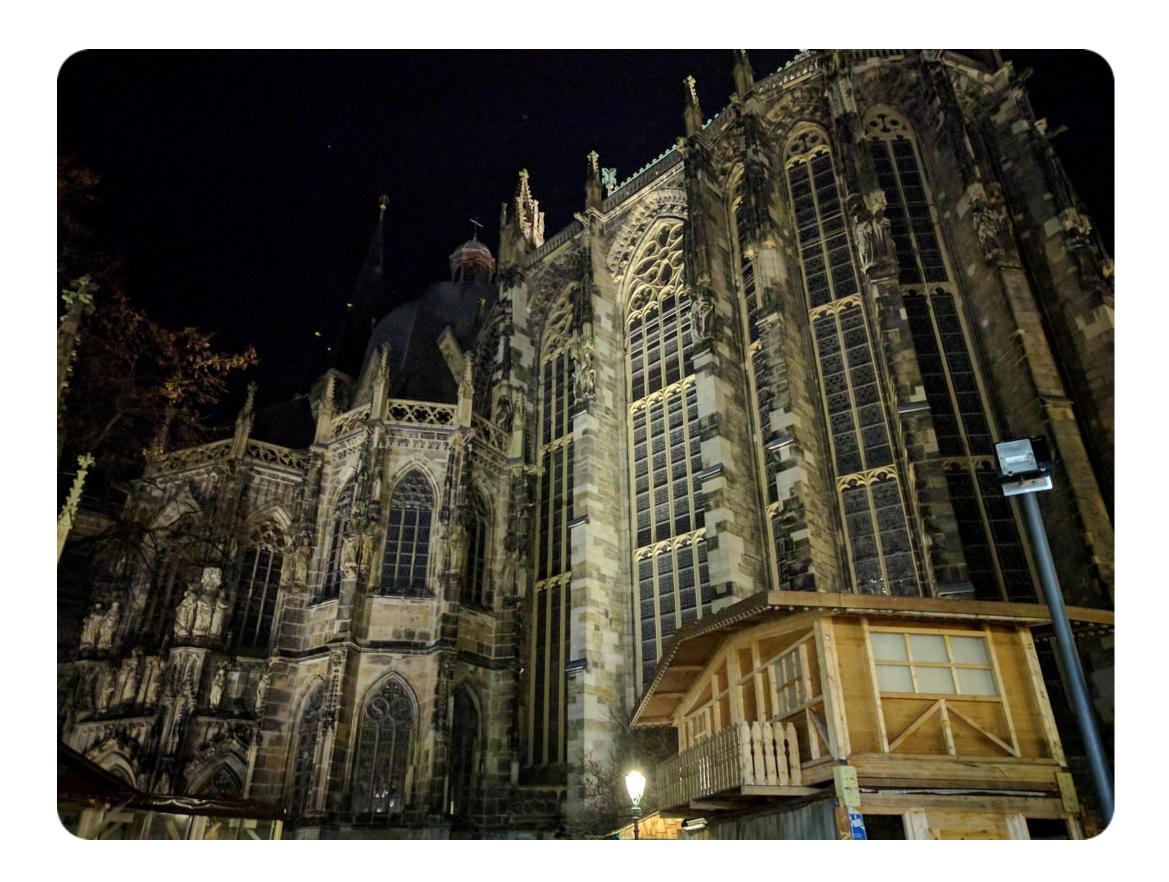


[Panek, Kukelova, Sattler, MeshLoc: Mesh-Based Visual Localization, ECCV 2022] Torsten Sattler

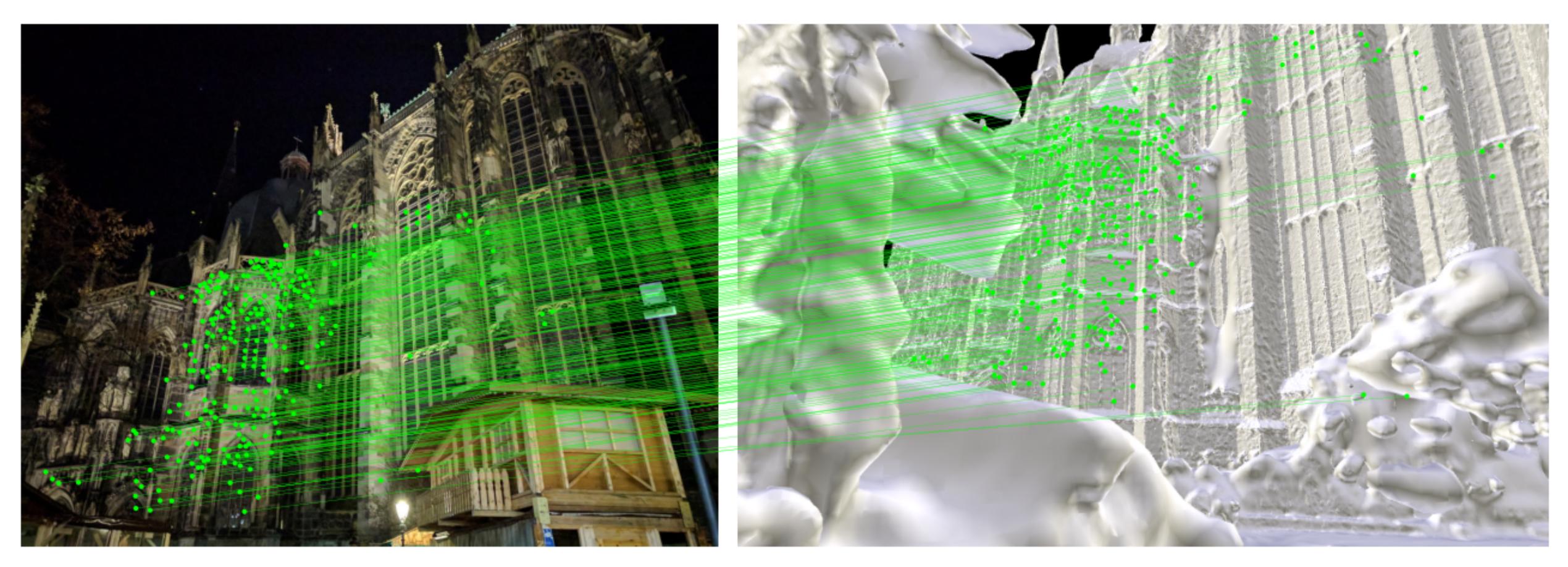
Matching Against Rendered Images

[Panek, Kukelova, Sattler, MeshLoc: Mesh-Based Visual Localization, ECCV 2022] Torsten Sattler

ALIKED features [Zhao et al., IEEE TIM 2023] with LightGlue [Lindenberger et al., ICCV 2023] matcher not trained on renderings

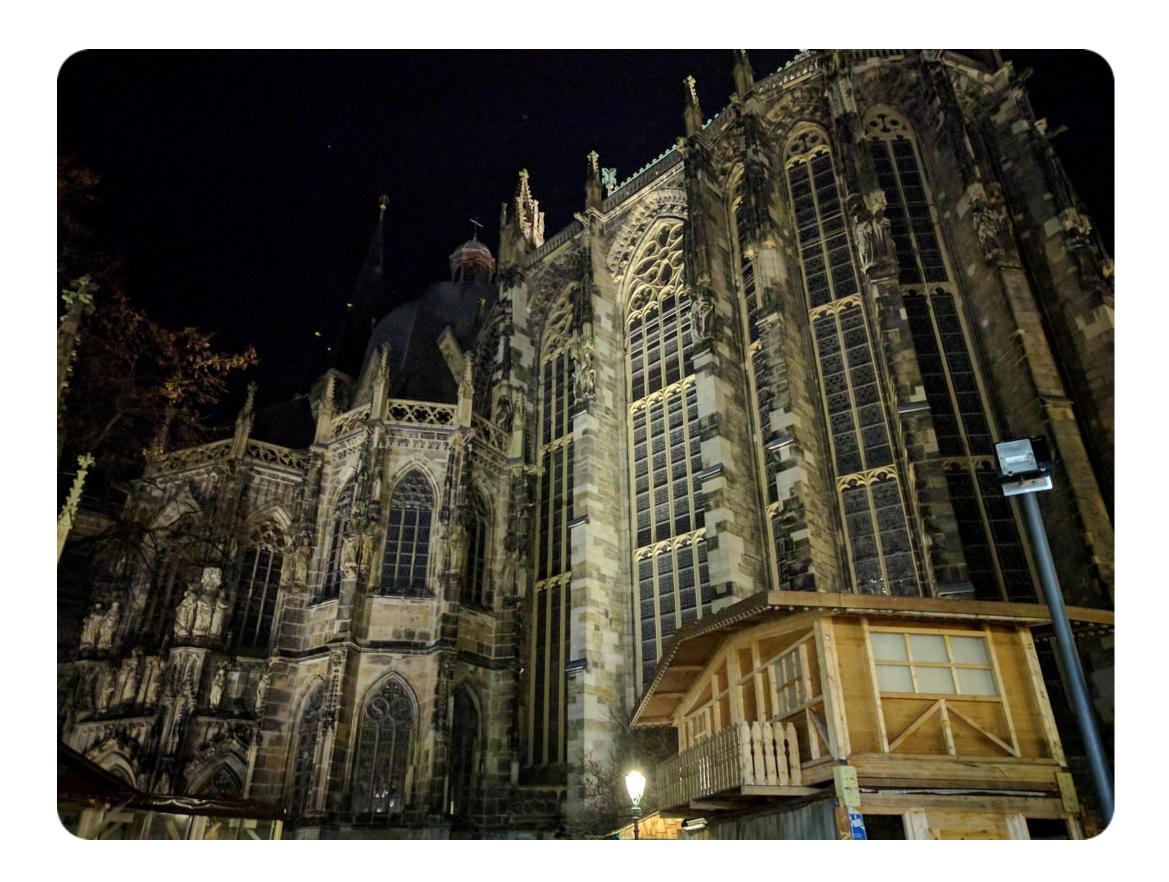


[Panek, Kukelova, Sattler, MeshLoc: Mesh-Based Visual Localization, ECCV 2022] Torsten Sattler



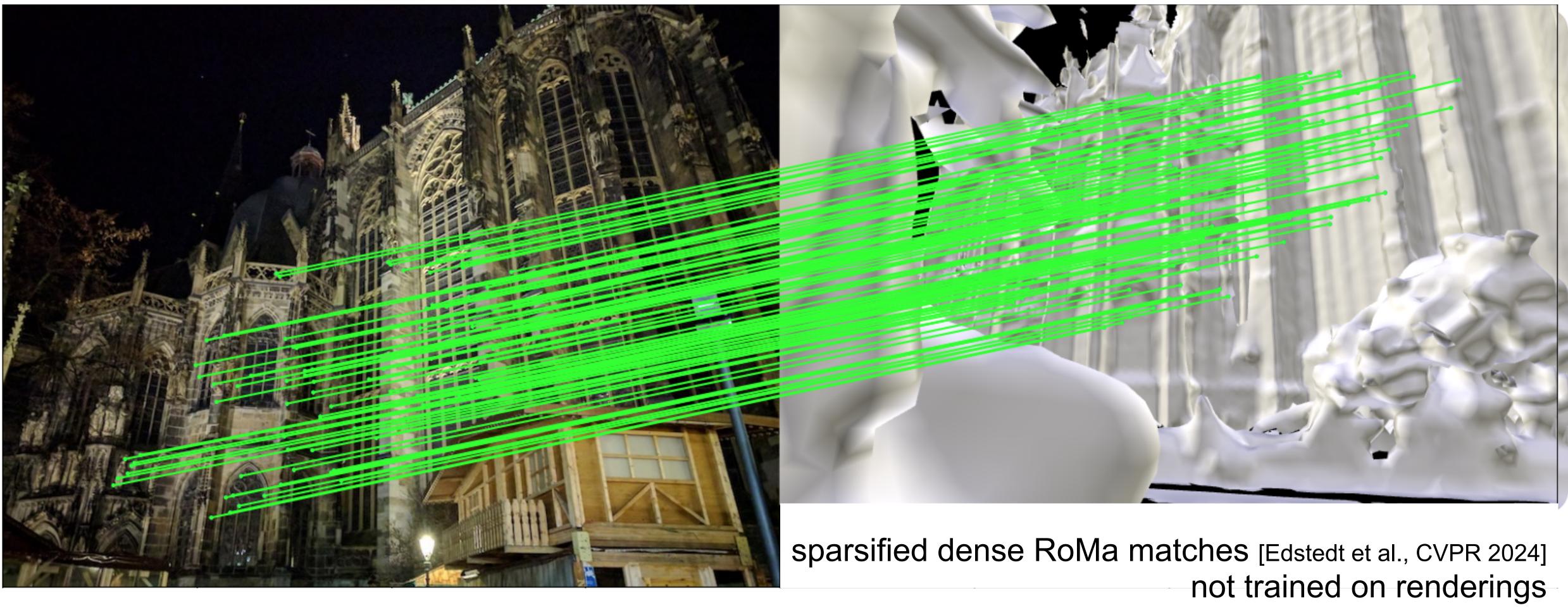
[Panek, Kukelova, Sattler, MeshLoc: Mesh-Based Visual Localization, ECCV 2022] Torsten Sattler

ALIKED features [Zhao et al., IEEE TIM 2023] with LightGlue [Lindenberger et al., ICCV 2023] matcher not trained on renderings

