
– Supplementary Material –
Matching 2D Images in 3D: Metric Relative Pose from Metric Correspondences

1. Architecture Details

Complementary to the details and definitions of MicKey
from the main paper, we include the details of its imple-
mentation in Tables 1 and 2. As mentioned, from a single
input image I , MicKey computes the 2D keypoint offset
(U), confidence (C), depth (Z), and descriptor (D) maps.
The network is split into two main blocks, the feature en-
coder and the keypoint heads. We use as our feature en-
coder DINOv2, without further training or fine-tuning. We
refer to its original paper [19] for additional details on DI-
NOv2. In Tables 1 and 2, we detail the layers within the dif-
ferent keypoint heads. Each keypoint head is composed of
ResNet blocks [1], a small self-attention layer, and specific
activation functions. As explained in the tables, a ResNet
block is composed of 3 × 3 convolutions, batch normal-
ization layers, ReLU activations, and a residual connection.
The residual connection is done between the input of the
block and its output. Given that DINOv2 is not trained,
in every head, we add a small self-attention layer to allow
trainable message-passing systems within the network. We
use linear attention to reduce the computational complexity
[13]. The transformer has three attention layers, and each
layer has eight attention heads. Note that we do not apply
the transformer right after DINOv2 encoder, but instead, we
use it after processing the feature maps to a smaller descrip-
tor dimension to reduce the overall complexity and memory
of our network. Finally, at the end of the heads, we use dif-
ferent activation functions depending on the keypoint head.
For instance, we apply a Sigmoid activation to the keypoint
offsets to map them to the range [0, 1], i.e., the offset is al-
lowed to move within its corresponding grid.

2. Training Details

Training parameters. We train MicKey with a batch size
of 48 image pairs. At the start of the training, we use
only the 30% of pairs to optimize the network (bmin = 14),
and linearly increase the number of used pairs by 10% ev-
ery 4k training iterations. We stop increasing the number
of considered pairs when we reach the 80% of the batch
(bmax = 38). The warm-up period finishes after 20k itera-
tions. For the null hypothesis, we define VCREmax = 120

Offset Head (U)
Layer Description Output Shape

Feature map F [b, 1024, w, h]
1 ResNet block 1 [b, 512, w, h]
2 ResNet block 2 [b, 256, w, h]
3 ResNet block 3 [b, 128, w, h]
4 Self-Attention [b, 128, w, h]
5 ResNet block 4 [b, 64, w, h]
6 Conv. - Sigmoid [b, 2, w, h]

Depth Head (Z)
Layer Description Output Shape

Feature map F [b, 1024, w, h]
1 ResNet block 1 [b, 512, w, h]
2 ResNet block 2 [b, 256, w, h]
3 ResNet block 3 [b, 128, w, h]
4 Self-Attention [b, 128, w, h]
5 ResNet block 4 [b, 64, w, h]
6 3× 3 Convolution [b, 1, w, h]

Table 1. 3D Keypoint Coordinate Heads. The feature extractor
computes features F from an input image I . The dimension of the
feature map is (1024, w, h), where w = W/14 and h = H/14,
and W and H refer to the width and height of I . The feature
map F is then processed by different keypoint heads in parallel. A
ResNet block is composed of 3×3 convolutions, batch normaliza-
tion layers [12], ReLU activations [1], and a residual connection.
The Self-Attention layer refers to a self-attention transformer with
linear attention [13].

pixels and s0 is defined as the 30% of correspondences be-
ing inliers, i.e., if having a correspondence set of size 100,
s0 = 30. During correspondence selection, we define the
temperature of the descriptor Softmax (Equation 3 in the
main paper) as θm = 0.1 and initialize the learnable dust-
bin parameter to 1. In Equation 5 of the main paper, β con-
trols the smoothness on the soft-inlier counting, and it is
defined in dependence of the inlier threshold, τ . We define
the threshold as τ = 0.15m.

