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What is 3D vision?

R2D2 [NeurIPS'21]

LoFTR [cVPR’21]

DKM [cVvPR’23]
Monocular Depth estimation RoMa [CVPR'24]

GeoWizzard [arXiv'24]
Depth Anything [cVPR’24]
UniDepth [cVvPR’24]

/" Hloc [CVPR'19] )
Kapture [arXiv’20]
PixLoc [cVvPR’21]

COLMAP [cVPR’16]
OpenMVS

b | X 14
,‘f"r,r =

. ACE [cVPR’23]
PixSfM [ICCV'21] )i OpenSFM N P
RelPose++ [arXiv'23] ' , Visual
PoseDiffusion [iccv23] &7 b A ST Localization
e Large-scale 3D

reconstruction

Multi-view pose estimation _ .
d many more: SLAM, calibration, MVS, ...




Why seek a unified model?
The case of NLP

Translation
Conversations p— _
: Paraphrasing
Long text ' ’ £ h :
summarization . . Part-of-Speech Tagging
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Why seek a unified model?

“Foundation models for 3DV”?

Weakly-supervised pretext task : useful for many downstream tasks
Many definitions, no consensus yet

Non-exhaustive listing of relevant works

* “Scene Representation Transformer: Geometry-Free Novel View Synthesis Through Set-Latent Scene Representations” [CVPR’22]

* “FlowCam: Training Generalizable 3D Radiance Fields without Camera Poses via Pixel-Aligned Scene Flow” [NeurlPS’23]

* “Where are we in the search for an Artificial Visual Cortex for Embodied Intelligence?” [NeurlPS’'23] : FM for robotics

* “PonderV2: Pave the Way for 3D Foundation Model with A Universal Pre-training Paradigm”, [arXiv'23] : mostly semantic tasks

* “FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects” [CVPR’24] : for object pose estimation and tracking

* “Scalable Pre-training of Large Autoregressive Image Models” [arXiv'24] : LLM for images

* “FMGS: Foundation Model Embedded 3D Gaussian Splatting for Holistic 3D Scene Understanding” [arXiv'24] : DINOv2 with 3DGS

* “Probing the 3D Awareness of Visual Foundation Models” [arXiv'24] : only monocular models, DINOv2 & StableDiffusion work best



Foundation model for 3D vision

Minimal model capabilities:
- establish correspondences between images (matching)

- infer 3D geometry
from priors & from SfM

- infer relative pose (motion)
- decompose motion, lighting effects or long-term changes

NAVER



CroCo:

Self-supervised learning with Cross-View
Completion

NeurlPS'22, ICCV’23

Philippe Weinzaepfel, Vincent Leroy, Thomas Lucas, Romain Brégier, Yohann Cabon,
Vaibhav Arora, Leonid Antsfeld, Boris Chidlovskii , Gabriela Csurka, Jérome Revaud
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CroCo:

Self-supervised learning with Cross-View
Completion

- with masked modelling

target

p
¥

N
4
inspired by MAE = =E§g;
- self-supervised learning W Femd% > FANEE
§ L EEDS
/
23
R

Masked Autoencoders Are Scalable Vision Learners, Kaiming Het et. al. CVPR’22
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Europe C roCO: [NeurlPS'22] [ICCV’'23]

Self-supervised learning with Cross-View
Completion

A guessing game:
what’s behind the mask?
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Self-supervised learning with Cross-View
Completion

Image matching

Relative pose assessment

3D shape priors

Depth estimation

Reference view Query view
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Self-supervised learning with Cross-View
Completion

Image matching

Relative pose assessment

3D shape priors

Depth estimation

colorimetric adjustment

Reference view Query view
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Self-supervised learning with Cross-View
Completion

Image matching

Relative pose assessment

3D shape priors

Depth estimation

colorimetric adjustment

Reference view Query view



CroCo:
Self-supervised learning with Cross-View
Completion

ViT Transformer
— — — Head —_—
> ) encoder > Decoder
Random s Patchify
masking
Query image Masked query shared Reconstructed query

weiéhts

Cross-attention
ViT
encoder

—_—>
Patchify

AN  EEEEEE

Reference
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CroCo:

Self-supervised learning with Cross-View

Completion

—_—>
Random
masking

Query image

[ .