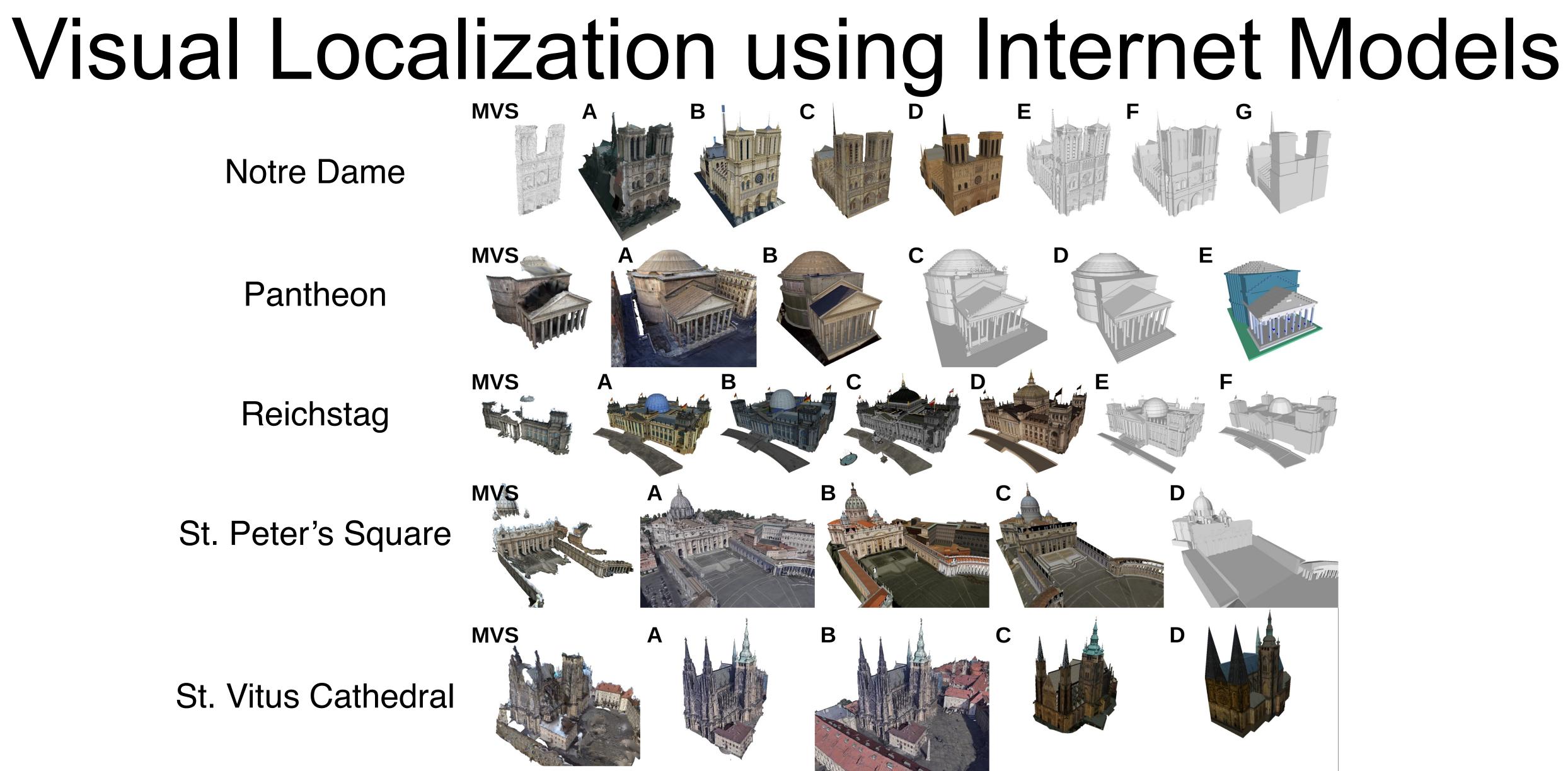


[Panek, Kukelova, Sattler, MeshLoc: Mesh-Based Visual Localization, ECCV 2022] Torsten Sattler





[Panek, Kukelova, Sattler, MeshLoc: Mesh-Based Visual Localization, ECCV 2022] Torsten Sattler

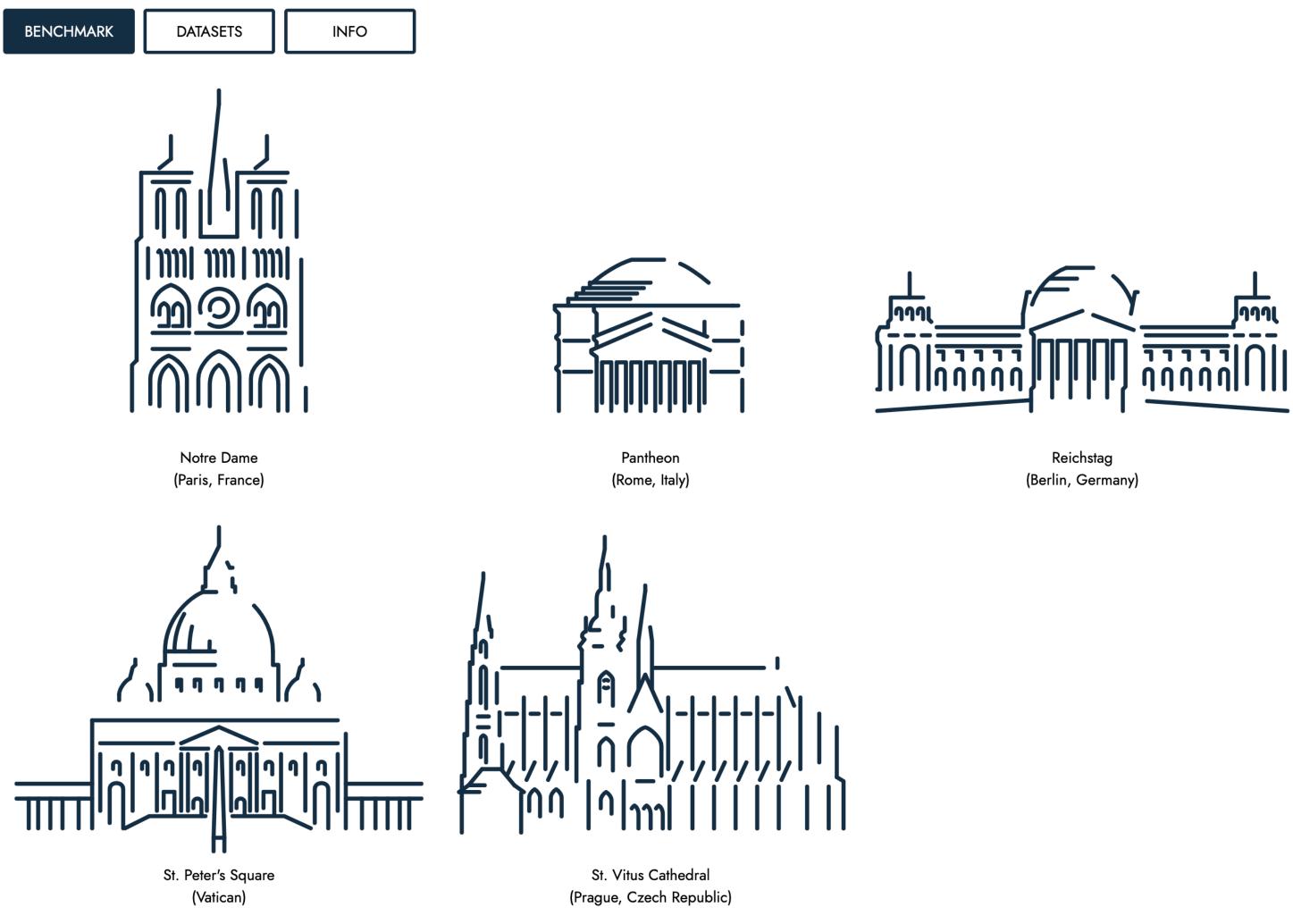


[Panek, Kukelova, Sattler, Visual Localization using Imperfect 3D Models from the Internet, CVPR 2023] Torsten Sattler

15

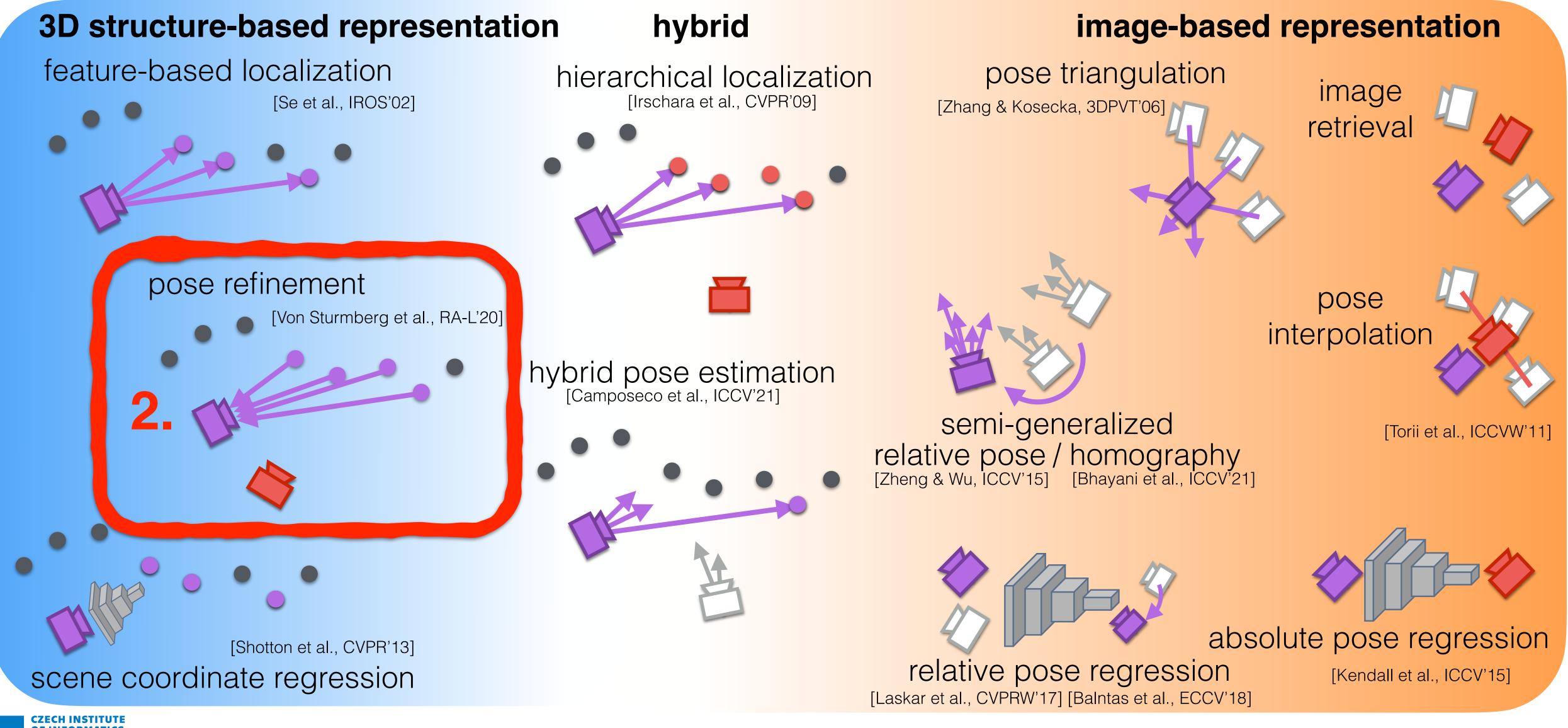
Benchmarking Visual Localization using Internet Models

VISUAL LOCALIZATION ON 3D MESH MODELS



[Panek, Kukelova, Sattler, Visual Localization using Imperfect 3D Models from the Internet, CVPR 2023] Torsten Sattler

slide credit: Vojtech Panek



17

Visual Localization via Render&Compare

Query GT Pose

[Gabriele Trivigno, Carlo Masone, Barbara Caputo, Sattler, The Unreasonable Effectiveness of Pre-Trained Features for Camera Pose Refinement, CVPR 2024] (highlight)

Scene Representation (mesh, 3DGS, NeRF, etc.)

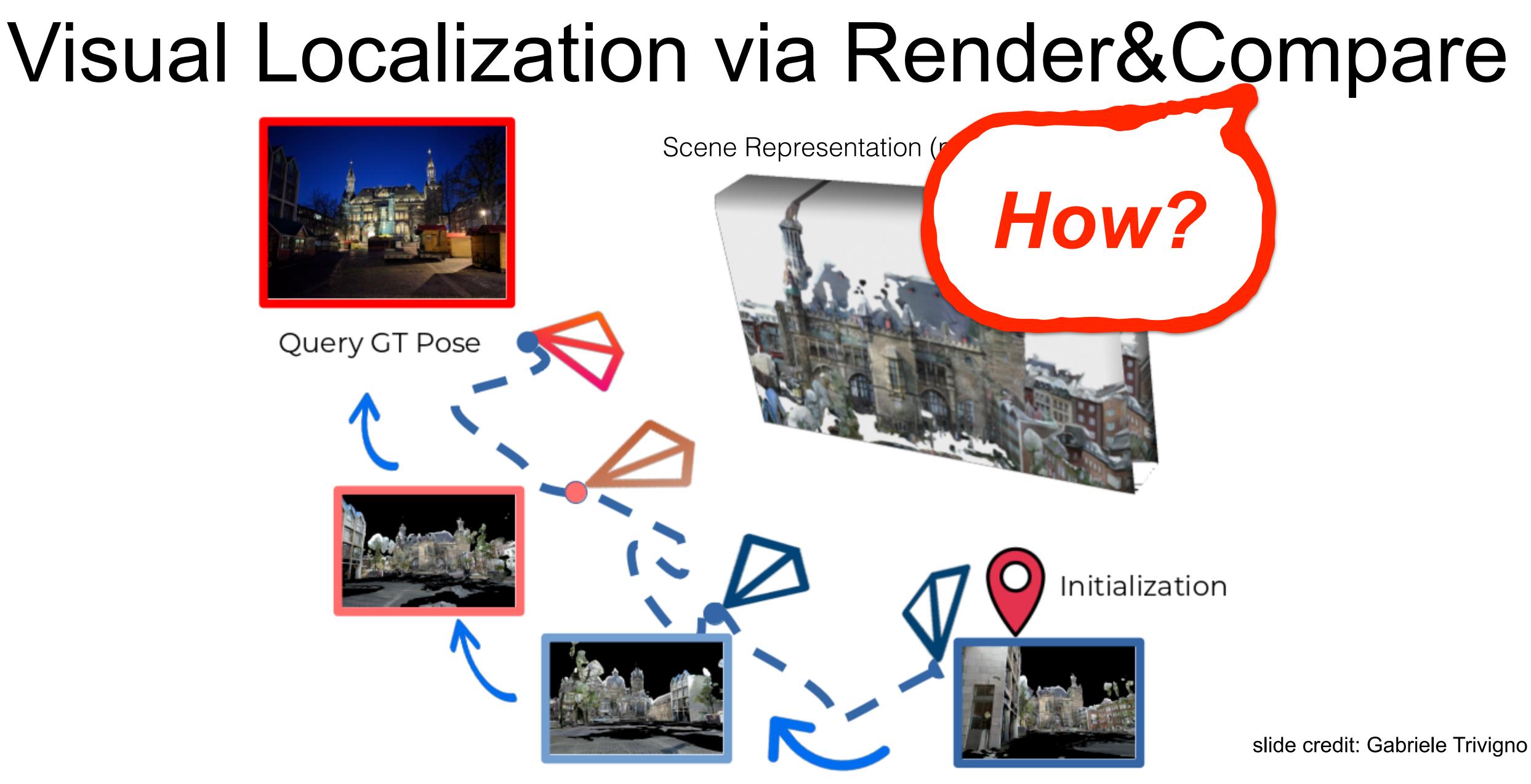
slide credit: Gabriele Trivigno

Torsten Sattler

18

Query GT Pose

[Gabriele Trivigno, Carlo Masone, Barbara Caputo, Sattler, The Unreasonable Effectiveness of Pre-Trained Features for Camera Pose Refinement, CVPR 2024] (highlight)

