Part III Learning-based Visual Localization

Eric Brachmann

Eric Brachmann Staff Scientist

R

in

- ebrach.github.io
- @eric_brachmann
- ebrachmann@nianticlabs.com
- linkedin.com/in/eric-brachmann

Lightship Visual Positioning System

Regression-basedart III

Eric Brachmann

A Standard Feature Matching Pipeline

e.g. "From Coarse to Fine: Robust Hierarchical Localization at Large Scale", Sarlin et al., CVPR'19

Query Image I	lmage Retrieval	Feature Extraction	Feature Matching	RANSAC	Estimate Poses (PnP) Score Poses (Inliers)	6D Pose h
Query Image <i>I</i>	Absolute Pose Regression					6D Pose h
Query Image <i>I</i>	lmage Retrieval	Image Relative Pose Regression				
Query Image I	lmage Retrieval	Correspo Regre	ondence ssion	RANSAC	Estimate Poses (PnP) Score Poses (Inliers)	6D Pose h

Preparation Scene-Agnostic Training

Mapping

Build the Scene Representation

Re-Localisation

Register Query Frames

Train SuperPoint Train SuperGlue Train NetVLAD Obtain Posed Images Build Retrieval Index Triangulate Scene

NN Retrieval Discrete Feature Matching

[hLoc] "From Coarse to Fine: Robust Hierarchical Localization at Large Scale", Sarlin et al., CVPR'19 [SuperPoint] "SuperPoint: Self-Supervised Interest Point Detection and Description", DeTone et al., CVPR Workshops'18 [SuperGlue] "SuperGlue: Learning Feature Matching with Graph Neural Networks", Sarlin et al., CVPR'20 [NetVLAD] "NetVLAD: CNN architecture for weakly supervised place recognition", Arandjelovic et al., CVPR'16

Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR'19

Pose:
$$\mathbf{h} \in SE(3) = \left\{ \begin{bmatrix} R & \mathbf{t} \\ 0 & 1 \end{bmatrix} \middle| R \in SO(3), \mathbf{t} \in \mathbb{R}^3 \right\}$$

Rotation: $R \in SO(3) = \{ R \in \mathbb{R}^{3 \times 3} | RR^T = I, \det(R) = 1 \}$

Rotation Matrix

$$= 1 \}$$

$$h = 1$$

$$h =$$

e.g. [1] r_2 R = r_{A} $\mathbf{q} = (c, v_1, v_2, v_3)$ r_7 r_8 Enforce/Map: Enforce/Map: $RR^{\mathrm{T}} = I$, det(R) = 1 $\|\mathbf{q}\| = 1$ predict 6D (e.g. in [3]) \rightarrow Gram-Schmidt predict 9D (e.g. in [4]) \rightarrow Recommended reading: orthogonal Procrustes

Unit Quaternion

[1] Kendall et al., "PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization", ICCV15 [2] Brachmann et al., "DSAC - Differentiable RANSAC for Camera Localization", CVPR17 [3] Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR'19 [4] Chen et al., "Wide-Baseline Relative Camera Pose Estimation with Directional Learning", CVPR'21

Axis-An

 (u_1', u_2')

Enforce/I

e.g. [2

Sola, "Quaternion kinematics for the error-state Kalman filter", 2017 Hartley et al., "Rotation Averaging", IJCV13

Rotation

- 3D normalised axis + 1D angle: 4D over-parametrisation of 3D axis-angle
 - Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR19
- log unit quaternion: equivalent to axis-angle up to a scale factor of 2
 - Brahmbhatt et al., "Geometry-Aware Learning of Maps for Camera Localization", CVPR18
- Euler angles
 - Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR19
- discretized Euler angles: classification rather than regression
 - Cai et al., "Extreme Rotation Estimation using Dense Correlation Volumes", CVPR21

Translation:

- 3D normalised translation vector + 1D scale: 4D over-parametrisation of 3D translation
 - Arnold et al., "Map-free Visual Relocalization: Metric Pose Relative to a Single Image", ECCV22
- 2D discretized translation direction + 1D scale: classification rather than regression
 - Arnold et al., "Map-free Visual Relocalization: Metric Pose Relative to a Single Image", ECCV22

Pose:

- Three hallucinated 3D-3D correspondences (18D): get full 6D pose via Kabsch algorithm
 - Arnold et al., "Map-free Visual Relocalization: Metric Pose Relative to a Single Image", ECCV22

Extensive experimental analysis in "Map-free Visual Relocalization: Metric Pose Relative to a Single Image", Arnold et al., ECCV22 Predicting rotation matrix (see previous slide) and vanilla translation vector wins.

