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Figure 1. Reconstruction Priors. ACE0 [12], a neural SfM pipeline, struggles with an indoor scene (left). The reconstruction partly
degenerates, as is evident by the dispersed point cloud, camera poses (green) penetrating a wall, and artifacts in one of the views synthesized
with Splatfacto [90] (bottom). We incorporate various priors into ACE0 which lead to a more consistent scene layout, better pose estimates,
and fewer artifacts in synthesized views (center). We also show a version of ACE0 taking RGB-D rather than RGB images as input (right).

Abstract

Scene coordinate regression (SCR) models have proven to
be powerful implicit scene representations for 3D vision,
enabling visual relocalization and structure-from-motion.
SCR models are trained specifically for one scene. If train-
ing images imply insufficient multi-view constraints SCR
models degenerate. We present a probabilistic reinterpreta-
tion of training SCR models, which allows us to infuse high-
level reconstruction priors. We investigate multiple such
priors, ranging from simple priors over the distribution of
reconstructed depth values to learned priors over plausible
scene coordinate configurations. For the latter, we train a
3D point cloud diffusion model on a large corpus of indoor
scans. Our priors push predicted 3D scene points towards
plausible geometry at each training step to increase their
likelihood. On three indoor datasets our priors help learn-
ing better scene representations, resulting in more coher-
ent scene point clouds, higher registration rates and better
camera poses, with a positive effect on down-stream tasks
such as novel view synthesis and camera relocalization.

* Work done during an internship at Niantic.

1. Introduction

With the recent advent of learning-based structure-from-
motion (SfM) pipelines, there are three avenues to further
push their capabilities: 1) priors, 2) priors, and 3) priors.

In this work, we consider a particular class of neural SfM
models that hitherto only incorporated very weak priors:
Scene Coordinate Regression (SCR) [82]. SCR models are
implicit scene representations. They are trained on images
of a particular scene with known ground truth camera poses
[4, 7, 8, 11, 82]. Once trained, SCR models allow to es-
timate the camera poses of unseen query images relative to
the training scene, i.e. they enable visual relocalization. Re-
cently, ACE0 [12] showed self-supervised training of SCR,
turning it into a fully differentiable, neural SfM approach.

SCR reinterprets classical 3D reconstruction using a ma-
chine learning methodology. However, they still follow
classical 3D vision principles when learning the 3D geom-
etry of a scene: where feature-based methods triangulate
sparse key points explicitly, SCR methods rely on dense,
implicit triangulation of image patches [4]. Whether one
triangulates implicitly or explicitly, without sufficient multi-
view constrains triangulation fails [34]. This happens e.g.
for texture-poor areas, repetitive structures, reflections, etc.
where multi-view observations cannot be resolved to the
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same 3D scene point. In Fig. 1, featureless walls and floor
cause ACE0 to degenerate with an adverse effect on novel
view synthesis on top of the ACE0 reconstruction.

Our aim is to overcome the ambiguity and potential in-
completeness of scene-specific training data, by leveraging
high-level reconstruction priors. It is easy to see that the
degenerate scene representation of Fig. 1 (left) is unlikely
to correspond to real scene geometry as the left half of the
room is dispersed into space, and the estimated camera tra-
jectory penetrates a wall. Following this intuition, we refor-
mulate the training objective of SCR to easily incorporate
reconstruction priors in a maximum likelihood framework.
These priors can be hand-crafted [2, 63, 73, 100] or learned
from data [99], and should lead to coherent and plausible
reconstructions as the one in Fig. 1 (right).

For hand-crafted priors, we model plausible distributions
of depth values and force reconstructed scene coordinates
to follow those distributions. For a learned prior, we pre-
train a 3D diffusion model on point clouds of indoor scenes,
to encode plausible scene geometries. Training generative
models, like diffusion models, on 3D representations is a
difficult endeavor. 3D datasets are orders of magnitude
smaller than their 2D counterparts. The largest 3D datasets
are comprised of simplistic 3D assets [19, 25, 26] wheres
datasets with entire 3D scenes are smaller still, containing
a few hundred scenes at most [1, 23, 48, 103]. We also
still lack efficient but expressive architectures to generate
entire 3D scenes with high fidelity. Both data and architec-
ture limitations contribute to the fact that, so far, 3D point
cloud diffusion was only shown for individual, isolated ob-
jects [55–57, 105]. However, we show that for mere use as
a prior, a lean 3D point cloud diffusion model trained on
relatively little data (around 700 indoor scenes) suffices to
provide useful guidance when reconstructing indoor scenes.