Masked query

Reference

—_>
Patchify

—
Patchify

AN  EEEEEE

ViT —> Transformer
encoder Decoder
Shdred

weiéhts

Cross-attention
ViT
encoder

Reconstructed query

> RGBL, loss <
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CroCo:
Self-supervised learning with Cross-View
Completion

Reference Input Mask Ratio Masked Image
Proof Of Concept: _ (select an image) (adjust ratio) (drag to change point of view)
* training with synthetic random scenes o‘fr:f .b': t‘::j
 Test scene never seen before! R L Ts . i L
p o oa® e =
L L&
¢ L9 e 20>
. - . e %o S 2
What solving this implies: ’_’, ’ﬁ . f" .
L ]
* Match the query and reference images « ' B
* Estimate the relative pose
. . . Estimated Image Expected Image
* Infer an object-centric 3D reconstruction (drag to change point of view)
of the reference scene vl = s E 1{\-\
° H H T
Align (rotate) the reference scene in 3D . ® “ KX 1’.
* Render the reference scene based on o .0‘ L .
imagined : ) ’ “
“ea s *
" 2al® F 4 ‘
™ X A A L ]
T
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CroCo:
Self-supervised learning with Cross-View
Completion

Masked Image Reference Input
Proof Of Concept: (select an image) (drag to change point of view)
- . . ot 20 W
* training with synthetic random scenes J-'¢ N oe *0g
* Test scene never seen before! %o i’? .Q °e
ht | 3 4 .? Q’ e
< 2 o 0%
What solving this implies: P
' K Y A P
* Match the query and reference images ¢ bd
* Estimate the relative pose ,
Estimated Image Expected Image
* Infer an object-centric 3D reconstruction (arng to chaniREEEEE) (Glliachargapoint i)
of the reference scene ] e < O ] -
Align (rotate) the reference scene in 3D > >
W L) | ﬁ - &
* Render the reference scene based on > j*‘ " % e * % "'
imagined v ‘g ate e | b ’(’ e
o > A h ~ 1 . 4B
& 2 o ¥ - A o o°*P
‘ Bl * e . ‘ OeC " @
b | )
tc...ﬁ oo b & \s *.I... oo
lo s eig - A o @ Qﬁia





Pre-training data

2M image pairs from the Habitat simulator
[Savva et al., ICCV'19]




Binocular downstream tasks

CroCo encoder+decoder for stereo and optical flow
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1¢ rank on the ETH-3D benchmark
metric: <4% error

Low-res two-view benchmark

This table lists the benchmark results for the low-res two-view scenario. This benchmark evaluates the Middlebury stereo metrics (for all metrics, smaller is bel

« bad 0.5, 1.0, 2.0, 4.0 [%]: Fraction of pixels with errors larger than the given number of disparities.

« Average error [px]: The per-pixel average disparity error.

« Root mean square error [px]: The per-pixel root mean square disparity error.

« 50%, 90%, 95%, 99% error quantile [px]: The highest disparity error within the given percentage of best pixels (for 50%, this is the median error).
+ Time [s]: The runtime of the method.

The mask determines whether the metric is evaluated for all pixels with ground truth, or only for pixels which are visible in both images (non-occluded).
The coverage selector allows to limit the table to results for all pixels (dense), or a given minimum fraction of pixels.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

O Click one or more dataset result cells or column headers to show visualizations. Most visualizations are only available for training datasets. The visualizatio
mobile browsers.

Coverage: dense~  Set: Test~ = Metric: bad 4.0 [%] ~  Mask: non-occluded - Dov
sand stora. stora. stora. stora. stora. stora. stora. stora. stora. stora.

lakes. lakes. sand t
Method Info all 1 1s box 1l box room room room room room room room room room room
u 1s 21 2s 21l 21s 22 22s 3l 3s
sCroCo ool 0.05 0.06 0.86 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.02 0.01 0.00 0.00
1 B 1z 1 1 1 1 2 L 1 1 5 2 1 1
XXStereo oo 0.08 054 0.90 0.00 0.00 0.03 0.00 0.04 0.03 0.00 0.00 0.01 0.02 0.00 0.03
2 108 18 1 1 3 1 3 z 1 1 1 30 1 15
CREStereo oo 0.10 0.06 0.51 0.00 0.00 1.06 0.00 0.20 0.08 0.00 0.00 0.02 0.00 0.00 0.00
3 B 1 1 1 103 1 13 5 1 1 5 1 1 1