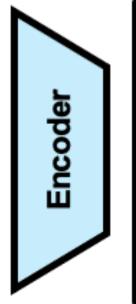


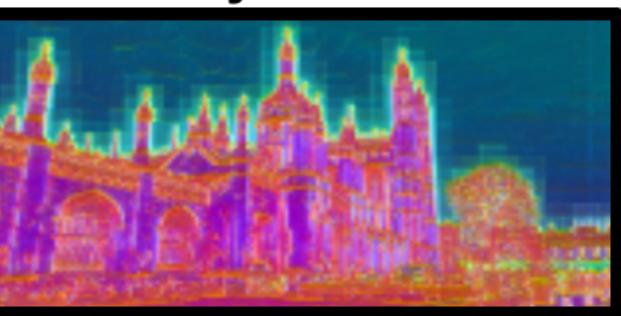
Torsten Sattler

18

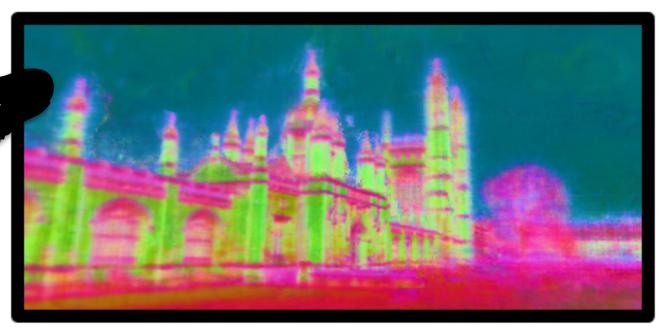
Jointly Training Representation and Features

Query Image





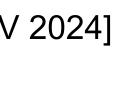
Makes sense if representation not already given



Rendered **Features Init**

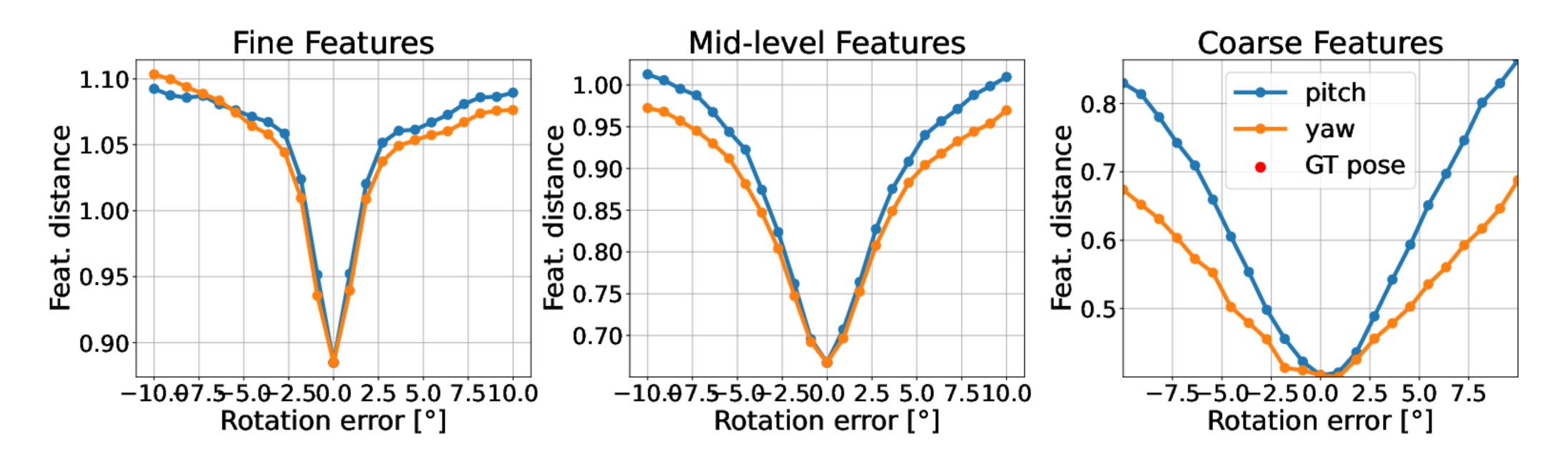
[Maxime Pietrantoni, Gabriela Csurka, Martin Humenberger, Sattler, Self-supervised learning of Neural implicit Feature Fields for Camera Pose Refinement, 3DV 2024]

Query Features



The Unreasonable Effectiveness of Pre-Trained Features

- Dense deep features are known to be good estimators of perceptual similarity This property can be exploited to measure **pose similarity** as well
- • Feature depth is correlated with the sensitivity \rightarrow hierarchical scheme



[Gabriele Trivigno, Carlo Masone, Barbara Caputo, Sattler, The Unreasonable Effectiveness of Pre-Trained Features for Camera Pose Refinement, CVPR 2024]

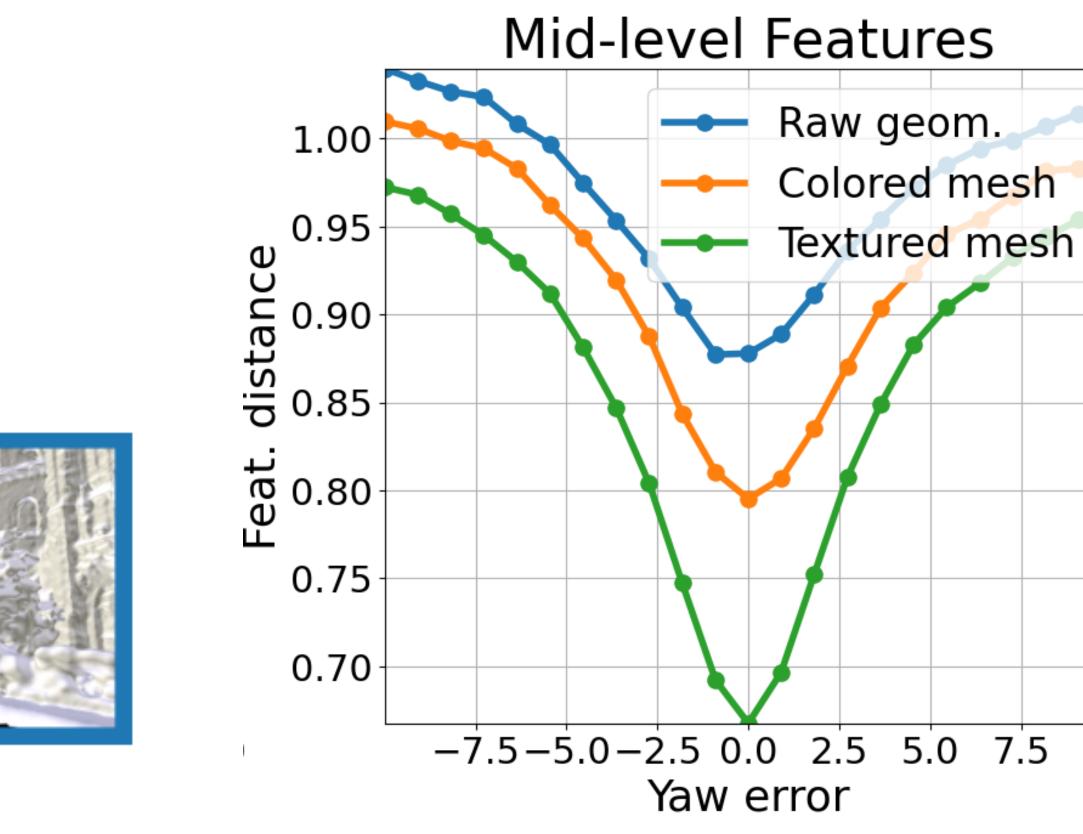
slide credit: Gabriele Trivigno

The Unreasonable Effectiveness of Pre-Trained Features

Dense deep features are quite robust to domain changes

Query

[Gabriele Trivigno, Carlo Masone, Barbara Caputo, Sattler, The Unreasonable Effectiveness of Pre-Trained Features for Camera Pose Refinement, CVPR 2024]



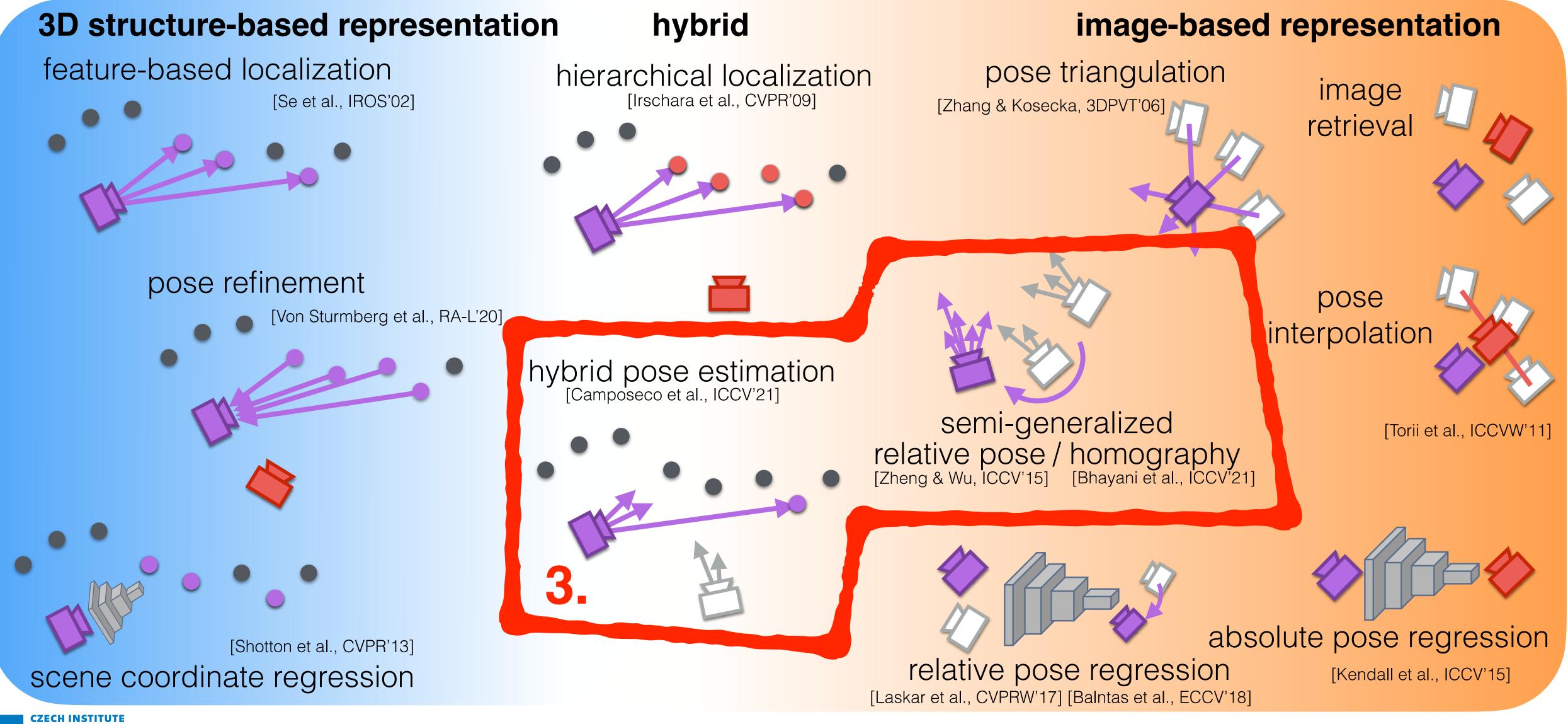
slide credit: Gabriele Trivigno

Advantages:

Improves good initial poses Can handle poor geometry (depth not directly used)

Disadvantages:

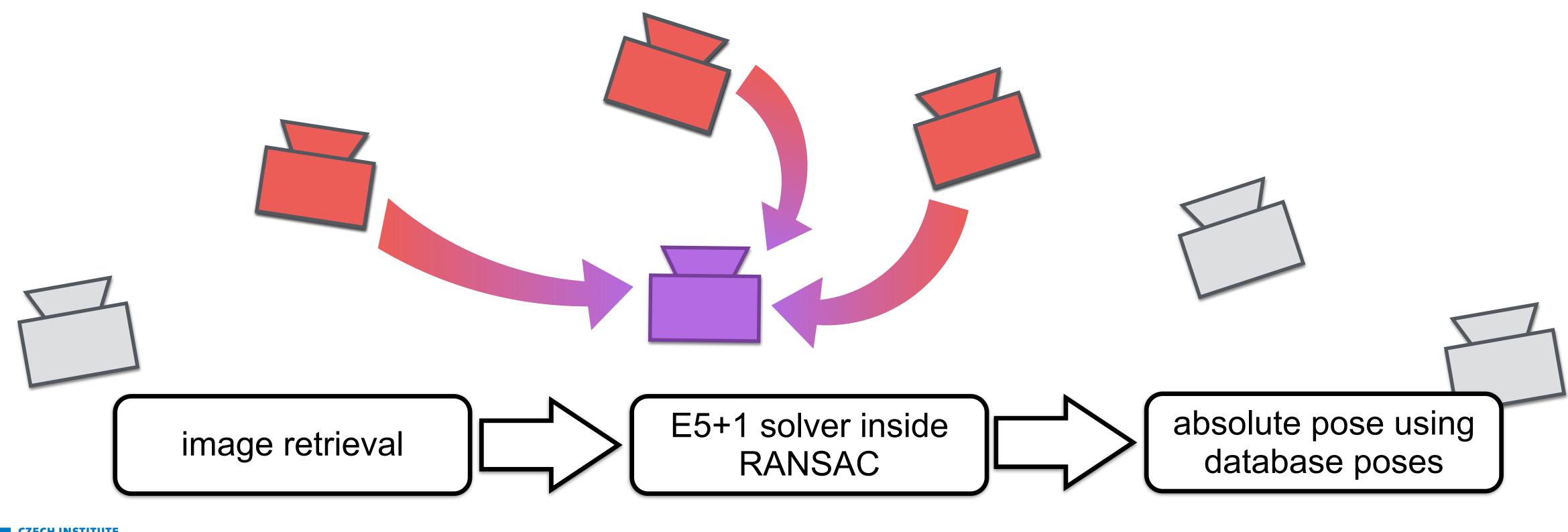
X Accuracy depends on initialization **X** Basis of convergence limited **X** Can be quite slow



Structure-Less Visual Localization

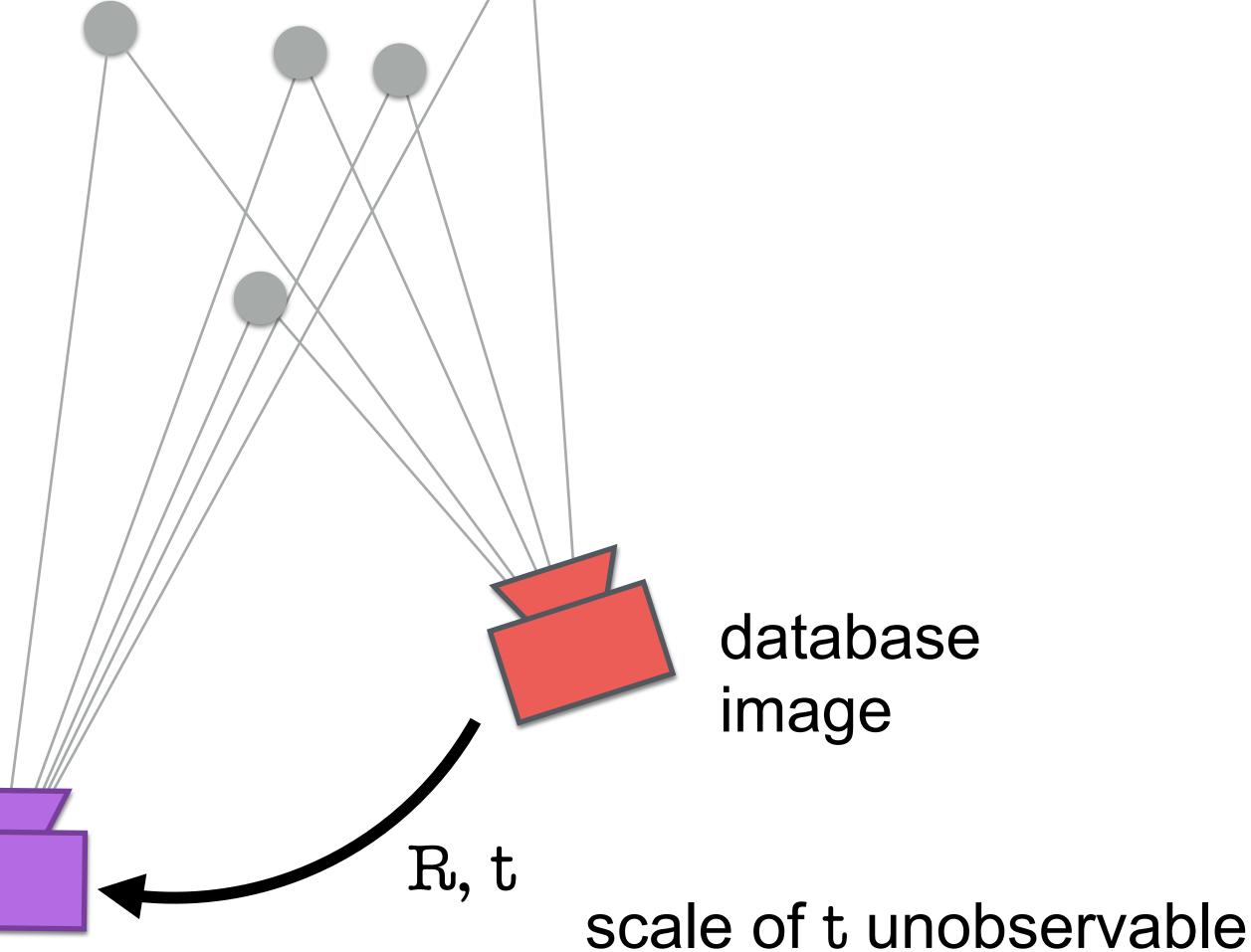
Scene representation: images with known poses, no 3D points

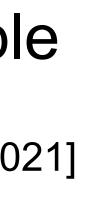
- Easy to update: just add / remove image and pose from database
- \checkmark Extract features on the fly, easy to use new feature type



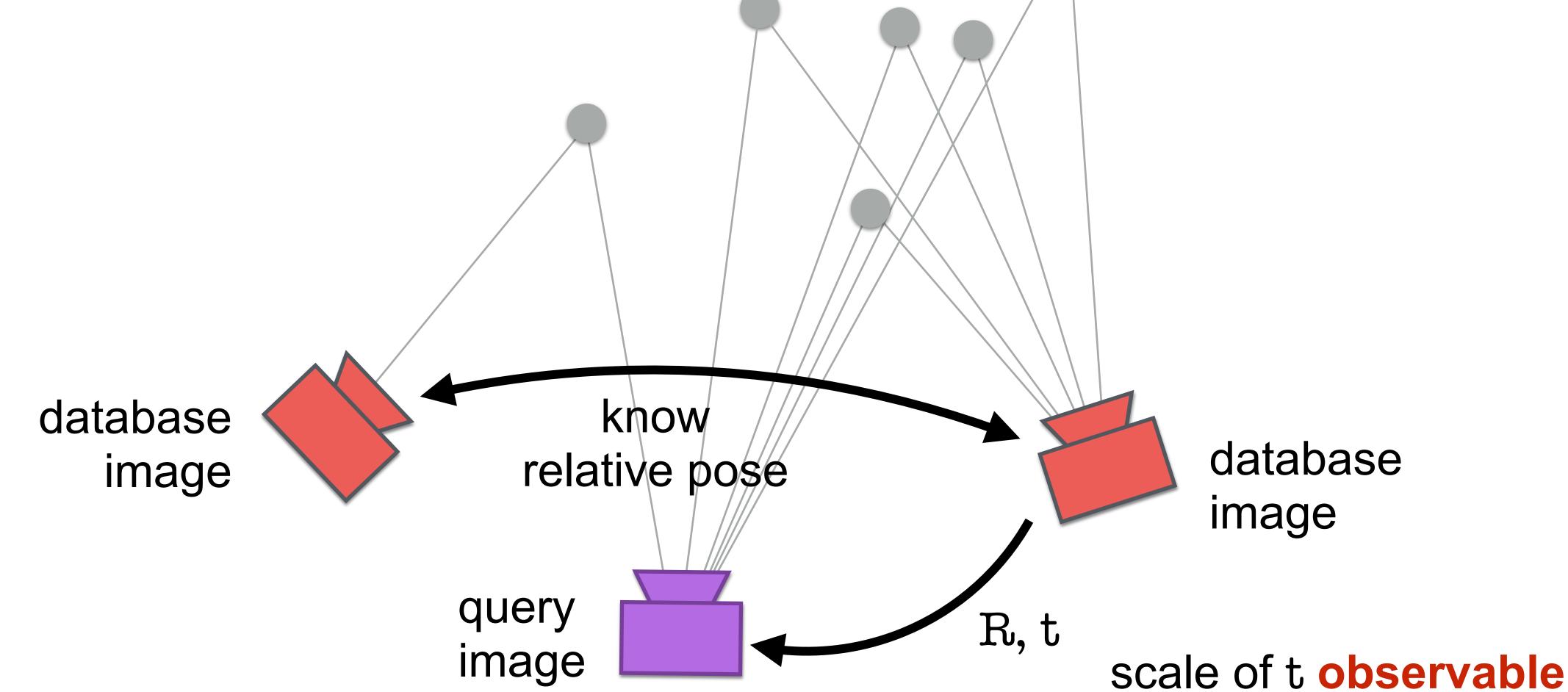
Semi-Generalized Relative Pose Estimation E5+1 (Essential Matrix + 1) solver

[Zheng, Wu, Structure from Motion Using Structure-less Resection, ICCV 2015] [Bhayani, Sattler, Barath, Beliansky, Heikkila, Kukelova, Calibrated and Partially Calibrated Semi-Generalized Homographies, ICCV 2021]





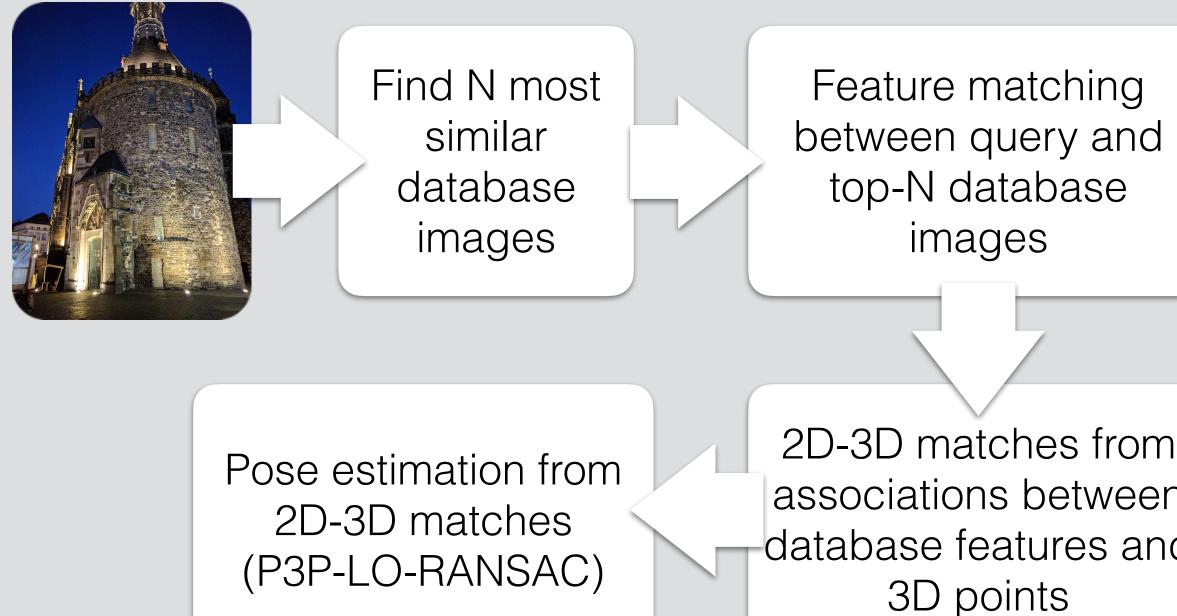
Semi-Generalized Relative Pose Estimation E5+1 (Essential Matrix + 1) solver

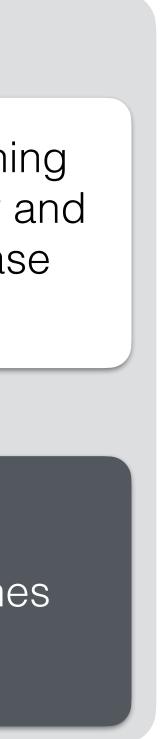


[Zheng, Wu, Structure from Motion Using Structure-less Resection, ICCV 2015] [Bhayani, Sattler, Barath, Beliansky, Heikkila, Kukelova, Calibrated and Partially Calibrated Semi-Generalized Homographies, ICCV 2021]

Structure-Based vs. Structure-Less Localization Structure-Less Localization Find N most Find N most Feature matching Feature matching between query and between query and similar similar top-N database database top-N database database images images images images 2D-3D matches from Pose estimation from Pose estimation from associations between 2D-2D matches 2D-3D matches 2D-3D matches database features and (E5+1-LO-RANSAC) (P3P-LO-RANSAC) 3D points