We summarize our contributions:

• We reformulate SCR training as maximum likelihood
learning to enable incorporation of reconstruction priors.

• We propose hand-crafted priors that push depth values
of reconstructed scene coordinates to follow a reasonable
distribution, and a learned prior in form of a 3D point
cloud diffusion model that pushes reconstructed scene co-
ordinates towards representing plausible scene layouts.

• We plug our priors into state-of-the-art SCR frameworks
ACE [11], GLACE [93] and ACE0 [12]. They lead to
learning better scene representations signified by more
coherent and accurate point clouds, higher registration
rates in SfM, and better pose estimates. Our approach
does not significantly increase the training time of SCR
models and it does not affect efficiency at query time.

• As a byproduct, we show how measured depth maps can
be incorporated as a prior, leading to effective RGB-D
versions of ACE and ACE0.

2. Related Work

Visual Reconstruction and Relocalization Structure-
from-motion refers to the problem of estimating scene ge-
ometry and camera poses from a set of images [14, 65, 80,
83, 97]. Visual relocalization is a related task where the
camera pose of a query image should be estimated relative
to mapping images with known camera poses [39, 74, 76,
78]. Both tasks have been addressed with classical feature-
matching where scenes are represented as sparse 3D point
clouds. The current generation of learning-based feature
matchers [30, 49, 75, 89] is very reliable [40], with methods
like MicKey [3] and MASt3R [46, 96] demonstrating suc-
cessful feature matching even for opposing shots. However,
despite the robustness of feature matchers, classical triangu-
lation relies on the availability of sufficient multi-view con-
straints to reconstruct a scene [34]. In texture-poor areas or
with small camera baselines, point triangulation might still
degenerate. Since feature-based pipelines consist of various
stages with complex control flow [35, 80, 83, 94, 97], it is
difficult to infuse high-level priors for regularization.

Feed-forward reconstruction methods, like DUSt3R [96]
and MASt3R [46], do suffer less from potential degenera-
cies of point triangulation. Trained on large datasets, these
methods incorporate strong reconstruction priors to enable
reconstruction in sparse-view scenarios with little to no vi-
sual overlap. However, these methods are inherently binoc-
ular, and are difficult to scale to large image collections. In
a spirit similar to DUSt3R/MASt3R, our work aims at en-
abling strong priors for SCR methods.

As another alternative to feature matching, pose regres-
sion methods aim to predict camera poses using a feed-
forward network [13, 20, 41, 42, 81]. These networks rep-
resent the scene implicitly, and do not offer introspection on
whether their scene representations are more or less prone
to degeneracies. In any case, pose regression methods ei-
ther lack accuracy [79], or depend on massive amounts of
scene-specific synthesized training data [21, 60].

Scene Coordinate Regression (SCR) SCR models fuse
the key point extraction and matching stages of classical
feature-based methods into a single regression step, per-
formed by a scene-specific machine learning model. Orig-
inally proposed by Shotton et al. [82] for relocalization in
small-scale indoor scenes with RGB-D images and random
forests, the approach was later extended to on-the-fly adap-
tation [16–18], RGB inputs [4, 8], using neural networks
[6, 7, 9] and to larger scenes [5, 47, 93, 95]. Recently,
the ACE framework [11] has demonstrated training of ex-
tremely memory-efficient SCR models in a few minutes per
scene. Subsequently, ACE0 [12] extended the applicability
of ACE models from visual relocalization to structure-from-
motion by demonstrating self-supervised training.



Most previous SCR methods rely entirely on scene-
specific training, and make very little use of scene-agnostic
data to distill reconstruction priors. ACE and ACE0 use a
pre-trained feature encoder. However, as a low-level com-
ponent, the feature encoder can do little to ensure coherence
of the final scene representation. Marepo [22] pre-trains a
scene-agnostic transformer to replace RANSAC [31] and
PnP [33] in the ACE pipeline. In a similar spirit, SACReg
[72] and SANet [101] pre-train scene-agnostic SCR predic-
tors that learn to interpolate scene coordinate annotations of
mapping images. Marepo, SACReg and SANet all concern
test-time components of SCR, and assume that a valid scene
representation has already been built. To the best of our
knowledge, we are the first to regularize SCR training by
high-level priors, derived from scene-agnostic data. Some
of our priors, regularizing the depth distribution of scene
coordinates, bear conceptional similarity with depth regu-
larization terms proposed for novel view synthesis [2, 73].
We show how to apply such priors in the context of SCR,
based on a probabilistic re-formulation of training.