Jiankun Li, Peisen Wang, Pengfei Xiong, Tao Cai, Ziwei Yan, Lei Yang, Jiangyu Liu, Haogiang Fan, Shuaicheng Liu: Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation. CVIPR 2022

PMTNet oo 011 007 060 o000 000 105 004 016 008 000 000 004 000 003 001
4 16 2 1 1 ar 106 8 5 1 1 a 1 14 T
Gwe-CoAIRS oo 012 006 L17  0.00 011 041 000 020 004 001 000 018 000 001 0.06
5 ] ES] 1 138 20 1 13 3 33 1 38 1 4 34

State-of-the-art results on Stereo Depth

NAVER LABS

1¢t rank on the KITTI 2015 benchmark
Metric: <3px or <5% error on foreground objects

Kl

Karlsruhe Institute of Ted

The KITTI Vision
Benchmark Suite

A project of Karlsruhe Institute of Technology
and Toyota Technological Institute at Chicago

SAgY
g E
z CHICAGD i
O
TCA TS

home setup 'stereo | flow sceneflow depth odometry ohject tracking road semantics rawdata submitresu

A. Geiger | P. Lenz | C. Stiller | R. Urtasun

Stereo Evaluation 2015

Evaluation ground truth [ All pixels ~|  Evaluation area | All pixels v
. Setting | Code | D1-bg | D1-fg . D1-all | Density Runtime Environment [
1 sCroCo code | 1.73% : 2.76% 190% : 10000% : 11s 1 core @ 2.5 Ghz (Python)
: Lac romplet {code | 1.44% ; 2.83% | 167% 185 GPU @ 2.5 Ghz (Python)|
ERROR: Wrong syntax in BIBTEX file.
P30 UPENet : 11380 | 2.85%  1.62% i 10000% : 0255 1 core @ 2.5 Ghz (Python)
4 CRESteren Ccode | 1.45%  2.86% 1690 100.00% @ 0.41s GPU @ >3.5 Ghz (Python)
5 CSPN : | 151% 2.88% 174% 10000%; 10s | GPU @ 2.5 Ghz (Python)
¥. Cheng, ¥. Zhong, M. Harandi, ¥. Dai, X. Chang, H. Li, T. Drummond and Z. Ge: Hierarchical Meural Architecture Search for Deep Stereo Matching. Advances in Meural Information Processing !

Ha
[ 6 ACVNet ; P code | 137%  3.07%  1.65% i 10000% : 025 | 1 core @ 2.5 Ghz (Python) ;
G. Xu, J. Cheng, P. Guo and X. Yang: Attention Concatenation Violume for Accurate and Efficient Sterea Matching. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Rec

. a mAa R I AATAr L 4 AR -

Y. W] P R, - e el o] M T T



SPRING

Dataset & Benchmark

L. Mehl, J. Schmalfuss, A. Jahedi, Y. Nalivayko, A. Bruhn — University of Stutigart

Download Optical Flow Scene Flow Submit FAQ

Mot logged in | Login

Please note that methods marked "submitted by spring feam” have not been finetuned on Spring.

Name Ipx A 1px 1px 1px 1px 1px 1px 1px 1px 1px Abs
total low-detail high-detail ~matched unmatched not sky sky s0-10 s10-40 s40+

1 CroCo-Sterea code 7.135 6.824 25.893 5.940 30.855 7.371 3.550 2.934 7.757 13.247 0.471
CroCo v2: Improved Cross-view Completion Pre-training for Stereo Matching and Optical Flow. Weinzaepfel et al. ICCV 2023.

2 llnet 10.003 9.630 32.504 8.457 40.707 10.305 5.420 5.865 10.761 15.590 0.761
Anonymaous.

3 ACVNet code 14.772 14.432 35.273 12.600 57.894 11.163 69.621 18.386 11.346 18.145 1.516
. submitted by spring team | G. Xu, J. Cheng, P. Guo, and X. Yang. "Attention Concatenation Violume for Accurate and Efficient Steres Matching.” In IEEE/CVE Conference on Coemputer Vision and Pattern Recognition (CVPR), 2022.

