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The Visual Localization Problem

2

Compute exact position and orientation of query image
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Applications: Augmented Reality

3

[Middelberg, Sattler, Untzelmann, Kobbelt, Scalable 6-
DOF Localization on Mobile Devices, ECCV 2014] AR navigation in Google Maps
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Applications: Performance Capture

4

[Guzov*, Mir*, Sattler, Pons-Moll, Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization  
in Large Scenes from Body-Mounted Sensors, CVPR 2021]

slide credit: Vladimir Guzov, Aymen Mir
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Applications: Visual Localization for Modeling Interactions

[Guzov, Chibane, Marin, He, Sattler, Pons-Moll, Interaction Replica: Tracking human–object interaction and scene changes from human motion, arXiv 2023]

slide credit: Vladimir Guzov
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Visual Localization - A Taxonomy

6

3D structure-based representation image-based representation

image 
retrieval

pose 
interpolation

[Torii et al., ICCVW’11]

absolute pose regression
relative pose regression [Kendall et al., ICCV’15]

[Laskar et al., CVPRW’17] [Balntas et al., ECCV’18]

[Zhang & Kosecka, 3DPVT’06]
pose triangulation

semi-generalized      
[Zheng & Wu, ICCV’15] [Bhayani et al., ICCV’21]

hybrid pose estimation
[Camposeco et al., ICCV’21]

scene coordinate regression
[Shotton et al., CVPR’13]

feature-based localization
[Se et al., IROS’02]

hierarchical localization
[Irschara et al., CVPR’09]

pose refinement
[Von Sturmberg et al., RA-L’20]

hybrid

/ homographyrelative pose
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Visual Localization - A Taxonomy
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Classical Representation: SfM Point Clouds

Torsten Sattler

3D point triangulated from ≥ 2 images: 
3D position + local feature descriptors

Pose estimation from 2D-3D 
correspondences

For new query image: 
Establish 2D-3D matches via 

feature matching
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Classical Representation: SfM Point Clouds

Torsten Sattler

3D point triangulated from ≥ 2 images: 
3D position + local feature descriptors

Pose estimation from 2D-3D 
correspondences

SIFT 
(1999)

P3P (≤1773) 
RANSAC (1981)

For new query image: 
Establish 2D-3D matches via 

feature matching

kd-trees (1975), 
BoW (2003/4)
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Classical Representation: SfM Point Clouds

10Torsten Sattler
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Classical Representation: SfM Point Clouds

Advantages: 
✔ Efficient 
✔ Scalable 

✔ Quite robust to condition changes 
✔  Easily compressible

Disadvantages: 
✘ Specialized & sparse representation 

✘ Needs to be recomputed when 
changing features

10Torsten Sattler
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online

Pose estimation from 
2D-3D matches 

(P3P-LO-RANSAC)

SfM-based vs. Mesh-based Localization

11

offline (input: posed images)
Extract features 
from database 

images

Find N most 
similar 

database 
images

Feature matching 
between query and 

top-N database 
images

2D-3D matches from 
associations between 
database features and 

3D points

[Panek, Kukelova, Sattler, MeshLoc: Mesh-Based Visual Localization, ECCV 2022]

Match features 
between 

database images

Triangulate 
scene 

structure

offline (input: posed images)

3D reconstruction

online

Pose estimation from 
2D-3D matches 

(P3P-LO-RANSAC)

Find N most 
similar 

database 
images

Feature matching 
between query and 

top-N database 
images

2D-3D matches from 
depth maps
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online

Pose estimation from 
2D-3D matches 

(P3P-LO-RANSAC)

SfM-based vs. Mesh-based Localization

11

offline (input: posed images)
Extract features 
from database 

images

Find N most 
similar 

database 
images

Feature matching 
between query and 

top-N database 
images

2D-3D matches from 
associations between 
database features and 

3D points

[Panek, Kukelova, Sattler, MeshLoc: Mesh-Based Visual Localization, ECCV 2022]

Match features 
between 

database images

Triangulate 
scene 

structure

offline (input: posed images)

3D reconstruction

online

Pose estimation from 
2D-3D matches 

(P3P-LO-RANSAC)

Find N most 
similar 

database 
images

Feature matching 
between query and 

top-N database 
images

2D-3D matches from 
depth maps

Feature matching 
between query and 
top-N re-rendered 
database images

Any renderable 
representation works, 

including NeRFs and Gaussian 
Splatting
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Matching Against Rendered Images