Denoising Diffusion Models (DDMs) One of the pri-
ors we propose is a DDM on 3D point clouds to assess
the likelihood of scene coordinate configurations. DDMs
are generative models that incrementally transform ran-
dom noise to a target distribution, e.g. transforming high-
dimensional Gaussian noise to the distribution of natural
images [37, 84, 85]. The transformation is implemented
using a model that is trained to remove a small amount of
noise at each timestep. Generation can be unconditional,
or conditional, e.g. generating images of a pre-defined class
[27, 36]. Adjacent to our work, scene coordinates have been
used as a conditioning signal for image diffusion [62].

Due to the limited size and diversity of 3D datasets, dif-
fusion for 3D generation is difficult. 2D diffusion mod-
els have been utilized to regularize or guide 3D generation
[32, 67, 98]. For autonomous driving, large-scale scene
generation has been demonstrated for 2.5D LiDAR range
images [64, 70, 106], and coarse voxel grids [45, 51].

Diffusion models are related to score matching meth-
ods [86, 87] where models estimate the gradient of the log-
likelihood of the target distribution [15, 37, 54]. This obser-
vation was used by DiffusioNeRF [99] to utilize a diffusion
model to represent the prior probability over RGB-D im-
age patches when training a neural radiance field [58]. We
take inspiration from DiffusioNeRF’s formulation but avoid
the significant slow-down of rendering 2.5D image patches
throughout training, and regularize directly in 3D.

DDMs for Point Clouds Luo and Hu [55] first demon-
strated diffusion on 3D point clouds using a PointNet [68]
architecture. Subsequent works [56, 59, 104, 105] proposed
various improvements, including better architectures like

PointNet++ [69] and point-voxel CNN [53]. These works
model simple, isolated objects like e.g. those of ShapeNet
[19]. Melas-Kyriazi et al. [57] show image-conditional dif-
fusion of realistic, but still isolated, objects on Co3D [71].
To the best of our knowledge, generation of scene-level 3D
point clouds using diffusion has not been demonstrated. We
use a point-voxel CNN [53] to model the distribution of
scenes in ScanNet [23]. While our generative model also
cannot generate scenes with high fidelity, we show that it
still serves as an efficient prior for regularizing SCR.

3. Method
SCR models [82] encode a scene into a scene-specific neu-
ral network f . The network f maps an image patch pi cen-
tered around pixel i of image I to a 3D scene point yi,

yi = f(pi;w), (1)

where w denotes the parameters that encode the scene.
An explicit 3D point cloud of the scene can be extracted

from f by running it over scene images and collecting the
3D points yi [7]. However, the main application of SCR
models is camera pose estimation, where f is applied to
query images with unknown poses. Since the prediction yi

represents a 2D-3D correspondence from pixel i to scene
space, the outputs of f can be used for camera pose estima-
tion by feeding them into RANSAC [31] and PnP [33].

An SCR model f can be trained using RGB-D or RGB
images [7]. Although we will present an RGB-D version
of our approach in Sec. 3.4, we are mainly interested in
the general case and will assume that only RGB images
are available if not stated otherwise. Training also requires
known camera poses for the training images. With multi-
ple mapping images IM and their known camera poses, f
can be optimized using a reprojection loss Lreproj. However,
when multi-view constraints from the images are insuffi-
cient or ambiguous, f may (partly) degenerate, and estimate
scene points yi that are noisy, distorted or plain outliers, and
degrade downstream performance, see Fig. 1 (left).

To mitigate this, we complement Lreproj with a regular-
ization term Lreg. Lreg should enforce prior geometric con-
straints, e.g. that scene coordinates follow a plausible depth
distribution, or that all scene coordinates represent a coher-
ent scene layout. To this end, we reformulate the SCR train-
ing objective as maximum likelihood learning, and set the
regularization term to the negative log-likelihood of scene
coordinates: Lreg = − log p(y). Since we apply the prior
during training, it does not affect test time efficiency. We
base our work on ACE [11], due to its good accuracy and
attractive training time. Our priors can be readily applied
to any derivative of ACE as long as it keeps the general
training framework. We show results using ACE0 [12], a
self-supervised version of ACE for SfM, and GLACE [93]
for relocalization. See Fig. 2 for a system overview.
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Figure 2. System. Left: We train a scene coordinate regression (SCR) model to represent a scene. Following ACE [11] and ACE0 [12], the
SCR network predicts scene coordinates for a batch of random image patches in each training iteration. We supervise the SCR network with
the reprojection error of scene coordinates w.r.t. ground truth camera poses. Right: Extending [11, 12], we introduce a reconstruction prior
that outputs the gradient of the log-likelihood of the predicted point cloud. The prior guides the SCR model to learn a scene representation
that is more likely to correspond to a real scene. We investigate various priors: A depth distribution prior encourages depth values of
reconstructed scene coordinates to follow a plausible distribution. A 3D point cloud diffusion prior is a network that was trained offline on
a large corpus of scenes and encodes plausible scene layouts. We can also infuse a depth prior if inputs are RGB-D.