4  RAFT-Stereo code 15.273 14.983 32.774 13.394 52582 9.924 96.571 22.588 10.018 17.086 3.025
. submitted by spring team | L. Lipson, Z. Teed, and J. Deng. "RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching.” In International Conference on 3D Vision (3DV), 2021.

5 PWOC-3D [SF] code 18.226 17.831 42.067 16.020 62.014 15.946 52.877 18.279 12.716 34.570 1.343
R. Saxena, R. Schuster, O. Wasenmuller, and D. Stricker. "PWOC-3D: Deep Ccclusion-Aware End-to-End Scene Flow Estimation.” In IEEE Intelligent Vehicles Symposium ([V), 2019,

6 LEAStereo code 19.888 19.547 40.396 17.611 65.086 16.735 67.805 19.076 13.861 39.412 3.884
. submitted by spring team | X. Cheng, Y. Zhong, M. Harandi, ¥. Dai, ¥. Chang, H. Li, T. Drummond, and Z. Ge. "Hierarchical Neural Architecture Search for Deep Stereo Matching.” In MeurlPS, 2020.

7 M-FUSE (F) [SF] code 19.888 19.547 40.396 17.611 65.086 16.735 67.805 19.076 13.861 39.412 3.884
¢ submitted by spring team | L. Mehl, A. Jahedi, J. Schmalfuss, and A. Bruhn. "M-FUSE: Multi-frame Fusion for Scene Flow Estimation.” In IEEE/CWVF Winter Conference on Applications of Computer Vision (WACW), 2023.

8 SplatFlow3D (C+T) + LEAStereo (Things);_Two-frame [SF] code 19.888 19.547 40.396 17.611 65.086 16.735 67.805 19.076 13.861 39.412 3.884

9 GANet code 23.225 22912 42.064 20.976 67.878 18.418 96.274 24.286 16.427 41.499 4,594
. submitted by spring team | E. Zhang, V. Prisacariu, R. Yang, and P. HS Torr. "GA-Net: Guided Aggregation Net for End-to-end Stereo Matching.” In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVER), 2019.

10 RAFT-3D (F) [SF] code 23.225 22.912 42.064 20.976 67.878 18.418 96.274 24.286 16.427 41.499 4,594

¢ submitted by spring team | Z. Teed, and J. Deng. "RAFT-3D: Scene Flow using Rigid-Motion Embeddings.” In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
11 CamLiFlow (F) [SF] code 23.225 22912 42 064 20.976 67.878 18.418 96.274 24.286 16.427 41.499 4594
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https://github.com/naver/croco

CroCo: summary

Self-supervised pretraining
* Specifically designed for 3D vision, inherently multi-view
* Arguably and provably learns important “bricks” of 3D vision
* Generic architecture, easily adaptable for any 3DV downstream task

CroCo lays the foundation for a unified model
* But nothing is unified yet (each downstream task is finetuned separately)
— we are still seeking for a unified model ...


https://github.com/naver/croco
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What is 3D vision?

Monocular Depth estimation

Point matching

L

Visual
Localization

Dense 3D
reconstruction

Multi-view pose estimation . .
many more: SLAM, calibration, MVS, ...
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Unifying all 3D vision tasks?

Could “dense 3D reconstruction” be a “super task” for 3DV?

Correspondence Search Incremental Reconstruction Reconstruction

- Initialization - ————— -> :
1 ] |
Image Registration Outlier Filtering £ e 1!_,_1
Geometric Verification Triangulation Bundle Adjustment =

COLMAP’s incremental Structure-from-Motion pipeline.

“Structure-from-Motion Revisited”, “Pixelwise View Selection for Unstructured Multi-View Stereo”, Schonberger et al., in CVPR'16 & ECCV'16
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Dense models of sevem'f Iandmarks produced by COLMAP’s MVS pipeline.