Translation error:
$$\ell(\mathbf{t}, \mathbf{t}^*) = \|\mathbf{t} - \mathbf{t}^*\|$$

How to measure rotation error?

- Angular Distance [1]: $\theta(R, R^*) = \|\log(R^*R^T)\|$
- **I** Quaternion Distance [2]: $\|\mathbf{q} \mathbf{q}^*\|$
- \mathbf{H} Chordal Distance [3]: $\|\mathbf{R} \mathbf{R}^*\|_{\mathrm{F}}$
- F Angle-Axis Distance [4]: $\|\log R \log R^*\|$

 $\|\log R - \log R^*\| \neq$

 $\|\log TR - \log TR^*\|$ [5]

Brachmann et al., "DSAC - Differentiable RANSAC for Camera Localization", CVPR17
 Kendall et al., "PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization", ICCV15
 Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR19
 Brahmbhatt et al., "Geometry-Aware Learning of Maps for Camera Localization", CVPR18
 Hartley et al., "Rotation Averaging", IJCV13

MIANTIC

How to combine rotation error and translation error? Weighted [1]: $\ell_{\beta}(\mathbf{h}, \mathbf{h}^*) = \ell(\mathbf{t}, \mathbf{t}^*) + \beta \ell(R, R^*)$

Adaptive weighted [2]: $\ell_{\sigma^2}(\mathbf{h}, \mathbf{h}^*) = \ell(\mathbf{t}, \mathbf{t}^*) \exp(-s_t) + s_t + \ell(R, R^*) \exp(-s_R) + s_R$

Reprojection Error [2]:
$$\ell_{\pi}(\mathbf{h}, \mathbf{h}^*) = \sum_{\mathbf{v} \in \mathcal{M}} \|\pi(\mathbf{h}, \mathbf{v}) - \pi(\mathbf{h}^*, \mathbf{v})\|$$

Kendall et al., "PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization", ICCV15
 Kendall and Cipolla, "Geometric Loss Functions for Camera Pose Regression with Deep Learning", CVPR17

Pose Loss Functions

- Needs depth or 3D scene model
- Mimics augmenting the scene

- No depth / 3D scene model needed
- Mimics placing virtual content

[1] Kendall et al., "PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization", ICCV15
 [3] Wald et al., "Beyond controlled environments: 3D camera re-localization in changing indoor scenes", ECCV20
 [2] Kendall and Cipolla, "Geometric Loss Functions for Camera Pose Regression with Deep Learning", CVPR17
 [4] Arnold et al., "Map-free Visual Relocalization: Metric Pose Relative to a Single Image", ECCV22

Preparation Scene-Agnostic Training

Mapping Scene-Specific Training **Re-Localisation** Register Query Frames

Pre-Train Backbone

Obtain Posed Images Train Pose Regression

Training Data

PoseNet

[PoseNet] "Geometric Loss Functions for Camera Pose Regression with Deep Learning" Kendall and Cipolla, CVPR '17

Preparation

Scene-Agnostic Training

Mapping Scene-Specific Training

Re-Localisation Register Query Frames

Pre-Train Backbone

Obtain Posed Images Train Pose Regression

Input: Image I

Forward Pass

Output: Pose $\mathbf{\hat{h}}$

[PoseNet] "Geometric Loss Functions for Camera Pose Regression with Deep Learning" Kendall and Cipolla, CVPR '17

Extrapolation vs. Invariance

Training Image

???

???

Global methods (APR) need to **extrapolate**.

Local methods (AS, HLoc, DSAC*, NeRF) need to be invariant.