12
[Panek, Kukelova, Sattler, MeshLoc: Mesh-Based Visual Localization, ECCV 2022]
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Matching Against Rendered Images

12
[Panek, Kukelova, Sattler, MeshLoc: Mesh-Based Visual Localization, ECCV 2022]

ALIKED features [Zhao et al., IEEE TIM 2023] with LightGlue [Lindenberger et al., ICCV 2023] 
matcher not trained on renderings
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Matching Against Raw Geometry

13
[Panek, Kukelova, Sattler, MeshLoc: Mesh-Based Visual Localization, ECCV 2022]
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Matching Against Raw Geometry

13
[Panek, Kukelova, Sattler, MeshLoc: Mesh-Based Visual Localization, ECCV 2022]

ALIKED features [Zhao et al., IEEE TIM 2023] with LightGlue [Lindenberger et al., ICCV 2023] 
matcher not trained on renderings
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Matching Against Raw Geometry

14
[Panek, Kukelova, Sattler, MeshLoc: Mesh-Based Visual Localization, ECCV 2022]
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Matching Against Raw Geometry

14
[Panek, Kukelova, Sattler, MeshLoc: Mesh-Based Visual Localization, ECCV 2022]

sparsified dense RoMa matches [Edstedt et al., CVPR 2024] 
not trained on renderings
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Visual Localization using Internet Models

15
[Panek, Kukelova, Sattler, Visual Localization using Imperfect 3D Models from the Internet, CVPR 2023]

Notre Dame

Pantheon

Reichstag

St. Peter’s Square

St. Vitus Cathedral
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Benchmarking Visual Localization using Internet Models

16

slide credit: Vojtech Panek

[Panek, Kukelova, Sattler, Visual Localization using Imperfect 3D Models from the Internet, CVPR 2023]
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Visual Localization - A Taxonomy
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3D structure-based representation image-based representation

image 
retrieval

pose 
interpolation

[Torii et al., ICCVW’11]

absolute pose regression
relative pose regression [Kendall et al., ICCV’15]

[Laskar et al., CVPRW’17] [Balntas et al., ECCV’18]

[Zhang & Kosecka, 3DPVT’06]
pose triangulation

semi-generalized      
[Zheng & Wu, ICCV’15] [Bhayani et al., ICCV’21]

hybrid pose estimation
[Camposeco et al., ICCV’21]

scene coordinate regression
[Shotton et al., CVPR’13]

feature-based localization
[Se et al., IROS’02]

hierarchical localization
[Irschara et al., CVPR’09]

pose refinement
[Von Sturmberg et al., RA-L’20]

hybrid

/ homographyrelative pose
2.
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Scene Representation (mesh, 3DGS, NeRF, etc.)

18

Visual Localization via Render&Compare

[Gabriele Trivigno, Carlo Masone, Barbara Caputo, Sattler, The Unreasonable Effectiveness of Pre-Trained Features for Camera Pose Refinement, CVPR 2024] (highlight)

slide credit: Gabriele Trivigno
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Scene Representation (mesh, 3DGS, NeRF, etc.)

18

Visual Localization via Render&Compare

[Gabriele Trivigno, Carlo Masone, Barbara Caputo, Sattler, The Unreasonable Effectiveness of Pre-Trained Features for Camera Pose Refinement, CVPR 2024] (highlight)

slide credit: Gabriele Trivigno

How?
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Jointly Training Representation and Features

[Maxime Pietrantoni, Gabriela Csurka, Martin Humenberger, Sattler, Self-supervised learning of Neural implicit Feature Fields for Camera Pose Refinement, 3DV 2024]

Makes sense if 
representation not 

already given 
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The Unreasonable Effectiveness of Pre-Trained Features

slide credit: Gabriele Trivigno

• Dense deep features are known to be good estimators of perceptual similarity

• This property can be exploited to measure pose similarity as well 
• Feature depth is correlated with the sensitivity → hierarchical scheme

[Gabriele Trivigno, Carlo Masone, Barbara Caputo, Sattler, The Unreasonable Effectiveness of Pre-Trained Features for Camera Pose Refinement, CVPR 2024]
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The Unreasonable Effectiveness of Pre-Trained Features

[Gabriele Trivigno, Carlo Masone, Barbara Caputo, Sattler, The Unreasonable Effectiveness of Pre-Trained Features for Camera Pose Refinement, CVPR 2024]

slide credit: Gabriele Trivigno

Dense deep features are quite robust to domain changes
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Pose Refinement based on Rendering