Optimization. MicKey is trained in an end-to-end man-
ner with randomly initialized weights and ADAM optimizer
[15] with a learning rate of 10−4. We train on four V100
GPUs and the network converges after seven days. To pick
the best checkpoint, we evaluate the performance in a sub-
set of the validation dataset in terms of the Area Under the
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Confidence Head (C)
Layer Description Output Shape

Feature map F [b, 1024, w, h]
1 ResNet block 1 [b, 512, w, h]
2 ResNet block 2 [b, 256, w, h]
3 ResNet block 3 [b, 128, w, h]
4 Self-Attention [b, 128, w, h]
5 ResNet block 4 [b, 64, w, h]
6 Conv. - Spatial Softmax [b, 1, w, h]

Descriptor Head (D)
Layer Description Output Shape

Feature map F [b, 1024, w, h]
1 ResNet block 1 [b, 512, w, h]
2 ResNet block 2 [b, 256, w, h]
3 ResNet block 3 [b, 128, w, h]
4 Self-Attention [b, 128, w, h]
5 ResNet block 4 [b, 128, w, h]
6 L2 Normalization [b, 128, w, h]

Table 2. Confidence and Descriptor Heads. Similar to the 3D
coordinate regressors, MicKey also computes the descriptors and
confidence scores of each keypoint. Each head has a different ac-
tivation function, e.g., in the descriptor head, we L2 normalize the
descriptors and map them to a sphere of radius 1.

Curve (AUC) of the VCRE metric. We check validation re-
sults twice at every epoch, which corresponds to ∼1k train-
ing iterations.

Virtual Correspondences. Equation 7 from the main paper
uses virtual correspondences to compute the Virtual Corre-
spondence Reprojection Error (VCRE). We define such vir-
tual correspondences as in Map-free benchmark [2]. The
virtual correspondences represent a uniform grid of 3D
points that will be projected into the 2D image plane to
compute the VCRE. We define a total of 196 virtual cor-
respondences (|V| = 196). They correspond to a cube of
2.1× 1.2× 2.1 meters in XYZ coordinates, where the min-
imum separation between 3D points is 0.3m. Note that this
formulation already embeds the quality of an estimated pose
in a single value, the VCRE. Hence, contrary to the standard
pose loss formulation, using VCRE as a loss function does
not require a parameter that balances the translational and
rotational components of the pose error loss [3, 21].

3. Additional Experiments

In addition to the experiments and visualization reported in
the main paper, we provide more insights, visualizations,
and experiments in this section.

3.1. ScanNet

Depth ablation. Similar to the ablation study on depth es-
timation methods done in the main paper, we also report
the results of sparse and dense matchers combined with
different depth estimators in Table 3. Specifically, we use

ScanNet Dataset

VCRE Median Errors

AUC Prec. (%) Trans (m) / Rot (°)

Depth Estimation
SuperGlue [6, 22]

DPT [20] 0.98 90.0 0.17 / 2.06
PlaneRCNN [17] 0.98 90.6 0.15 / 2.06

Our Depth 0.99 91.7 0.11 / 2.06
GT Depth 0.99 92.9 0.07 / 2.06

LoFTR [23]

DPT [20] 0.99 89.4 0.16 / 1.81
PlaneRCNN [17] 0.99 91.3 0.13 / 1.81

Our Depth 0.99 90.3 0.10 / 1.81
GT Depth 0.99 91.3 0.07 / 1.81

Table 3. Relative pose evaluation in ScanNet for different depth
estimators. We show here the results of different matching algo-
rithms paired with different depth estimators and MicKey’s depths.
SuperGlue, a sparse feature matcher, obtains top results when
combined with our depth estimations. This is in line with our sys-
tem, since we optimize our depth head to work with sparse rather
than dense features.