“Structure-from-Motion Revisited”, “Pixelwise View Selection for Unstructured Multi-View Stereo”, Schonberger et al., in CVPR'16 & ECCV'16
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Unifying all 3D vision tasks?
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COLMAP’s official restrictions

Capture images with good texture.
Avoid texture-less images

Capture images at similar illumination conditions
Avoid high dynamic range scenes
Avoid specularities on shiny surfaces

Capture images with high visual overlap.
each object in at least 3 images - the more the better

Capture images from different viewpoints.
Do not take images from the same location by only rotating the camera, e.g., make a few steps after each shot
At the same time, try to have enough images from a relatively similar viewpoint

“Structure-from-Motion Revisited”, “Pixelwise View Selection for Unstructured Multi-View Stereo”, Schonberger et al., in CVPR'16 & ECCV'16



Unifying all 3D vision tasks?

3D reconstruction is a “super-task”
- intrinsically connected to all other 3DV tasks

Current solution is problematic
- Brittle, requires enough images & overlap & textures & viewpoints

- Heavily handcrafted at all levels
An engineering hell!

- Multiple minimal problems solved sequentially
No internal collaboration between them

- Slow

NAVER
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Dense Unconstrained Stereo

3D Reconstruction

c = ..!

— 1
5 ™

Shuzhe Wang Vincent Leroy Yohann Cabon Boris Chidlovskii Jérome Revaud
Aalto University Naverlabs Europe Naverlabs Europe Naverlabs Europe  Naverlabs Europe

A! NAVERLABS

Aalto University EUI‘Ope



Our Dream

Dense Unconstrained Multi-View Stereo 3D Reconstruction (MVS)

Unconstrained = unknown cameras !

NAVER



The Unconstrained MVS Paradox

Obtaining Camera Parameters, e.g. COLMAP

Correspondence Search Incremental Reconstruction

r Initialization - emee———

Matching Image Registration Outlier Filtering

Geometric Verification Triangulation Bundle Adjustment

Reconstruction

Source: https://colmap.github.io/_images/incremental-sfm.png

NAVER



The Unconstrained MVS Paradox

Obtaining Camera Parameters, e.g. COLMAP

Correspondence Search

Matching

Geometric Verification

Incremental Reconstruction

Initialization

Image Registration

Triangulation

-l

Outlier Filtering

Bundle Adjustment

Source: https://colmap.github.io/_images/incremental-sfm.png

Reconstruction

Need 3D
scene for
cameras
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The Unconstrained MVS Paradox

Obtaining Camera Parameters, e.g. COLMAP

Correspondence Search Incremental Reconstruction Reconstruction

r Initialization - emee———

Matching Image Registration Outlier Filtering
Geometric Verification Triangulation Bundle Adjustment
Matching is inherently 3D Need 3D
Source: https://colmap.github.io/_images/incremental-sfm.png scene for

cameras

NAVER
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The Unconstrained MVS Paradox

Correspondence Search Incremental Reconstruction Reconstruction

- Initialization -

Image Registration

Outlier Filtering }?5‘? :

Triangulation  Bundle Adjustment

Geometric Verification

B w =

Source: https://colmap.github.io/_images/incremental-sfm.png

We are looking for a Mapping between 2D image coordinates and 3D space
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The Pointmap representation

Input Image

Corresponding Pointmap

Pointmaps encode

3D Scene geometry
2D pixels consistency
2D-3D relationships
N P>

NAVER



DUSt3R: |
Dense Unconstrained Stereo 3D
Reconstruction

Start from CroCo ...

NAVER



DUSt3R:

Dense Unconstrained Stereo 3D

Reconstruction

B
N Pointmap
— = viT Transformer 24
> encoder —_ Ay ;
Patchify N Decoder, ~). Confidence
™
First image [ Shdred A
B We’é hts ¢ Cross-attention
N
S Pointmap
ViT 2
‘) P S —> Transformer Head,
. Patchify [ Decoder, "\ Confidence
|
Second image ]

Start from CroCo and add a 2" decoder

Common reference
frame of image

Cameral

Camera2

NAVER




DUSt3R:

Dense Unconstrained Stereo 3D

Reconstruction

|
A Pointmap
—_ = Vit Transformer 2
encoder Ay i
Patchify N Decoder, ~). Confidence
l
B we:é hts ¢ Cross-attention
[ ] .
. i - Pointmap
—> P Transformer Head
hify || encoder Z .
/ Patchify = Decoder, "\ Confidence
GT2 Second image ]

k scale-invariant

Common reference
frame of image

Camera2

>
regression L, loss

NAVER



DUSt3R: |
Dense Unconstrained Stereo 3D
Reconstruction

1‘-_ —
| " ~»| DUSt3R
N J
Unconstrained_ Output
image collection pointmaps
(no pose, (dense 2D —~3D

no intrinsics) mappings)
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DUSt3R: |
Dense Unconstrained Stereo 3D