3.1. ACE Framework
ACE decomposes a SCR model f into a scene-agnostic fea-
ture extractor fB and a scene-specific regression head fH,

f(pi;w) = fH(fi;wH), with fi = fB(pi;wB). (2)

The feature extractor fB maps an image patch to a high-
dimensional feature vector fi, and the regression head fH
maps the feature to a scene coordinate yi. Following ACE,
we assume fB was pre-trained and remains fixed. We focus
on the mapping stage which optimizes fH, see Fig. 2 (left).

ACE first passes all mapping images IM to the feature
extractor fB to obtain a training buffer with features for a
large number of patches randomly sampled from mapping
images. When training fH, to achieve faster and more sta-
ble convergence, the buffered features are shuffled at each
epoch. In each training iteration, a batch of N features
f = {fi | i = 1, ..., N} is sampled from the feature buffer
to estimate the 3D scene points y = {yi | i = 1, ..., N} for
the corresponding 2D pixels from IM.

The ACE training loss Lreproj(IM,y,h∗) is a pixel-wise
projection loss applied to the 3D scene predictions y in each
training iteration. Here, h∗ = {h∗

i | i = 1, ..., N} denotes
the ground truth poses for each image from which the pix-
els are sampled. To regularize training in the first few it-
erations, ACE applies an additional loss, Linit(IM,y,h∗),
that mainly ensures that predicted coordinates are in front
of their associated camera. For further details, please refer
to ACE [11].

3.2. Probabilistic Training Objective
We recast the usual loss minimization objective of SCR as
the maximization of a scene coordinate’s probability. The
posterior probability for the scene points y, given the map-
ping images IM and poses h∗, is proportional to the product
of the likelihood p(h∗, IM | y) and the prior p(y):

p(y | h∗, IM) =
p(h∗, IM | y)p(y)

p(h∗, IM)
. (3)

Taking the negative logarithm of the posterior and omitting
the constant p(h∗, IM) yields:

− log p(y | h∗, IM) ∝ − log p(h∗, IM | y)− log p(y).
(4)

In ACE mapping, minimizing the reprojection error can be
interpreted as maximizing the log-likelihood of the mapping
views and poses given the predicted scene points, i.e.

− log p(h∗, IM | y) := Lreproj. (5)

Similarly, ACE’s regularization term can be interpreted as a
form of prior on scene coordinates, i.e. − log p(y) := Linit.
However, ACE only optimizes either Lreproj or Linit per
scene coordinate where the latter serves as an initialization
target for the former. In contrast, our perspective suggests
that reprojection error and prior should be optimized jointly
to maximize the likelihood of a scene coordinate. We pro-
pose a set of alternative priors as stronger regularization
terms Lreg instead of Linit, to be jointly optimized with the
reprojection error: Lreproj + Lreg = Lreproj − log p(y).



3.3. Depth Distribution Prior (RGB)
Firstly, we present a prior that builds on, and extends, the
intuition of ACE’s original initialization loss. That loss en-
sures that the depth di of a predicted scene coordinate yi is
within sensible bounds, namely 0 < di < dmax, where dmax
is a user-defined upper bound. Between those bounds, the
initialization loss provides no signal. Instead ACE switches
to optimizing the reprojection error only.

We propose to model a continuous distribution of plausi-
ble depth values, and to encourage scene coordinate to ad-
here to that distribution. First, we have to choose a distribu-
tion family. We need our prior to be defined over the whole
real line to be able to even assess the likelihood of negative
depth values which can occur during SCR training. We em-
pirically found a Laplacian distribution, Lap(d | µ, b), to be
a good choice. Having chosen the distribution family, we fit
its hyper-parameters, mean µ and bandwidth b, to a held out
set of scenes with measured (i.e. ground truth) depth values.

We can directly use the negative log-likelihood of indi-
vidual depth values as a prior per pixel i, i.e.

log p(yi) := λreg logLap(di | µ, b), (6)

where λreg is a hyper-parameter to balance the prior with
the reprojection loss. This prior corresponds to an L1 loss
on the predicted scene coordinate’s depth, pulling it to the
empirical mean.