Advantages: 
✔ Improves good initial poses 

✔ Can handle poor geometry (depth not 
directly used)

Disadvantages: 
✘ Accuracy depends on initialization 

✘ Basis of convergence limited 
✘ Can be quite slow

22Torsten Sattler
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Visual Localization - A Taxonomy
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Structure-Less Visual Localization

24

Scene representation: images with known poses, no 3D points
✓ Easy to update: just add / remove image and pose from database
✓ Extract features on the fly, easy to use new feature type

image retrieval E5+1 solver inside 
RANSAC

absolute pose using 
database poses
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Semi-Generalized Relative Pose Estimation

25

[Zheng, Wu, Structure from Motion Using Structure-less Resection, ICCV 2015] 
[Bhayani, Sattler, Barath, Beliansky, Heikkila, Kukelova, Calibrated and Partially Calibrated Semi-Generalized Homographies, ICCV 2021] 

E5+1 (Essential Matrix + 1) solver

R, t 
scale of t unobservable

database 
image

query 
image
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Semi-Generalized Relative Pose Estimation

25

[Zheng, Wu, Structure from Motion Using Structure-less Resection, ICCV 2015] 
[Bhayani, Sattler, Barath, Beliansky, Heikkila, Kukelova, Calibrated and Partially Calibrated Semi-Generalized Homographies, ICCV 2021] 

E5+1 (Essential Matrix + 1) solver

R, t 

database 
image

query 
image

database 
image

know 
relative pose

scale of t observable
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Structure-Based Localization

Pose estimation from 
2D-3D matches 

(P3P-LO-RANSAC)

Structure-Based vs. Structure-Less Localization

26

Find N most 
similar 

database 
images

Feature matching 
between query and 

top-N database 
images

2D-3D matches from 
associations between 
database features and 

3D points

Structure-Less Localization

Pose estimation from 
2D-3D matches 

(E5+1-LO-RANSAC)

Find N most 
similar 

database 
images

Feature matching 
between query and 

top-N database 
images

2D-2D matches
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Structure-Based vs. Structure-Less Localization
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3D from Single View Depth (Metric 3D) 
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Structure-Based vs. Structure-Less Localization
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3D from Single View Depth (Metric 3D) 
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Can we get the 
best of both?



Torsten Sattler

An Adaptive Strategy

28
[Panek, Sattler, Kukelova, Combining Absolute and Semi-Generalized Relative Poses for Visual Localization, arXiv:2409.14269]

Pose estimation from 
2D-3D matches 

(E5+1-LO-RANSAC)

Find N most 
similar database 

images

Feature matching 
between query and top-N 

database images

2D-2D matches
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An Adaptive Strategy

28
[Panek, Sattler, Kukelova, Combining Absolute and Semi-Generalized Relative Poses for Visual Localization, arXiv:2409.14269]

Pose estimation from 
2D-3D matches 

(E5+1-LO-RANSAC)

Find N most 
similar database 

images

Feature matching 
between query and top-N 

database images

2D-2D matches
Select between 

P3P-RANSAC and 
E5+1-RANSAC pose

2D-2D and 2D-3D 
matches
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Structure-Less vs. Structure-Based Localization

29

3D from Single View Depth (Metric 3D) 
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[Panek, Sattler, Kukelova, Combining Absolute and Semi-Generalized Relative Poses for Visual Localization, arXiv:2409.14269]
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Structure-Less vs. Structure-Based Localization
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3D from Single View Depth (Metric 3D) 
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[Panek, Sattler, Kukelova, Combining Absolute and Semi-Generalized Relative Poses for Visual Localization, arXiv:2409.14269]

• For more details, strategies, & experiments, see paper. 
• For solvers based on 2D-3D and 2D-2D matches, see [Camposeco 

et at., Hybrid Scene Compression for Visual Localization, CVPR 2019]
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What About Privacy?
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What About Privacy?

[Chelani, Sattler, Kahl, Kukelova. Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses, CVPR 2023]

slide credit: Kunal Chelani

Camera Pose

Cloud server

Query image
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What About Privacy?

[Chelani, Sattler, Kahl, Kukelova. Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses, CVPR 2023]

slide credit: Kunal Chelani

Camera Pose

Cloud server

Query image

Privacy leak

Privacy leak
Malicious server might learn 
private details from images. 

Send features instead?
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Privacy Issues in Visual Localization

32

[Pittaluga, Koppal, Kang, Sinha, Revealing Scenes by Inverting Structure From Motion Reconstructions, CVPR 2019]
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What About Privacy?