Reconstruction

i
11‘-'%

Unconstrained_
image collection

(no pose,
no intrinsics)

-

-

DUSt3R

~

J

pointmaps

(dense 2D —~3D
mappings)

[ S
ST "o o S
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i e Ty
u, ey e W
S
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e
s

Camera calibration
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DUSt3R: |
Dense Unconstrained Stereo 3D

Reconstruction

i
11‘-'%

Unconstrained_
image collection

(no pose,
no intrinsics)

-

-

DUSt3R

~

J

pointmaps

(dense 2D —~3D
mappings)

Camera calibration

. ;-._::::j-}'-'.:i-_'::_-_-_._,. %: Depth estimation
G e
b
o
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DUSt3R: |
Dense Unconstrained Stereo 3D

Reconstruction

i
11‘-'%

Unconstrained_
image collection

(no pose,
no intrinsics)

-

-

DUSt3R

~

J

pointmaps

(dense 2D —~3D
mappings)

Camera calibration

Monocular
L %: Depth estimation —
G e
T
o
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DUSt3R: |
Dense Unconstrained Stereo 3D
Reconstruction

Camera calibration M |
onocular
8 A B Depth estimation <
S G Multi-View
v ~ | DUSt3R N
N / 4
Unconstrained_ Output
image collection pointmaps

(n_o pose, (dense 2D «~3D
no intrinsics) mappings)
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DUSt3R: |
Dense Unconstrained Stereo 3D
Reconstruction

Camera calibration M |
. ™ onocular
A Depth estimation
E: Y , Multi-View
v o DUSt3R R ey >Pixel correspondences

\ J "
Unconstrained_ Output
image collection pointmaps

(n_o pose, (dense 2D «~3D
no intrinsics) mappings)
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DUSt3R: |
Dense Unconstrained Stereo 3D
Reconstruction

Camera calibration M |
onocular
f h Depth estimation <
_ Multi-View
> DUSt3R Pixel correspondences
Camera pose estimation
N J
Unconstrained_ Output
image collection pointmaps
(no pose, (dense 2D 3D

no intrinsics) mappings)
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DUSt3R: |
Dense Unconstrained Stereo 3D

Reconstruction

i
11‘-',%

Unconstrained_
image collection

(no pose,
no intrinsics)

-

-

DUSt3R

~

)

pointmaps

(dense 2D —~3D
mappings)

NAVER

Camera calibration

Monocular
Depth estimation <
Multi-View

Pixel correspondences o .
/v Pairwise (relative)
Camera pose estimation



DUSt3R: |
Dense Unconstrained Stereo 3D

Reconstruction

i
11‘-',%

Unconstrained_
image collection

(no pose,
no intrinsics)

-

-

DUSt3R

~

)

pointmaps

(dense 2D —~3D
mappings)

Camera calibration

NAVER

Monocular
Depth estimation <
Multi-View

Pixel correspondences

Camera pose estimation<:

Pairwise (relative)

Multi-View
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DUSt3R: |
Dense Unconstrained Stereo 3D
Reconstruction

Camera calibration M |
e ™ onocular
Depth estimation
pixel q Multi-View
— ixel correspondences
DUSt3R P Pairwise (relative)
Camera pose estimation
\ J Multi-View
: Visual Localization
Unconstrained_ Output
image collection pointmaps
(no pose, (dense 2D 3D

no intrinsics) mappings)
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DUSt3R: |
Dense Unconstrained Stereo 3D
Reconstruction

Camera calibration M |
onocular

f h Depth estimation <

Pivel d Multi-View
— ixel correspondences
DUSE3R P Pairwise (relative)

Camera pose estimation

N J Multi-View

Dense 3D reconstruction
Visual Localization

Unconstrained_ Output
image collection pointmaps
(no pose, (dense 2D —~3D

no intrinsics) mappings)
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DUSt3R: |
Dense Unconstrained Stereo 3D
Reconstruction