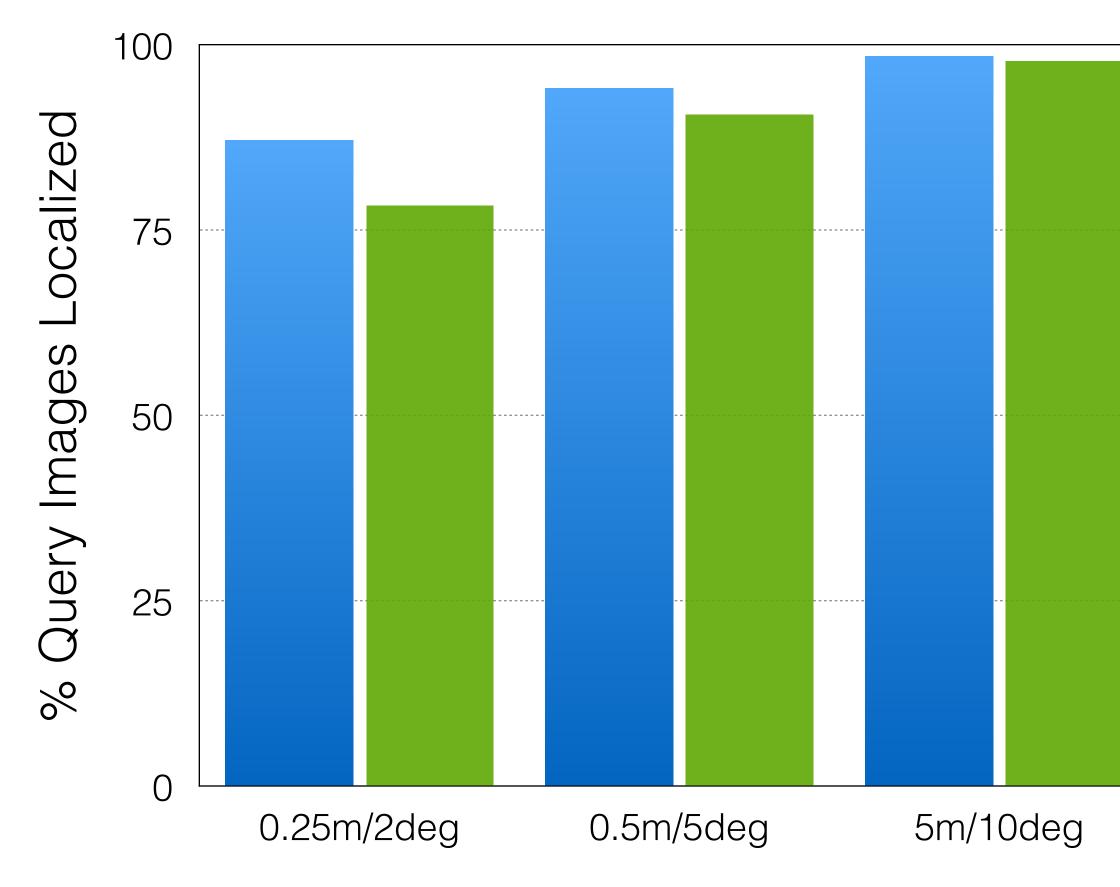
Structure-Based Localization



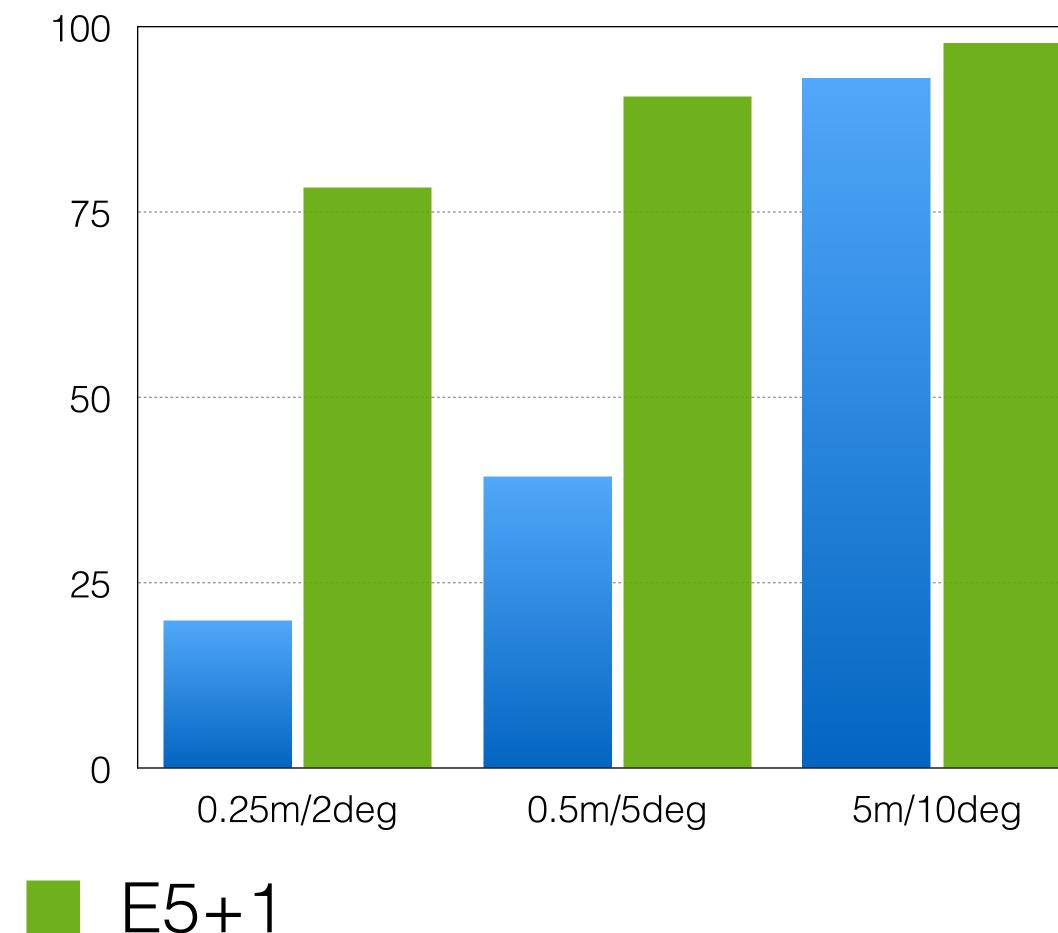


Structure-Based vs. Structure-Less Localization

Accurate 3D Mesh



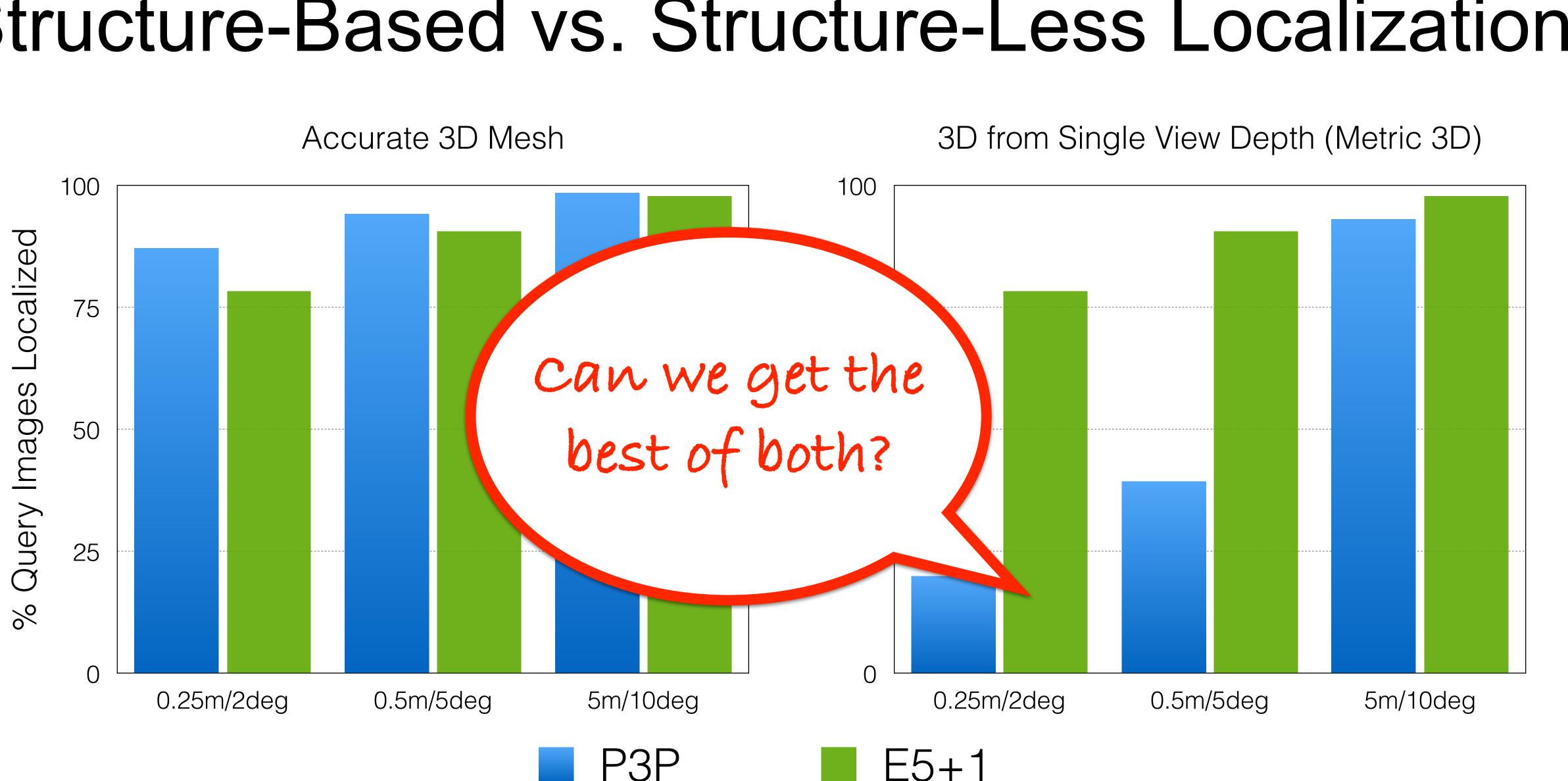
3D from Single View Depth (Metric 3D)



Torsten Sattler

27

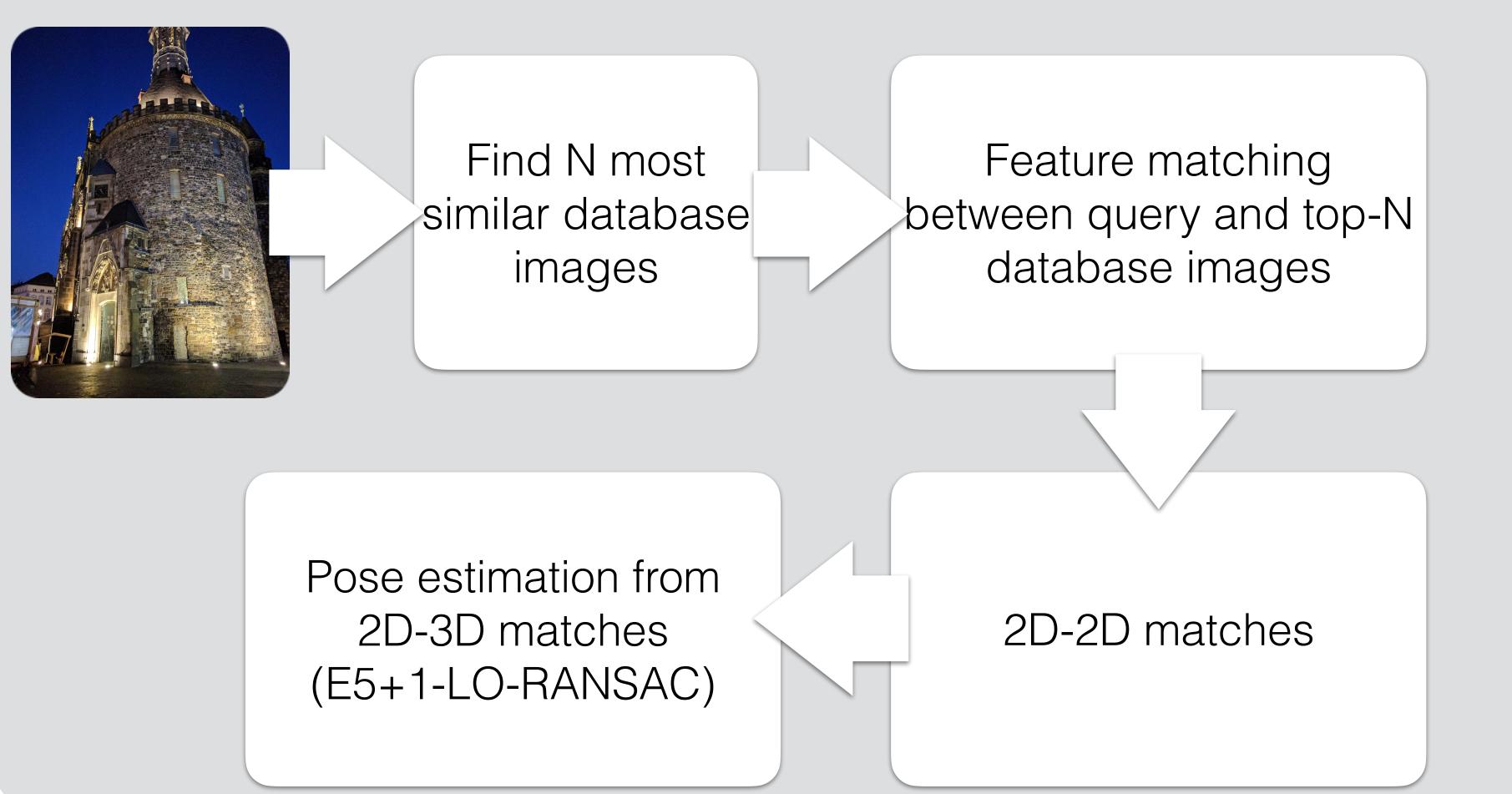
Structure-Based vs. Structure-Less Localization