ScanNet δ1 / δ2 / δ3 ↑ REL ↓ RMSE ↓ log10 ↓
DPT [20] 0.72 / 0.91 / 0.97 0.21 0.38 0.08

PlaneRCNN [17] 0.75 / 0.93 / 0.98 0.18 0.37 0.07
ZoeDepth [4] 0.79 / 0.94 / 0.98 0.17 0.33 0.07

MicKey 0.79 / 0.95 / 0.98 0.16 0.37 0.06
MicKey-Sc 0.80 / 0.95 / 0.99 0.15 0.35 0.06

Table 4. Indoor monocular depth evaluation. Even though
MicKey depth maps are optimized to produce precise relative
poses, and hence, might not be accurate beyond keypoint posi-
tions, we see that MicKey still produces accurate depth maps that
are on par with or surpass current state-of-the-art methods.

DPT [20] and PlaneRCNN [17], where the latest used the
ground truth depth maps provided in ScanNet for its train-
ing. As a reference, we provide the results when combining
the matchers with the ground truth depths. Even though
MicKey did not use any ground truth depth data during
training, both matchers, SuperGlue [6, 22] and LoFTR [23],
benefit from using our depth maps. SuperGlue, a sparse fea-
ture method like MicKey, is the one that yields better results
with our depths. MicKey’s depth maps were trained specif-
ically for sparse matching, and hence, a sparse matching
method could benefit more from them.

Monocular depth evaluation. Table 4 presents monocular
depth evaluation metrics for the ScanNet test set, where we
have access to GT depths. For completeness, besides DPT
[20] and PlaneRCNN [17], we also evaluate the depth esti-
mations of recent ZoeDepth [4]. MicKey-Sc corresponds to
evaluating the depth estimates only on the positions where
MicKey is most confident. Specifically, we take the depth
estimations that correspond to the top 50% scoring posi-
tions. And therefore, in this setup, we focus on the posi-
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Figure 1. Visual examples on ScanNet dataset. We visualize the inlier correspondences, score, and depth maps predicted by MicKey in
ScanNet images. We see that although the images show repetitive patterns and flat areas, MicKey is able to find correct correspondences
across views. Besides making our correspondences metric, our depth estimation head provides additional 3D information and geometric
constraints to our probabilistic pose solver, making the final decision robust against the mentioned indoor challenges.

tions that will be used to compute the metric relative pose
between images. We see that our relative pose supervision,
even though not using any depth maps during training, al-
lows MicKey to compute accurate depth maps.

Visual examples. We also show some visual examples of
the depth maps estimated by MicKey in Figure 1. Moreover,
in the figure, we display the inlier correspondences and the
score maps that MicKey computes for each input image.
We see that MicKey finds high scoring keypoints in struc-
tures beyond corners or blobs, establishing correct matches
in images where there are few discriminative structures.

3.2. Map-free

Method Confidence tells when we can or not trust a pose
estimate. Map-free benchmark evaluates the confidence of

the methods via the area under the curve (AUC) metric. The
benchmark ranks the poses by confidence, and hence, the
AUC is only maximized when the most accurate poses are
ranked first. In Figure 2, we visualize the precision ver-
sus the ratio of estimates in the validation set scenes, where
ground truth poses are available. All matching methods use
their inlier counting as their confidence value, meanwhile,
MicKey relies on the soft-inlier counting. MicKey’s confi-
dence, hence, is entangled within its training pipeline and
directly optimized to be correlated with the quality of its
pose predictions. From Figure 2, we see that MicKey ob-
tains the highest number of correctly ranked images before
assigning a high score to an invalid pose, where an invalid
pose refers to a relative pose with a VCRE higher than 90
pixels. Contrary, as seen in the plot, the second best method,
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Figure 2. Precision vs ratio of estimates. In this plot, the pose
estimates are ranked by the confidence values of the methods, e.g.,
inlier counting. The Map-free benchmark computes the AUC of
the curves to also evaluate the ability of the methods to decide
whether their poses should be trusted or not. We plot MicKey-
Score (Sc.) Oracle, which corresponds to the curve that MicKey
would obtain if its pose confidences were perfect.