While Eq. 6 increases the likelihood of individual scene
coordinates, it does not guarantee the set of all scene coordi-
nates to actually follow the target distribution, in particular
to have the correct variance. Therefore, as an alternative to
Eq. 6, we can utilize a distribution loss between the pre-
dicted depth values and the prior. We use the Wasserstein
distance between the set of predicted depth values of a mini-
batch, {di}, and the target Laplace distribution:

log p(yi) := λreg W [{di}, Lap(· | µ, b)] . (7)

Here, we take advantage of the ACE framework which con-
structs mini-batches associated with random scene points
throughout optimization. Therefore, we can assume that
the distribution of predicted depth values of a mini-batch
roughly follows the depth distribution of the entire scene.

3.4. Depth Prior (RGB-D)
The log-likelihood prior of Eq. 6 lends itself to an extension
that ingests measured depth values d∗i if available, namely
for RGB-D input images. In this case, we substitute the
broad distribution over plausible depth values with a narrow
distribution centered at the measured depth value for each
pixel:

log p(yi) := λreg logLap(di | d∗i , b′). (8)

Here, the bandwidth b′ is a user-defined value that controls
the tolerance of the prior. We will use b′ = 10cm.

3.5. Point Cloud Diffusion Prior (RGB)
Finally, we propose adding a 3D diffusion prior to SCR
training. The prior is pre-trained on a held out set of scenes,
and encodes knowledge about plausible scene point clouds.
During SCR training, the diffusion model is kept fixed, and
nudges scene coordinates towards coherent scene layouts.

In forward diffusion, Gaussian noise ϵ is progressively
added to a signal x0 over T time steps until the signal be-
comes completely noisy. Similarly, SCR training incremen-
tally recovers the scene point cloud from a random initial-
ization. Therefore, SCR training aligns with reversed diffu-
sion, and a 3D diffusion model can guide SCR optimization.

Diffusion models [37, 85] learn to recover the original
signal x0 by estimating the noise added to the noisy signal
xτ at time step τ ∈ [0, T − 1], through a neural network ϵθ.
It has been shown in [37, 91, 99] that the noise estimate is
proportional to the score function of the input signal, i.e.

∇x log p(x) := −λregϵθ(xτ , τ). (9)

In our context, this allows us to utilize a diffusion denois-
ing model ϵθ as prior over 3D coordinates y, because the
prediction of the model corresponds to the gradient of the
log-likelihood of scene coordinates. This prior is inspired
by DiffusioNeRF [99] with the main difference that we reg-
ularize directly in 3D.

Architecture Our noise estimator ϵθ(xτ , τ) takes the
noisy point cloud xτ ∈ RN×3 and the diffusion timestep
τ as inputs. We adopt PVCNN [52] with certain modifica-
tions made by [57] for diffusion timestep embedding.

Training We follow the training protocol in DDPM [37].
During each forward iteration, we first normalize the input
point cloud x0 with a predefined scaling factor to ensure the
points are within the range [−1, 1]. We then transform x0

to a noisy version xτ by adding noise to x0 according to
the noise schedule at a randomly sampled time step τ . The
training objective of the diffusion model is expressed as:

Ltraining = Eτ,ϵ∼N (0,1),x0

[
∥(ϵ− ϵθ(xτ , τ))∥22

]
. (10)

Inference Once the diffusion model is trained, we inte-
grate it into SCR mapping. We take the estimated scene
points y as input for the diffusion model and estimate the
noise. We use the estimate as regularization as specified
by Eq. (9). The distributions of the Gaussian noise and the
noise encountered during ACE mapping differ, particularly
during the first mapping iterations. Therefore, we apply
the diffusion prior only after iteration 5k of ACE mapping.
We align the diffusion time T

20 with ACE iteration 5k, and
linearly interpolate timestep τ down to 0 as training pro-
gresses. We do not apply the diffusion prior to points with a



Table 1. Reconstruction of ScanNet [23] and Indoor6 [28]. We compare results of ACE0 without and with our priors added. We report
the percentage of images registered to the reconstruction (Reg. Rate), absolute trajectory and relative pose errors (ATE/RPE) as well as
median pose errors compared to pseudo ground truth (pGT), and PSNR of novel view synthesis using two separate evaluation splits: the
usual split with one test frame / seven training frames, and a harder split alternating between 60 test frames and 60 training frames.