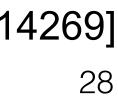
Torsten Sattler

27

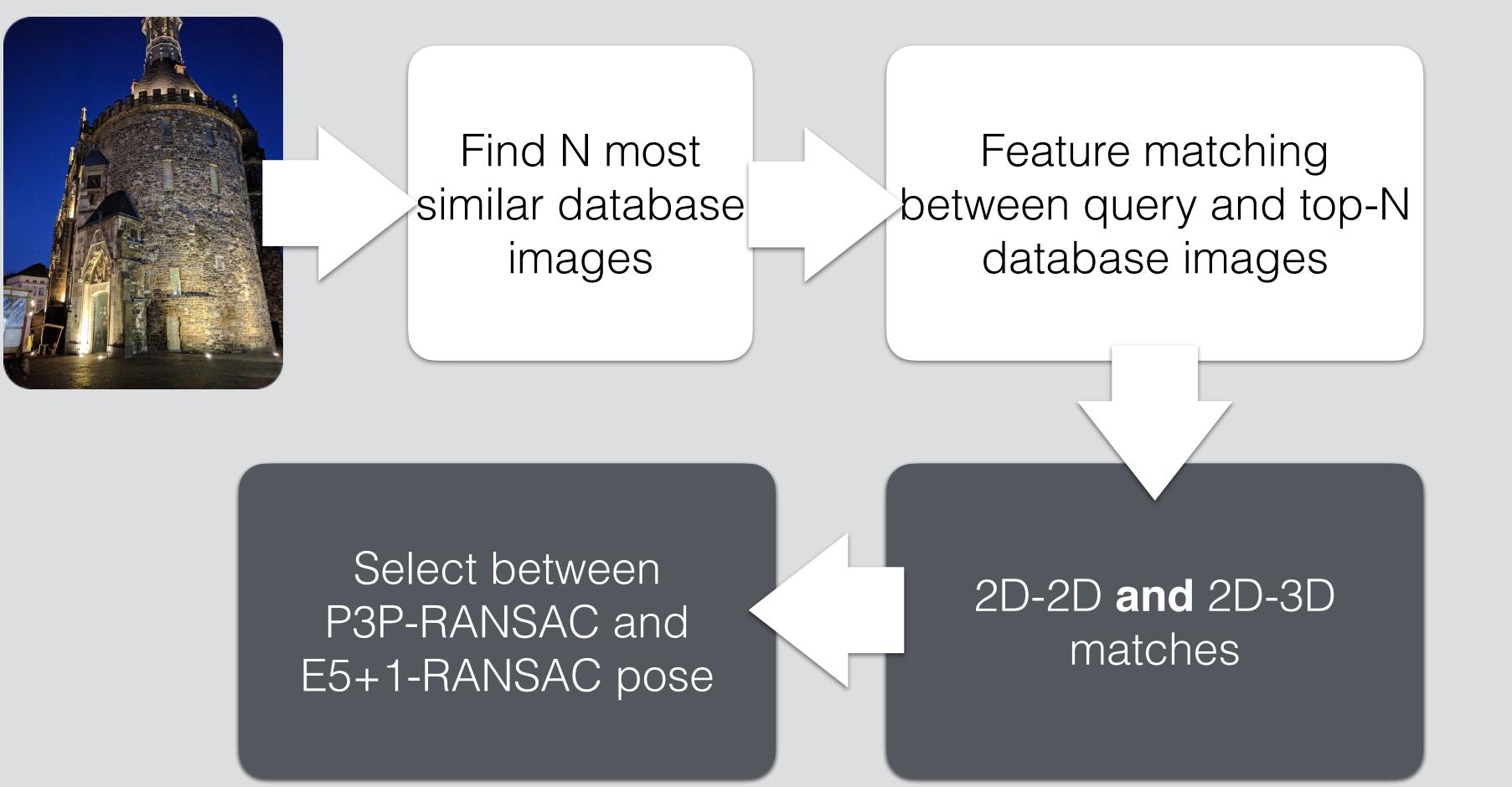
An Adaptive Strategy



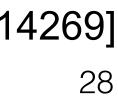
[Panek, Sattler, Kukelova, Combining Absolute and Semi-Generalized Relative Poses for Visual Localization, arXiv:2409.14269] Torsten Sattler



An Adaptive Strategy

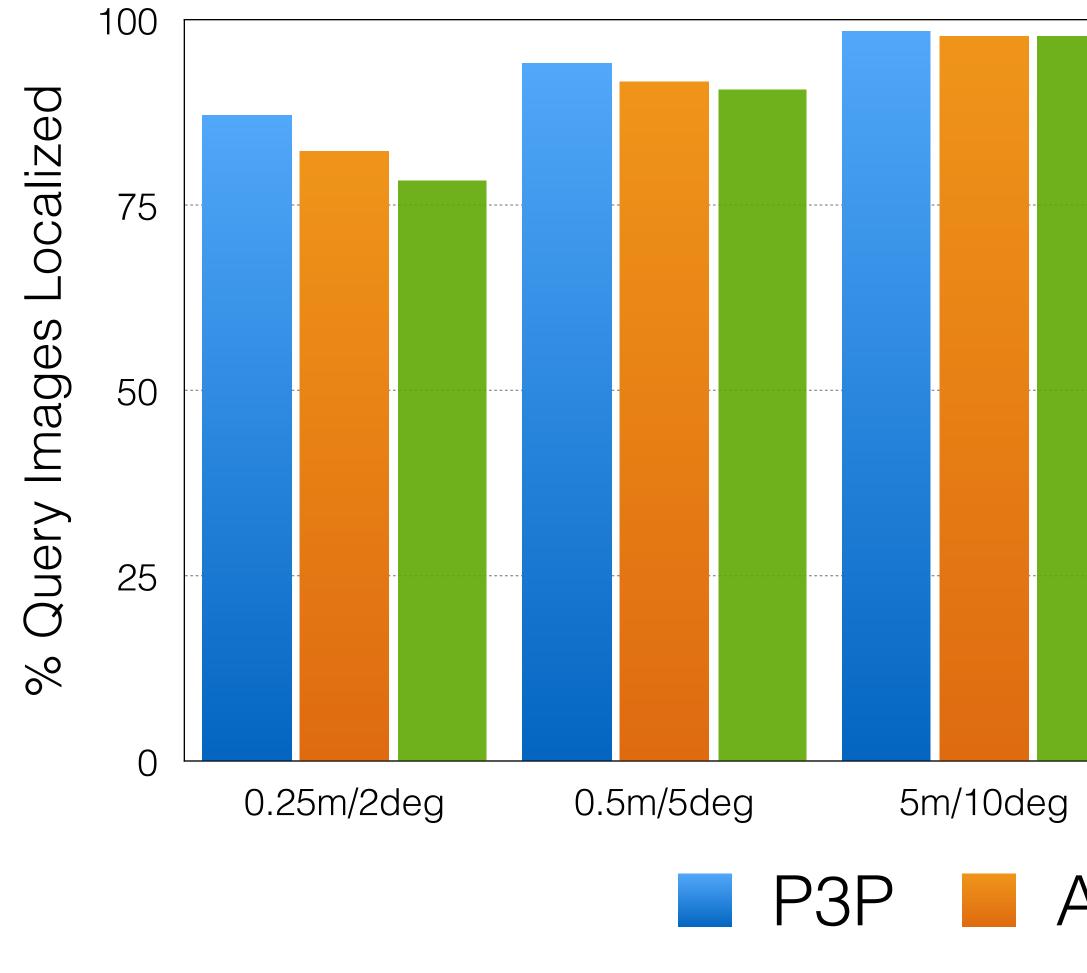


[Panek, Sattler, Kukelova, Combining Absolute and Semi-Generalized Relative Poses for Visual Localization, arXiv:2409.14269] Torsten Sattler



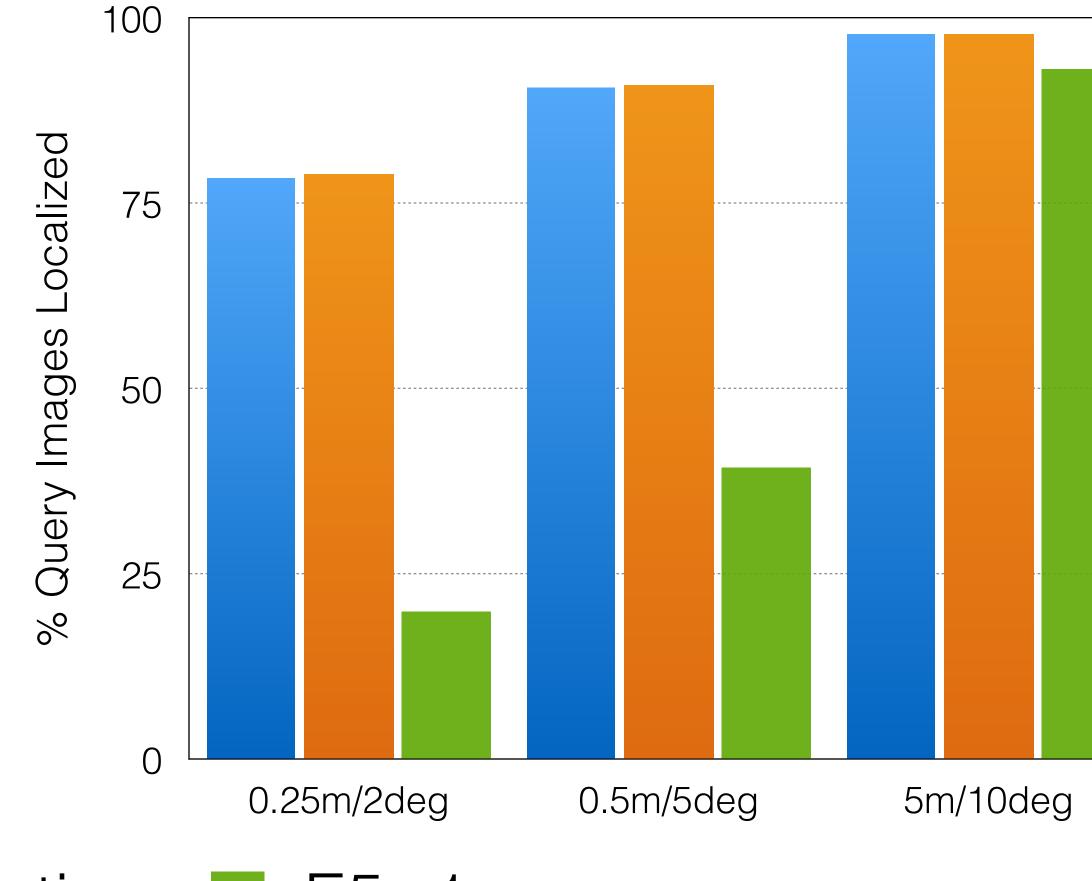
Structure-Less vs. Structure-Based Localization

Accurate 3D Mesh

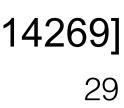


[Panek, Sattler, Kukelova, Combining Absolute and Semi-Generalized Relative Poses for Visual Localization, arXiv:2409.14269] **OF INFORMATICS** ROBOTICS AND CYBERNETICS Torsten Sattler

3D from Single View Depth (Metric 3D)

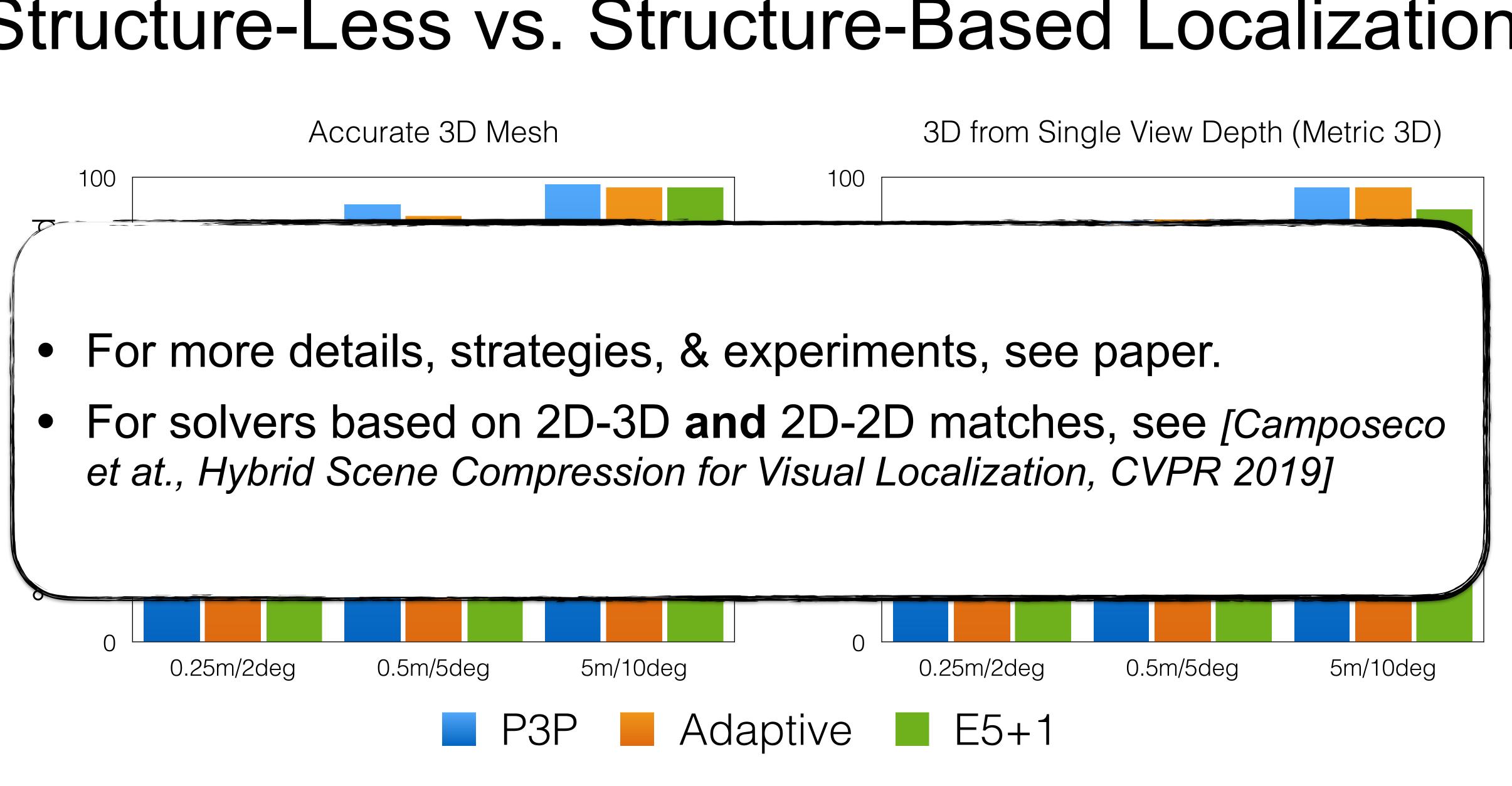


P3P Adaptive E5+1

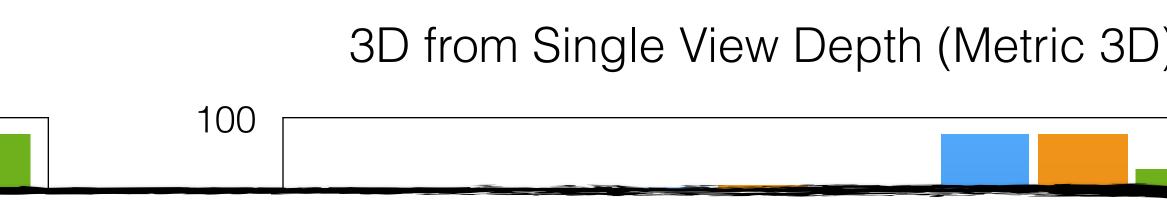


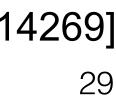
Structure-Less vs. Structure-Based Localization