Map-free Dataset

VCRE (90px) Pose (25cm, 5°)

AUC Prec. (%) AUC Prec. (%)

D+O+P Signal
SuperGlue [6, 22] 0.60 36.1 0.35 16.8
LightGlue [16, 24] 0.53 33.2 0.31 15.8

DeDoDe [8] 0.53 31.2 0.26 12.5
LoFTR [23] 0.61 34.7 0.35 15.4

ASpanFormer [5] 0.64 36.9 0.36 16.3
RoMa [7] 0.67 45.6 0.41 22.8

O+P Signal
RPR [R(6D) + t] [2] 0.40 40.2 0.06 6.0

MicKey-O (ours) 0.75 49.2 0.33 13.3

Pose Signal
RPR [R(6D) + t] 0.18 18.1 0.01 0.6
MicKey (ours) 0.74 49.2 0.28 12.0

Table 5. Additional metrics on Map-free dataset. Besides the
VCRE results, we also show the AUC and precision values for a
very fine threshold (pose errors at 25cm and 5°).

RoMa [7], struggles to rank its pose estimates. I.e., RoMa
accepts incorrect poses (VCRE > 90px) as its most con-
fidence estimates. This indicates that RoMa’s poses, al-
though very accurate, do not have a valid mechanism to
decide whether they should be trusted or rejected, making
them unreliable in an AR application [2].

Pose Metrics. Besides the experiments from the main paper
in Map-free, we provide additional metrics in Table 5. Map-
free benchmark, although it focuses on the VCRE metric for
evaluating algorithms for an AR experience, it also com-
putes the AUC and precision error pose under a very fine
threshold (pose error < 25cm, 5°). Under such conditions,
all methods have a small AUC and precision value, and
hence, applications built on that restrictive threshold would
need to discard most of the relative pose estimates. Even
though, it gives some possible directions for future work,

Map-free Dataset

VCRE (90px) Pose (25cm, 5°)

AUC Prec. (%) AUC Prec. (%)

Pose Solvers
SuperGlue [6, 22]

Ess. Scale 0.60 36.1 0.35 16.8
PnP 0.60 36.0 0.25 10.7

LoFTR [23]

Ess. Scale 0.61 34.7 0.35 15.4
PnP 0.62 33.4 0.27 9.8

MicKey w/ Overlap
Ess. Scale 0.66 39.3 0.22 8.4

PnP 0.70 42.1 0.36 14.6
Our Solver 0.75 49.2 0.33 13.3

MicKey
Ess. Scale 0.65 37.1 0.20 6.9

PnP 0.70 42.5 0.33 12.8
Our Solver 0.74 49.2 0.28 12.0

Table 6. Pose solver ablation on Map-free. Results show that
state-of-the-art matchers work better when estimating the essential
matrix from 2D-2D correspondences, and then recovering the met-
ric scale from the depth predictor. MicKey, meanwhile, obtains the
top VCRE results when recovering the pose with the probabilistic
solver used during training.

where one could focus on improving MicKey’s predictions
under such strict thresholds.

Pose Solvers. Arnold et al. [2] propose different strategies
for recovering the metric scale from the keypoint correspon-
dences. In the first strategy, authors first compute the essen-
tial matrix and then rely on the depth estimation to obtain
the scaled translation vector (Ess. Scale) [9, 18]. Their sec-
ond strategy consisted of using the depth maps to lift the 2D
keypoints to 3D, and then applying the Perspective-n-Point
(PnP) algorithm [10]. We refer to [2] for more details. We
compare such strategies in Table 6. Moreover, we also show
MicKey’s results with the two different proposed solvers.
We demonstrate that obtaining poses with the same proba-
bilistic approach we use during training yields the best re-
sults, proving the effectiveness of both, the end-to-end strat-
egy and our probabilistic formulation of the metric relative
pose estimation.

Cross-dataset evaluation. We also test the generalization
capability of MicKey when trained and tested in different
scenarios. We use MicKey trained in ScanNet dataset and
evaluate it in the Map-free evaluation. Even though this
experiment involves a significant distribution gap (indoor
vs. outdoor), MicKey achieves an AUC (VCRE) score of
0.55, still outperforming DISK [24], SiLK [11], and De-
DoDe [8], which all were trained on outdoor datasets (see
Table 5 for all AUC (VCRE) results).