Comparison to Pose pGT (BundleFusion) Splatfacto PSNR (dB) ↑ Indoor6

Reg. Rate ↑ ATE / RPE (cm) ↓ Med. Err. (cm/°) ↓ 1/7 60/60 Reg. Rate ↑ PSNR (dB) ↑

RGB

ACE0 98.1% 26.6 / 4.0 19.7 / 9.0 30.2 22.3 57.1% 13.5
ACE0 + Laplace NLL (Ours) 98.9% 25.4 / 3.5 17.5 / 8.8 30.2 22.2 58.0% 14.1
ACE0 + Laplace WD (Ours) 98.7% 25.9 / 3.6 17.5 / 6.8 30.3 21.7 57.7% 14.1
ACE0 + Diffusion (Ours) 98.6% 26.5 / 3.8 18.8 / 8.9 30.2 22.4 61.8% 14.6

RGB-D ACE0 + DSAC* Loss 96.2% 29.2 / 6.0 20.9 / 5.9 30.0 21.9 N/A N/A
ACE0 + Laplace NLL (Ours) 98.9% 18.3 / 3.5 12.8 / 4.4 30.6 22.9 N/A N/A

reprojection error smaller than 30 pixels, as we assume that
sufficient multi-view constraints exist for those points.

4. Experiments
Implementation Details We build on the official Py-
Torch [66] implementation of ACE0 [12]. Unless otherwise
specified, we use the same parameters as ACE0 [12] for re-
construction, and the same parameters as ACE [11] for re-
localization. We use the ACE feature backbone which was
pre-trained on 100 ScanNet training scenes. We also inte-
grate the diffusion prior into GLACE [93]. In this variant,
we maintain the regularization identical to its implementa-
tion in ACE, while keeping all other settings of GLACE.

Training the Priors We fit our priors to the training set
of ScanNetV2 [23] which consists of 706 scenes, densely
reconstructed from RGB-D images. For the depth distri-
bution prior (Sec. 3.3), we fit a Laplace distribution to ran-
domly sampled depth values of the training images, yielding
a mean of µ = 1.73m and a bandwidth of b = 60cm. For
training the diffusion model (Sec. 3.5), we use the ground
truth point cloud of each training scene from ScanNetV2 as
target. In each iteration, we randomly sample 5,120 points
from a point cloud in the training dataset and apply augmen-
tations including random rotation, translation and scaling
within a certain range. The total number of diffusion time
steps is set to 200. We train the diffusion model with a batch
size of 16 for 100,000 iterations on a single V100 GPU. We
use AdamW [44], with a learning rate that decays linearly
from 0.0002 to 0 throughout the training process. The dif-
fusion model is frozen after training and applied during the
mapping stage across all scenes and datasets.

4.1. Structure-from-Motion
We reconstruct a number of indoor scenes using ACE0 [12],
with and without incorporating our priors.

Datasets We evaluate on the first 20 test scenes of Scan-
NetV2 [23], and on the mapping sequences of Indoor6 [28].

Where ScanNet consists of single room scans, Indoor6 fea-
tures six larger indoor environments comprised of multiple
rooms. Indoor6 does not come with RGB-D images.

Metrics We report the percentage of images successfully
registered to the reconstruction (Reg. Rate), i.e. images with
a final inlier count above 1,000 [12]. We confirm the qual-
ity of estimated camera poses using novel view synthesis
[12, 92]. That is, we estimate camera poses using all im-
ages. Then, we divide images into training and validation
images for Splatfacto [43, 90, 102] to check whether we can
re-render the scene based on the estimated camera poses.
We report PSNR numbers on the usual training/validation
split of Splatfacto, taking one validation image for every
seven training images. For ScanNet we also report results
for a harder split, alternating between 60 validation images
and 60 training images. Finally, for ScanNet, we com-
pare the estimated poses to the pseudo ground truth (pGT,
[10]) that comes with the dataset, estimated by BundleFu-
sion [24], a RGB-D SLAM system that exploits the ordering
of images. For reference, BundleFusion achieves a PSNR
of 22.2dB on the 60/60 Splatfacto split, lower that some of
our results. Still, SLAM poses serve as a suitable reference
in terms of global consistency, and we report the absolute
trajectory error (ATE) and relative pose errors (RPE) [88],
as well as median rotation and translation errors after least-
squares alignment to the pGT camera trajectory.

Discussion We report results in Table 1. We cou-
ple our Laplace depth distribution prior (Sec. 3.3) with
log-likelihood optimization (Laplace NLL) as well as the
Wasserstein distance (Laplace WD). Both variations of the
prior increase the registration rates and pose quality on
ScanNet. The novel view synthesis quality is largely on par
with ACE0, except for a noticeable drop in PSNR for the
60/60 evaluation split when using the Wasserstein distance.
Effects are stronger on Indoor6 where ACE0 struggles due
to the size of the scenes. Both depth distribution priors lead
to higher registration rates, and increase PSNR by 0.6 dB.