Training data

Datasets Type N Pairs
Habitat [103] Indoor / Synthetic 1000k
CO3Dv?2 [93] Object-centric 941k
ScanNet++ [165] Indoor / Real 224k
ArkitScenes [25] Indoor / Real 2040k
Static Thing 3D [68] Object/ Synthetic 337k
MegaDepth [55] Outdoor / Real 1761k

BlendedMVS [161] Outdoor / Synthetic 1062k
Waymo [121] Outdoor / Real 1100k
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Jointly recovering cameras and scene
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Jointly recovering cameras and scene
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Monocular Input
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Monocular Input

Feed same image twice
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Monocular Input
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DUSt3R

Global alignment

- Afast and simple post-processing optimization for multi-views (takes few seconds)

= a well-behaved 3D version of bundle adjustment

NAVER
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Opposite view matching
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DUSt3R

“impossible matching” = 3D reconstruction without any overlap!

NAVER

% DUSE3R Demo X + v — [=] &3
¢ C [0 A Notsecure | chaos-10.int.europe.naverlabs.com... == E? 2 Eb D 4 & O @ | Uupdate =
min_conf_thr 3 0.05 5
—
As pointcloud Mask sky Clean-up depthmaps Transparent cameras
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D U St3 R: https://github.com/naver/dust3r
Dense Unconstrained Stereo 3D
Reconstruction

Unifying all 3D vision tasks?

o DUSt3R is:
* 3D reconstruction is a “super-task” ©

* intrinsically connected to all other 3DV tasks
Robust, works under any number

L : fim ny overl n
* Current solution is problematic ® /> ot IMages, 4 YO € .ap, any
texture, any viewpoints

* Brittle, requires enough images & overlap & textures & viewpoints
* Heavily handcrafted at all levels

* An engineering hell! > Simple, minimal handcraf'ting
* Multiple minimal problems solved sequentially

* No internal collaboration between them > SOlVGS problems altogether
* Slow

> Fast! Takes a few seconds


https://github.com/naver/dust3r

DUSt3R: Iimitations

DUSt3R is extremely robust but it lacks accuracy

Methods GTcams Acc.l Comp.l Overall]
- Camp [11] v 0.835 0554 0.695
dq:‘r: @) Furu [32] v 0613 0.94] 0.777
_g - Tola[100] v 0.342 1.190 0.766
S Gipuma [33] v 0.283  0.873 0.578
- MVSNet [121] v 0.39% 0527 0.462
) CVP-MVSNet [ Y] v 0.296 0406 0.351
o UCS-Net [16] v 0338 0349 0.344
§ CER-MVS [55] v 0.359 0305 0.332
a0 CIDER [115] v 0417 0437 0.427
% PatchmatchNet [ 103] v 0427 0.277 0.352
3 GeoMVSNet [136] v 0.331  0.259 0.295
DUSt3IR 512 X 2677 0.805 1.741

MVS benchmark on DTU

NAVER



DUSt3R: Iimitations

Not all routes leads to accurate visual localization

* Route 1: DUSt3R > NN in 3D space > pixel correspondences >PnP
* Route 2: DUSt3R > PnP

GT 7Scenes (Indoor) [45]
Focals Chess Fire Heads Office Pumpkin Kitchen Stairs
DUSt3R 512 from 2D-matching v 3/0.97 3/0.95 2/1.37 3/1.01 4/1.14 4/1.34 11/2.84
DUSt3R 512 from scaled rel-pose < 5/1.08 5/1.18 4/1.33 6/1.05 7/1.25 6/1.37 26/3.56

Methods

Best results obtained from pixel correspondences

* but DUST3R is not trained explicitly for matching
* What if we did?

NAVER
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Matching And Stereo 3D

Reconstruction

Vincent Leroy Yohann Cabon Jérome Revaud
Naverlabs Europe Naverlabs Europe Naverlabs Europe
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MASt3R:
Matching And Stereo 3D
Reconstruction
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MASt3R: o

Matching And Stereo 3D
Reconstruction
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MASt3R:

Matching And Stereo 3D
Reconstruction

-3 Pointmap
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encoder Decod
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’ Head’, |=—> Local features

Local Features trained with an InfoNCE loss

Geometric

matching

Feature-based
matching

NAVER
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MASt3R:
Matching And Stereo 3D
Reconstruction
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MapFree Relocalization

Relative Pose

o

Multi-View Reconstruction
\ \J 1A

NAVER
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MASt3R: Map-Free Relocalization

P i

Image 1 Image 2

Translation is metric — Pixel matching alone does not suffice
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MASt3R: Map-Free Relocalization

12 al2
R~-,T?