Accurate 3D Mesh

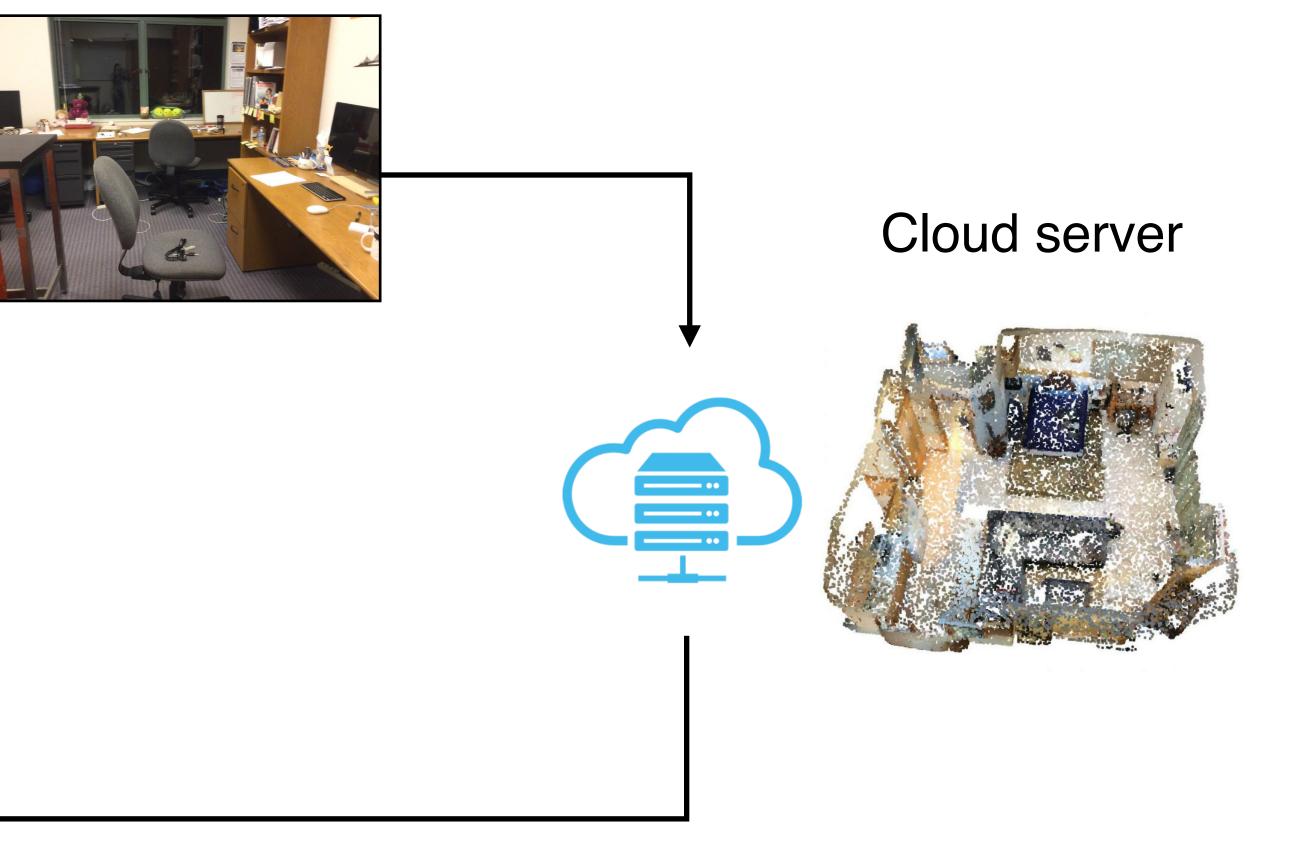


[Panek, Sattler, Kukelova, Combining Absolute and Semi-Generalized Relative Poses for Visual Localization, arXiv:2409.14269] **OF INFORMATICS ROBOTICS AND CYBERNETICS** Torsten Sattler





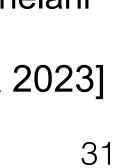
Query image



Camera Pose

[Chelani, Sattler, Kahl, Kukelova. Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses, CVPR 2023]

slide credit: Kunal Chelani

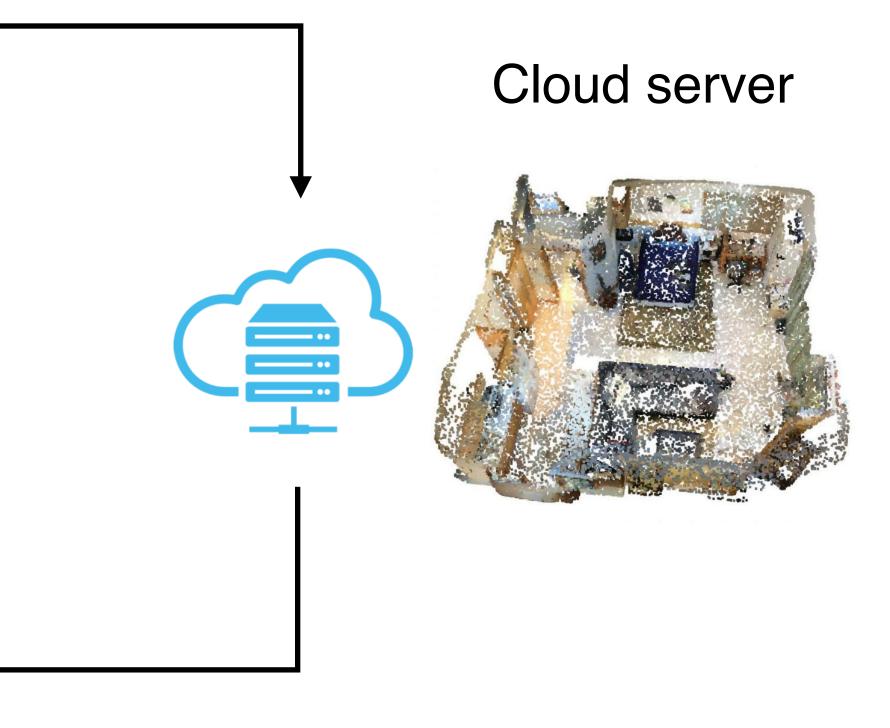


Query image

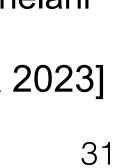
Camera Pose

[Chelani, Sattler, Kahl, Kukelova. Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses, CVPR 2023]

Malícious server might learn private details from images. Send features instead?



slide credit: Kunal Chelani



Privacy Issues in Visual Localization

SfM Point Cloud: Scene 1 (NYU)

[Pittaluga, Koppal, Kang, Sinha, Revealing Scenes by Inverting Structure From Motion Reconstructions, CVPR 2019] Torsten Sattler

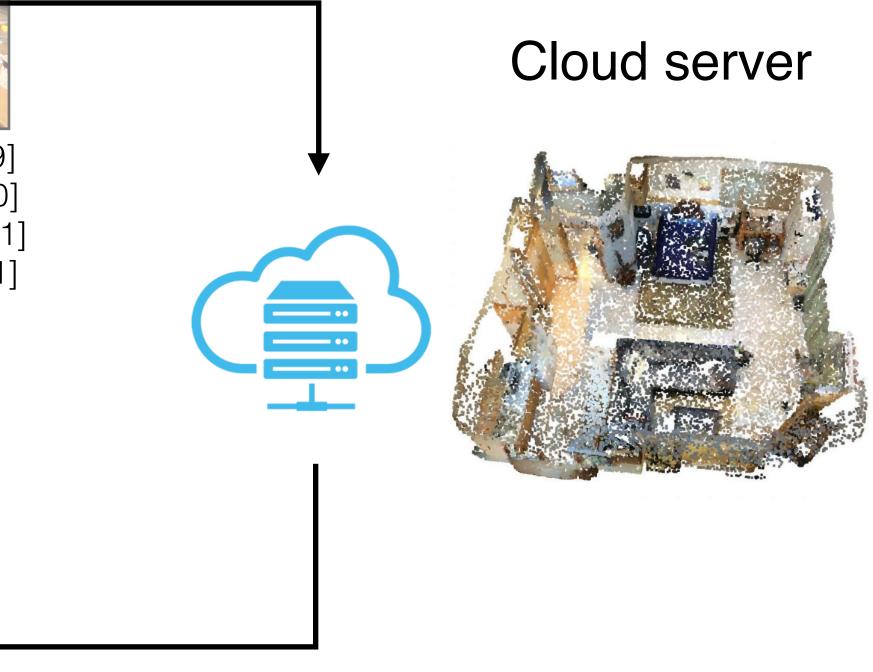
Query image

[Speciale et al., ICCV 2019] [Geppert et al., ECCV 2020] [Dusmanu et al., CVPR 2021] [Geppert et al., CVPR 2021] [Ng et al., CVPR 2022] [Pan et al., ICCV 2023]

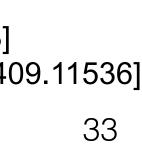
Camera Pose

[Chelani, Sattler, Kahl, Kukelova. Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses, CVPR 2023] [Chelani, Benbihi, Kahl, Sattler, Kukelova, Obfuscation Based Privacy Preserving Representations are Recoverable Using Neighborhood Information, arXiv:2409.11536]

Malícious server might learn private details



slide credit: Kunal Chelani



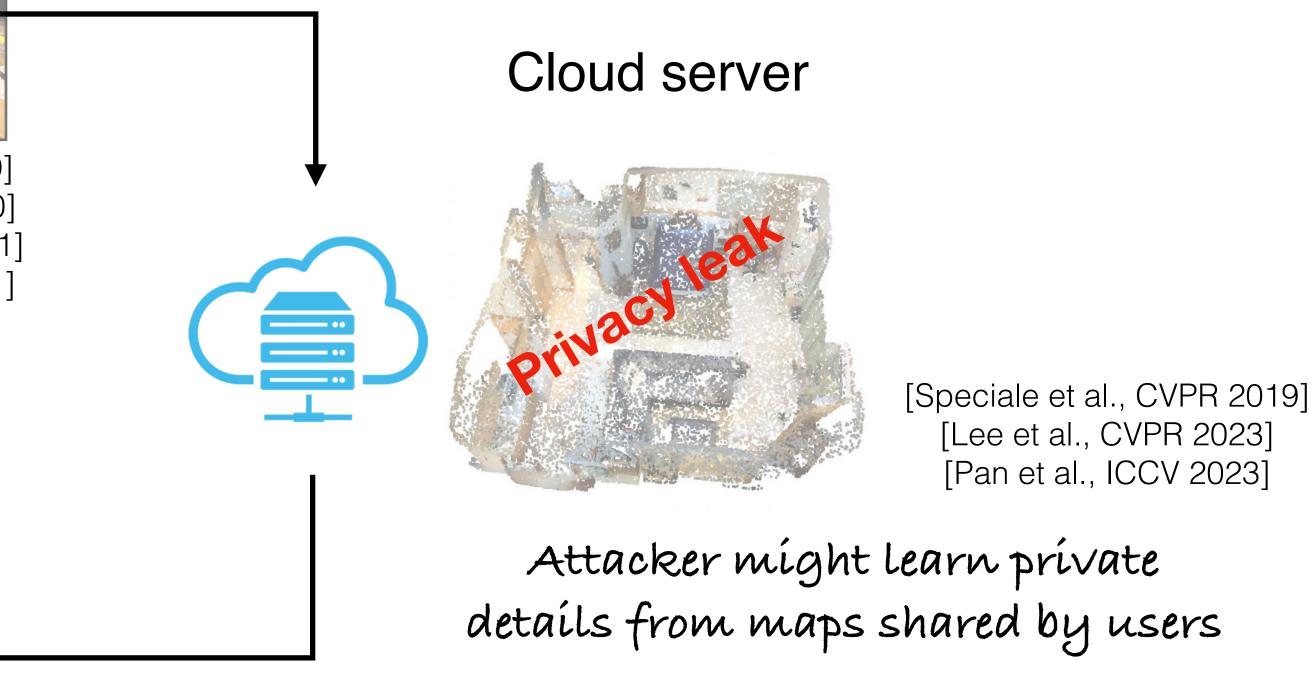
Query image

[Speciale et al., ICCV 2019] [Geppert et al., ECCV 2020] [Dusmanu et al., CVPR 2021] [Geppert et al., CVPR 2021] [Ng et al., CVPR 2022] [Pan et al., ICCV 2023]

Camera Pose

[Chelani, Sattler, Kahl, Kukelova. Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses, CVPR 2023] [Chelani, Benbihi, Kahl, Sattler, Kukelova, Obfuscation Based Privacy Preserving Representations are Recoverable Using Neighborhood Information, arXiv:2409.11536]