Table 2. Relocalization Results on 7Scenes [82]. We report the percentage of test images below a 5cm/5◦ pose error (higher is better),
mapping time and map size. Methods in “SCR w/ 3D” use depth or 3D point cloud supervision during mapping. Best results within the
SCR groups are highlighted in bold. All methods use SfM mapping poses.

Type Method Mapping Time Map Size Chess Fire Heads Office Pumpkin Redkitchen Stairs Avg

FM

AS (SIFT) [77] ∼1.5h ∼200MB N/A N/A N/A N/A N/A N/A N/A 98.5%
D.VLAD+R2D2 [38] ∼1.5h ∼1GB N/A N/A N/A N/A N/A N/A N/A 95.7%
hLoc (SP+SG) [74, 75] ∼1.5h ∼2GB N/A N/A N/A N/A N/A N/A N/A 95.7%

SC
R

w
/3

D DSAC* [7] 15h 28MB 99.8% 98.9% 99.8% 98.5% 98.9% 97.8% 93.8% 98.2%
SRC [29] 2min 40MB 89.1% 79.6% 97.6% 84.1% 65.7% 87.3% 64.7% 81.1%
FocusTune [61] 6min 4MB 99.7% 99.0% 87.1% 99.9% 99.9% 100% 99.5% 97.9%
ACE [11, 12] + DSAC* Loss [7] 5.5min 4MB 100% 99.5% 100% 98.8% 96.2% 98.2% 82.3% 96.4%
ACE + Laplace NLL (Ours) 5.5min 4MB 100% 99.2% 100% 99.8% 97.2% 98.4% 87.3% 97.4%

SC
R

DSAC* [7] 15h 28MB 100% 99.1% 98.8% 99.3% 99.4% 96.9% 78.6% 96.0%
GLACE [93] 6min 9MB 100% 99.9% 99.9% 99.8% 100% 98.2% 71.2% 95.6%
GLACE + Diffusion (Ours) 9min 9MB 100% 99.8% 100% 99.9% 99.5% 98.8% 73.6% 95.9%
ACE [11] 5min 4MB 100% 99.5% 99.7% 100% 99.9% 98.6% 81.9% 97.1%
ACE + Laplace NLL (Ours) 4.5min 4MB 100% 98.9% 99.9% 99.9% 100% 98.5% 84.2% 97.3%
ACE + Laplace WD (Ours) 4.5min 4MB 100% 99.6% 100% 99.9% 99.8% 98.2% 83.2% 97.2%
ACE + Diffusion (Ours) 8min 4MB 100% 99.5% 100% 100% 99.0% 99.1% 86.2% 97.7%

The diffusion prior yields slight but consistent improve-
ments across all metrics on ScanNet. On Indoor6, the diffu-
sion prior causes an increase in registered images (+4.7%)
leading to higher PSNR (+1.1 dB). The diffusion prior takes
the global scene layout into account, providing a stronger
regularization signal than our depth distribution priors.

On ScanNet, we also test a version of ACE0 with our
RGB-D prior (Sec. 3.4). We compare to an ACE0 RGB-D
baseline where we activate the ACE0 RGB-D loss, usually
only applied when initializing the reconstruction, through-
out the entire reconstruction. The ACE0 RGB-D loss is
inspired by DSAC* [7] and optimizes the distance of pre-
dicted scene coordinates to ground truth derived from depth
maps. The loss switches to the reprojection error, when
predicted scene coordinates are within 10cm of the ground
truth. This RGB-D baseline of ACE0 (denoted ACE0 +
DSAC* Loss) performs worse than the default ACE0 on
ScanNet, presumably due to the hard switch between RGB
and RGB-D terms reducing optimization stability. In con-
trast, ACE0 coupled with our depth prior, derived from our
probabilistic interpretation of SCR optimization, yields sig-
nificant improvements across all metrics.

4.2. Relocalization Results
We evaluate performance of our priors on the relocalization
task using the 7Scenes and Indoor6 datasets, comparing it
against other Scene Coordinate Regression (SCR) methods
and feature-matching (FM) approaches. We report the per-
centage of images localized within a 5cm/5◦ threshold [82].