[Chelani, Sattler, Kahl, Kukelova. Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses, CVPR 2023] 
[Chelani, Benbihi, Kahl, Sattler, Kukelova, Obfuscation Based Privacy Preserving Representations are Recoverable Using Neighborhood Information, arXiv:2409.11536]

slide credit: Kunal Chelani

Camera Pose

Cloud server

Query image

Privacy leak

Privacy leak

[Speciale et al., ICCV 2019] 
[Geppert et al., ECCV 2020] 
[Dusmanu et al., CVPR 2021] 
[Geppert et al., CVPR 2021] 

[Ng et al., CVPR 2022] 
[Pan et al., ICCV 2023]

Malicious server might learn 
private details
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What About Privacy?

[Chelani, Sattler, Kahl, Kukelova. Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses, CVPR 2023] 
[Chelani, Benbihi, Kahl, Sattler, Kukelova, Obfuscation Based Privacy Preserving Representations are Recoverable Using Neighborhood Information, arXiv:2409.11536]

slide credit: Kunal Chelani

Camera Pose

Cloud server

Query image

Privacy leak

Privacy leak

Privacy leak
[Speciale et al., ICCV 2019] 
[Geppert et al., ECCV 2020] 
[Dusmanu et al., CVPR 2021] 
[Geppert et al., CVPR 2021] 

[Ng et al., CVPR 2022] 
[Pan et al., ICCV 2023]

Malicious server might learn 
private details

Attacker might learn private 
details from maps shared by users

[Speciale et al., CVPR 2019] 
[Lee et al., CVPR 2023] 
[Pan et al., ICCV 2023]



Torsten Sattler 33

What About Privacy?

[Chelani, Sattler, Kahl, Kukelova. Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses, CVPR 2023] 
[Chelani, Benbihi, Kahl, Sattler, Kukelova, Obfuscation Based Privacy Preserving Representations are Recoverable Using Neighborhood Information, arXiv:2409.11536]

slide credit: Kunal Chelani

Camera Pose

Cloud server

Query image

Privacy leak

Privacy leak

Privacy leak
[Speciale et al., ICCV 2019] 
[Geppert et al., ECCV 2020] 
[Dusmanu et al., CVPR 2021] 
[Geppert et al., CVPR 2021] 

[Ng et al., CVPR 2022] 
[Pan et al., ICCV 2023]

Malicious server might learn 
private details

Attacker might learn private 
details from maps shared by users

[Speciale et al., CVPR 2019] 
[Lee et al., CVPR 2023] 
[Pan et al., ICCV 2023]

• Methods based on obfuscating scene / image geometry
• Original geometry can be recovered quite easily if 

neighborhood information is available
• Neighborhoods can be approximately recovered from 

descriptors
See [Chelani, Benbihi et al., arXiv:2409.11536] for details

image credit: Marcel Geppert
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Are Privacy-Preserving Representations Enough?

[Chelani, Sattler, Kahl, Kukelova. Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses, CVPR 2023]

slide credit: Kunal Chelani

Camera Pose

Cloud server

Query image

Privacy-
Preserving

Privacy-
Preserving

Privacy leak
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The Downside of Robust Localization

slide credit: Mihai Dusmanu, Kunal Chelani
[Dusmanu, Rocco, Pajdla, Pollefeys, Sivic, Torii, Sattler, D2-Net: A Trainable CNN for Joint Detection and Description of Local Features, CVPR 2019]

Robustness to shape and appearance 
variations means we can match 
images of different object instances
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Recovering Scene Content from Camera Poses

[Chelani, Sattler, Kahl, Kukelova. Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses, CVPR 2023]

slide credit: Kunal Chelani

input: 
image sequence of object 

(e.g., from Internet)

Attacker runs SfM to
get camera poses

Camera poses returned by
the server

Object position from pose 
alignment
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Qualitative Results

[Chelani, Sattler, Kahl, Kukelova. Privacy-Preserving Representations are not Enough: Recovering Scene Content from Camera Poses, CVPR 2023]

slide credit: Kunal Chelani

Actual scene with 
highlighted objects

Roughly reconstructed 
scene
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Open Positions

• Open PhD & PostDoc position on camera geometry 
estimation, starting in 2025 

• Contact: kukelova@gmail.com 

• One open postdoc positions on privacy-preserving / 
temporal 3D mapping 

• Open PhD position on visual localization 
• Contact: torsten.sattler@cvut.cz 

mailto:kukelova@gmail.com
mailto:torsten.sattler@cvut.cz