Monocular depth estimation. In Table 7, we further eval-



DIML Outdoor [14] DIODE Outdoor [25]

δ1 ↑ REL ↓ RMSE ↓ δ1 ↑ REL ↓ RMSE ↓
ZoeDepth [4] 0.29 0.64 3.61 0.21 0.76 7.57

MicKey 0.65 0.20 4.30 0.04 0.67 15.18
MicKey-Sc 0.70 0.17 2.39 0.04 0.66 13.76

Table 7. Outdoor monocular depth evaluation. We report the
zero-shot generalization on outdoor datasets and see that MicKey
provides competitive results even though it was not designed for
this task.

Map-free Dataset

VCRE Median Errors

AUC / Prec. (%) Rep. / Trans / Rot

Hard pairs
SuperGlue [6, 22] 0.07 / 3.5 271.8 / 4.5 / 81.6

LoFTR [23] 0.06 / 2.6 255.7 / 4.8 / 88.5
RoMa [7] 0.08 / 7.3 241.7 / 3.1 / 58.3

MicKey (ours) 0.15 / 11.1 233.7 / 3.7 / 75.2

Table 8. Hard examples in the Map-free dataset. We evaluate
image pairs from the validation set that are taken under large view-
point changes. We define such examples as image pairs that are at
least 3m apart and have a 45° change in the camera direction. We
report the VCRE metrics and the median errors of the estimated
poses.

uate the generalization capabilities of our network also in
the zero-shot monocular depth estimation task. We com-
pute its accuracy in the DIML Outdoor [14] and the DIODE
Outdoor [25] datasets. As a reference, we also provide
ZoeDepth (NK) metrics. Similar to Section 3.1 (Table 4),
we also show results for MicKey-Sc, where we evaluate
depth prediction on the positions where MicKey is most
confident (50% top scoring positions). MicKey has been
trained with pedestrian smartphone images, and still, it can
generalize and produce valid depth maps in datasets with
different statistics, or visual conditions.

Inlier correspondences. In this last section, we show dif-
ferent visual examples in Figure 3. We plot the inlier corre-
spondences that every method returns after computing the
relative pose estimation. We observe that MicKey finds
correct correspondences even though images were taken
from extremely different viewpoints. Moreover, we see that
MicKey detects and tries to match the object of interest
within the image instead of relying on local patterns that
might not appear in the two images. For instance, in im-
ages from row 1 or row 4, the object of interest is shown
in the images from opposite views, i.e., images were taken
with almost a 180° difference. Even so, MicKey is able
to match the correct side of the object to its corresponding
part in the other image. Thus, we observe that the network
is able to reason about the shape of the object and establish
correspondences beyond local patterns. RoMa [7] is also
able to find good matches, but it fails when the images do
not have direct visual overlap. Contrary to LoFTR [23] or

RoMA [7], MicKey and SuperGlue [22] are sparse feature
methods, and then they only have access to a single im-
age when computing their keypoints and descriptors. Con-
trary to MicKey, we note that state-of-the-art sparse feature
methods (e.g., SuperPoint [6]-SuperGlue [22]) do not find
any good correspondences under such extreme cases.

We report the VCRE metrics and median errors on image
pairs that have large and challenging viewpoint differences
in Table 8. We use the validation scenes, where ground
truth data is provided and hence, we can define the dif-
ficulty of an image pair. We rely on the pose difference
between the reference and the query frame instead of the
overlap score, such that unsolvable pairs are also evaluated.
We define a hard example as a pair that is taken at least 3
meters apart and with their camera directions being at least
rotated by 45°. We see that on those challenging examples,
MicKey obtains the highest number of relative poses under
the VCRE threshold (90 pixels).

References
[1] Abien Fred Agarap. Deep learning using rectified linear units

(ReLU). arXiv preprint arXiv:1803.08375, 2018. 1
[2] Eduardo Arnold, Jamie Wynn, Sara Vicente, Guillermo
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