7Scenes Results in Tab. 2 demonstrate that ACE coupled
with our priors achieves higher relocalization accuracy than
ACE alone. The diffusion prior has the strongest effect, im-
proving results by 4.1% on the most difficult scene, Stairs.
The supplement includes results using alternative ground

Table 3. Relocalization Results on Indoor6 [28]. We report
relocalization accuracy (5cm, 5◦) and mapping time. Except for
EGFS, we report all results as mean over 5 runs. Best results bold
within each pair w/ and w/o our diffusion prior (denoted -Diff ).

Reloc. Acc. Map. Time

N=5,120

EGFS [50] 56.1% 21 min

GLACE [93] 44.2% ± 1.8% 11 min
GLACE-Diff (Ours) 46.4% ± 1.9% 15 min

ACE [11] 36.2% ± 1.5% 5 min
ACE-Diff (Ours) 37.5% ± 1.8% 8 min

N=51,200

GLACE [93] 69.5% ± 1.4% 33 min
GLACE-Diff (Ours) 69.6% ± 2.0% 40 min

ACE [11] 57.2% ± 1.6% 10 min
ACE-Diff (Ours) 57.9% ± 1.1% 13 min

truth poses [10] where the same trend holds. In Fig. 3, we
show qualitatively how the diffusion prior leads to a more
compact representation for this scene. To underline the ver-
satility of our priors, we report results of GLACE [93], a
recent ACE extension, coupling it with our diffusion prior.
Again, relocalization results improve on average, particu-
larly on the Stairs scene. In the supplement, we analyze the
effect of our priors on the point clouds learned by ACE.

In terms of mapping time, our depth distribution pri-
ors lead to simplified optimization objectives compared to
ACE, resulting in a slight reduction in mapping time. On
the other hand, incorporating the diffusion prior incurs ad-
ditional cost, as we need to execute a separate model many
times throughout ACE mapping. However, the nominal in-
crease in mapping time is still modest, with +3 minutes.

Indoor6 In Tab. 3, we report the average relocalization
accuracy on Indoor6 for ACE [11]; GLACE [93] with and



Predicted Poses

Training Images Test Images

Training ACE w/ Our Prior Predicted Poses

Training ACE w/o Prior

86.2%

79.5%

Training ACE w/o Prior

Training ACE w/ Diffusion Prior
81.9%

86.2%

Figure 3. Diffusion Prior on Stairs. We guide the training of ACE [11] on the Stairs scene with our 3D diffusion model, leading to a more
coherent scene geometry, and higher pose estimation accuracy on test images (5cm,5◦ threshold).

< Generated Point Clouds ScanNet Point Clouds >

Figure 4. Generated Point Clouds. Point clouds generated by our diffusion model together with ScanNet point clouds used for training.

without our diffusion prior. Our experiments show that
increasing the batch size significantly improves the local-
ization accuracy, presumably due to the larger size of the
scenes. Therefore, we evaluated two versions of each
method, using batch sizes of 5,120 and 51,200. We ob-
served noticeable variance in relocalization accuracy on this
dataset, and report mean results over 5 runs. Adding our
prior helps on average, although ultimate conclusions are
difficult due to the variance on this dataset. For per-scene
results, please see the supplement. For EGFS [50], another
ACE derivative, the code is not publicly available yet. We
report results with batch size 5,120 from their paper. EGFS
could be coupled with our diffusion prior, as well.

4.3. Prior Introspection

Fig. 4 shows point clouds generated by the diffusion
model, compared with ScanNet scenes, illustrating the prior
learned by the model. Although lacking fine details, the
prior represents sensible room layouts sufficient to regular-
ize SCR training. The supplement includes further analysis,
regarding point cloud encoder architecture, efficiency, the
prior’s effect on scarce data and hyper-parameters.

5. Conclusion

We have presented a probabilistic reformulation of scene
coordinate regression training that allows for the easy incor-
poration of reconstruction priors. We presented multiple po-
tential priors: priors regularizing the distribution of recon-
structed depth values, a prior leveraging measured depth,
as well as a high-level learned prior in the form of a 3D
point cloud diffusion model. We found that the regulariza-
tion terms can be integrated into ACE-based frameworks,
such as ACE, ACE0 or GLACE, yielding performance gains
while not affecting the test-time latency.

Limitations Our experiments have focused on indoor
scenes, with results on a few outdoor scenes in the supple-
ment. Properly extending our approach to outdoor scenes
requires better models of depth distribution, and more di-
verse data for diffusion training to learn a comprehensive
prior over larger areas. A point cloud encoding network
with better expressiveness could result in generations with
higher fidelity, but it would need to remain efficient to be
practical. An additional conditional signal for the diffusion
model can also be a promising direction for future research.
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