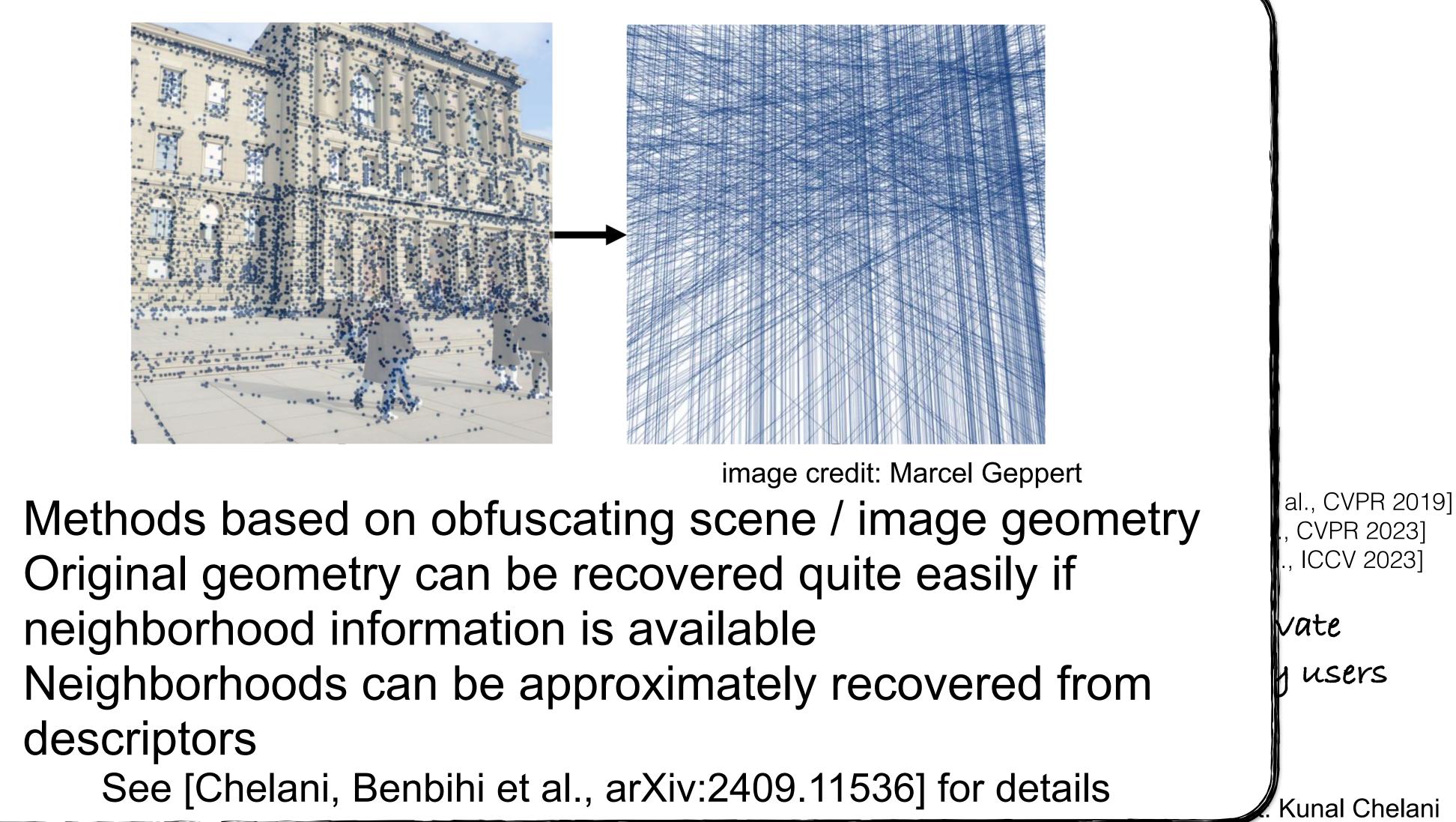
Malícíous server might learn private details



slide credit: Kunal Chelani

Torsten Sattler

33



- - descriptors

[Chelani, Sattler, Kahl, Kukelova. Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses, CVPR 2023] [Chelani, Benbihi, Kahl, Sattler, Kukelova, Obfuscation Based Privacy Preserving Representations are Recoverable Using Neighborhood Information, arXiv:2409.11536]

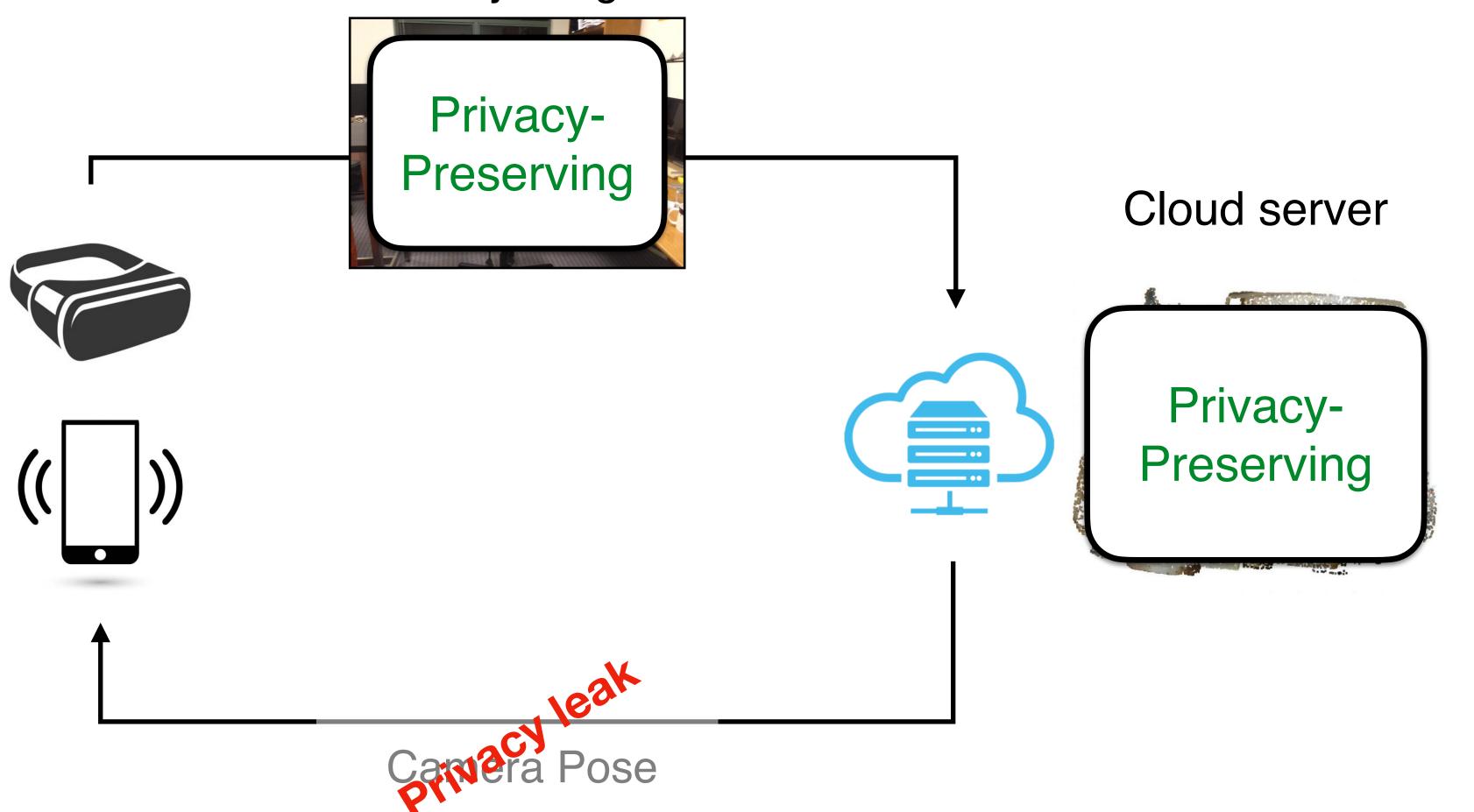
What About Privacv?

Torsten Sattler

33

Are Privacy-Preserving Representations Enough?

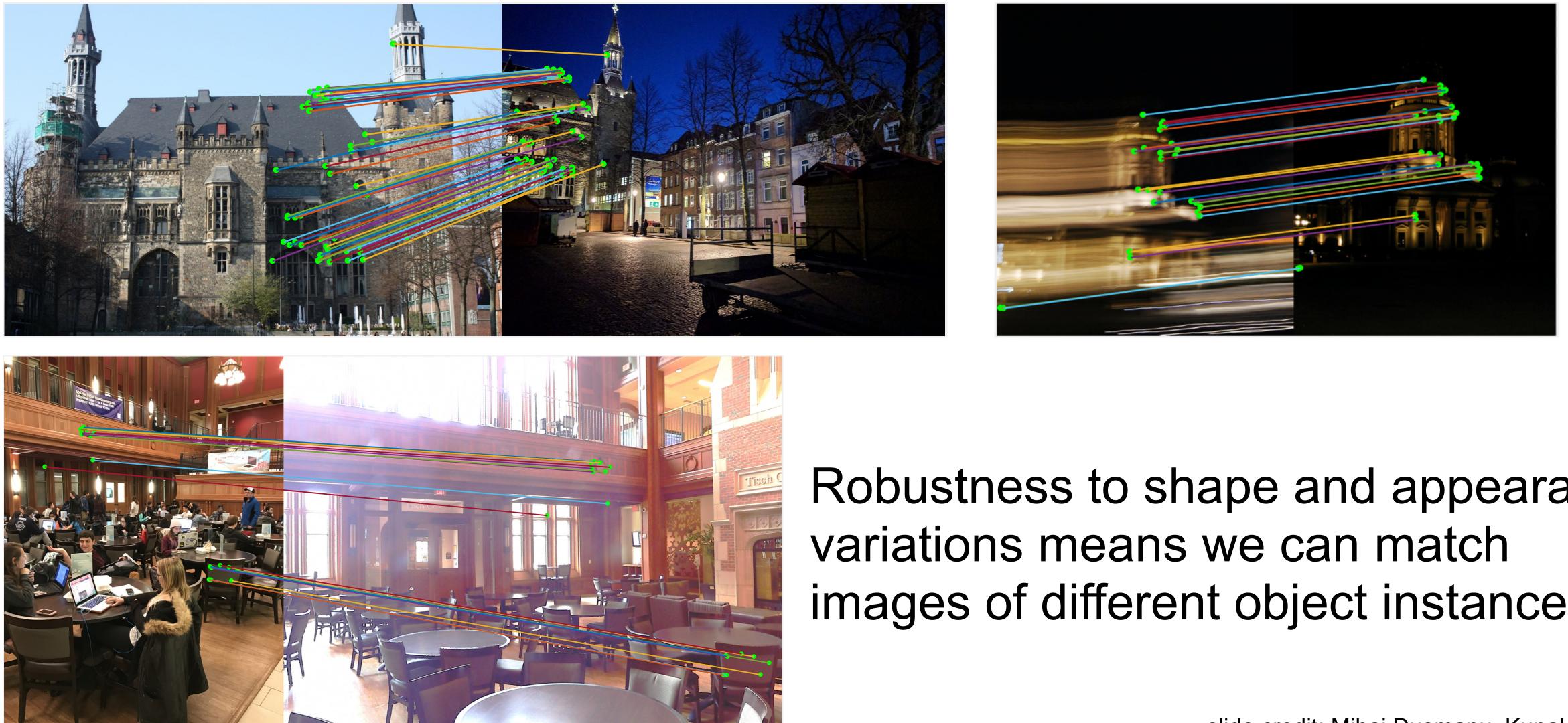
Query image



[Chelani, Sattler, Kahl, Kukelova. Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses, CVPR 2023]

slide credit: Kunal Chelani

The Downside of Robust Localization



slide credit: Mihai Dusmanu, Kunal Chelani [Dusmanu, Rocco, Pajdla, Pollefeys, Sivic, Torii, Sattler, D2-Net: A Trainable CNN for Joint Detection and Description of Local Features, CVPR 2019] **OF INFORMATICS** Torsten Sattler

Robustness to shape and appearance images of different object instances

Recovering Scene Content from Camera Poses

input: image sequence of object (e.g., from Internet)

Attacker runs SfM to get camera poses

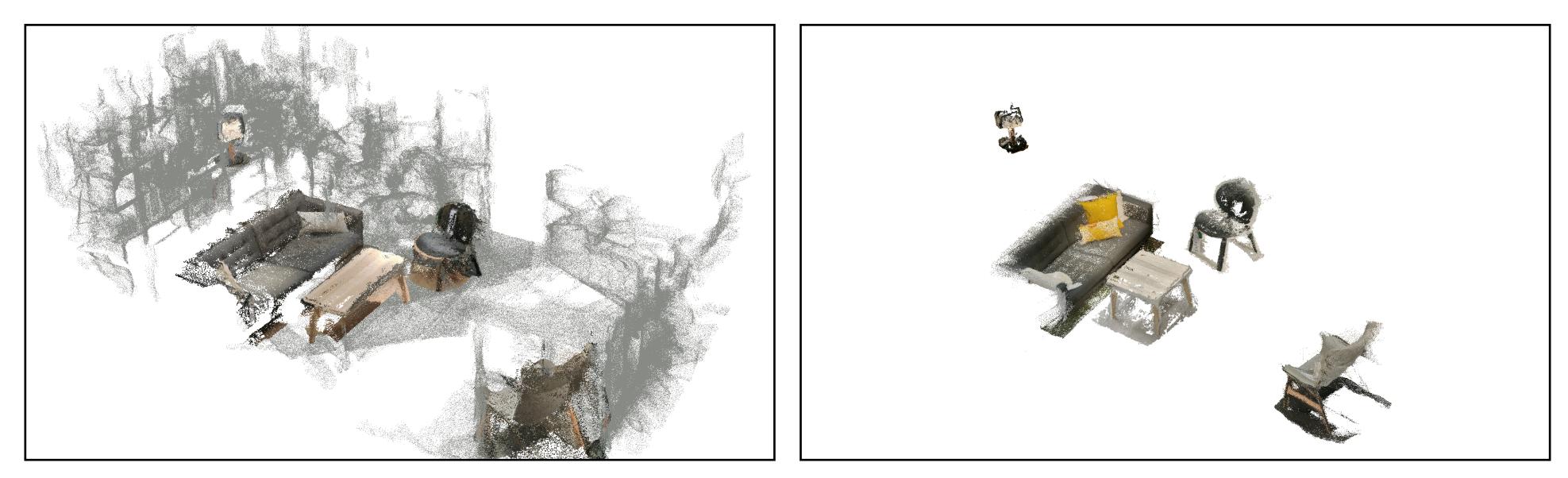
Camera poses returned by the server

[Chelani, Sattler, Kahl, Kukelova. Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses, CVPR 2023]

Object position from pose alignment

slide credit: Kunal Chelani

Qualitative Results



Actual scene with highlighted objects

[Chelani, Sattler, Kahl, Kukelova. Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses, CVPR 2023] OF INFORMATICS ROBOTICS AND Torsten Sattler

slide credit: Kunal Chelani

Roughly reconstructed scene

estimation, starting in 2025

- temporal 3D mapping

Open Positions

 Open PhD & PostDoc position on camera geometry Contact: <u>kukelova@gmail.com</u>

 One open postdoc positions on privacy-preserving / Open PhD position on visual localization Contact: <u>torsten.sattler@cvut.cz</u>