Image 1 Image 2

Almost no overlap — Pixel matching alone does not suffice

NAVER
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MASt3R: Map-Free Relocalization
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MASt3R: Map-Free Relocalization

Evaluation Leaderboard: Single Frame

All Submissions -

AUC AUC Median Median
Method (VCRE < ~ (VCRE < Trans. Rot. Error
45px) 90px) Error (m) ()
o MASE3R (Ess.Mat + D.Scale) 0.817 0.933 0.37 2.2
@ interp_metric3d_loftr_3d2d 0.681 0.796 1.75 31.2

Map-Free Visual Relocalization Enhanced

ﬂ by Instance Knowledge and Depth 0.656 0.849 0.83 11.7
Knowledge

o RoMa w/ MicKey depth maps 0.604 0.734 1.18 15.6

@ MicKey trained w/ Overlap Score 0.572 0.748 1.66 27.3

o MicKey 0.558 0.741 1.59 26.0

@ SuperGlue w/ MicKey depth maps 0.556 0.711 1.70 26.1

NAVER
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MASt3R: MVS on DTU

Architecture is not task-specific: we simply triangulate matches in 3D

Methods Acc.] Comp.| Overall]
Camp [13] 0.835 0.554  0.695
Furu [30] 0.613 0.941  0.777
Handcrafted () o1 [s9] 0.342 1.190  0.766
Gipuma [31] 0.283 0.873  0.578
MVSNet [108] 0.396 0.527  0.462
(d) CVP-MVSNet [107] 0.296 0.406  0.351
In-domain UCS-Net [17] 0.338 0.349 0.344
Train on DTU CER-MVS [54] 0.359 0.305  0.332
CIDER [107] 0.417 0437  0.427
PatchmatchNet [97] 0.427 0.277  0.352
GeoMVSNet [116] 0.331 0.259 0.295
O0D o DUSt3R [100] 2.677 0.805 1.741
Never seen before . MASt3R 0.403 0.344  0.374

(inmm!)

NAVER

Matching is far superior to regression
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File

MASt3R Demo
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InstantSplat:
Novel View Rendering from scratch in
seconds

DUSt3R Simplified 3DGS
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InstantSplat: Unbounded Sparse-view Pose-free Gaussian Splatting in 40 Seconds. Zhiwen Fan et. al., [arXiv'24]. https://instantsplat.github.io


https://instantsplat.github.io/

G
InstantSplat X GTEXAS HUSC Geqrala

Result with only 3 input images in 20 seconds from scratch

E.fr - | AL

I Stanford £
@W University





Splatt3r

Brandon Smart - Chuanxia Zheng - Iro Laina - Victor Adrian Prisacariu, University of Oxford

Uncalibrated,
Input Image Pair

Novel

Inference 3D Gaussian Splat

Per-Pixel Gaussians

Splatt3R

Per-Pixel Gaussians

https://github.com/btsmart/splatt3r
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“* Spann3R

Hengyi Wang - Lourdes Agapito, University College London

DUSt3R

Global

alignment

=
Global
reconstruction

Spatial
Memory

https://github.com/HengyiWang/spann3r



Spann3R

Hengyi Wang, Lourdes Agapito University College London

RGB image collection
(w/o known camera params)

https://github.com/HengyiWang/spann3r

h;ﬁ

Incremental reconstruction
(>50 keyframes/sec)


https://hengyiwang.github.io/
http://www0.cs.ucl.ac.uk/staff/L.Agapito

NAVER

Questions?

https://github.com/naver/croco https://github.com/naver/dust3r https://github.com/naver/mast3r

MASTt3R is a network of the St3R series capable of robustly estimating:
- focal lengths
- metric camera poses
- metric geometry for large image collections (mapping)
- accurate correspondences even in extreme cases


https://github.com/naver/croco
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