Recommended Reading: "Understanding the Limitations of CNN-based Absolute Camera Pose Regression", Sattler et al., CVPR'19

Absolute Pose Regression

- Can be fast at query time
- Slow at mapping time
- Moderate accuracy (but there is progress)

Preparation Scene-Agnostic Training

Pre-Train Image Retrieval

RelocNet

Pre-Train Relative Pose Regressor

"RelocNet: Continuous Metric Learning Relocalisation using Neural Nets", Balntas et al., ECCV'18

Obtain Posed Images Build Retrieval Index

Mapping Time: Very Low

Re-Localisation Evaluation

Retrieve NN Refine pose

Preparation Scene-Agnostic Training

Pre-Train Image Retrieval

RelocNet

Pre-Train Relative Pose Regressor

"RelocNet: Continuous Metric Learning Relocalisation using Neural Nets", Balntas et al., ECCV'18

Re-Localisation Evaluation

> Retrieve NN Refine pose

Mapping

Scene-Specific Training

Obtain Posed Images

Build Retrieval Index

Reference Image

RelocNet Median error on 7Scenes

Train on 7Scenes: 21cm Train on ScanNet: 29cm

RelocNet: Continuous Metric Learning Relocalisation using Neural Nets Balntas et al., ECCV 2018

Preparation

Scene-Agnostic Training

Pre-Train Image Retrieval Pre-Train Relative Pose Regressor

Mapping Scene-Specific Training

Obtain Posed Images Build Retrieval Index

Retrieve NN Refine pose

"To Learn or Not to Learn: Visual Localization from Essential Matrices", Zhou at al., ICRA'20

Where Do We Stand? RPR

Data from Arnold et al., "Map-free Visual Relocalization: Metric Pose Relative to a Single Image", ECCV22

Mapping **Re-Localisation Preparation** Scene-Agnostic Training Scene-Specific Training Evaluation Pre-Train Image Retrieval Shoot Reference Image **Estimate Relative Pose** Pre-Train Relative Pose Regressor

"Map-free Visual Relocalization: Metric Pose Relative to a Single Image", ECCV22

Map-Free Relocalisation on 7Scenes

Reference Image

Query Images

E-Mat from SuperGlue, Scale from Est. Depth

100

50

0

Map-Free Relocaliasation Dataset

Map-Free Relocaliasation Dataset

Dataset, Baselines, Evaluation Code, Leaderboard https://research.nianticlabs.com/mapfree-reloc-benchmark

Reference Frame Query Ground Truth SuperGlue + Est.Depth Relative Pose Regression

Relative Pose Regression

- Low or no mapping costs
- Scale ambiguity is key challenge
- New dataset and benchmark to measure and drive progress:

Map-Free Relocalisation

Query Image <i>I</i>	lmage Retrieval	Feature Extraction	Feature Matching	RANSAC	Estimate Poses (PnP) Score Poses (Inliers)	6D Pose h
Query	Image	Correspondence		RANSAC	Estimate Poses (PnP)	6D Pose
Image I	Retrieval	Regre	ssion		Score Poses (Inliers)	h

Query Image

Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images, Shotton et al., CVPR'13

Query Image <i>I</i>	lmage Retrieval	Feature Extraction	Feature Matching	RANSAC	Estimate Poses (PnP) Score Poses (Inliers)	6D Pose h
Query	Image	Correspondence		Δ ΛΝΙςΛ <i>C</i>	Estimate Poses (PnP)	6D Pose
Image I	Retrieval	Regre	ssion	TANJAC	Score Poses (Inliers)	h

Query Image

Scene Coordinate Prediction

Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images, Shotion et al., even 13

Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images, Shotton et al., CVPR'13

Query Image I	lmage Retrieval	Feature Extraction	Feature Matching	RANSAC	Estimate Poses (PnP) Score Poses (Inliers)	6D Pose h
Query	Image	Correspondence Regression		RANSAC	Estimate Poses (PnP)	6D Pose
Image I	Retrieval				Score Poses (Inliers)	h

Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images, Shotton et al., CVPR'13

Case I: Mapping images are RGB-D or 3D model is available

Mapping Image

Visual Camera Re-Localization from RGB and RGB-D Images Using DSAC, Brachmann and Rother, TPAMI'21

 $\ell_{L_1}(\mathbf{y},\mathbf{y}^*) = \|\mathbf{y} - \mathbf{y}^*\|$

Case I: Mapping images are RGB-D or 3D model is available

$$\ell_{L_{1}+\pi}(\mathbf{y},\mathbf{y}^{*},\mathbf{h}^{*}) = \begin{cases} ||\mathbf{y}-\mathbf{y}^{*}||, & ||\mathbf{y}-\mathbf{y}^{*}|| > 0.1m \\ ||\mathbf{p}-\pi(\mathbf{y},\mathbf{h}^{*})||, & ||\mathbf{y}-\mathbf{y}^{*}|| < 0.1m \end{cases}$$
Mapping Image
Scene Coordinate
Prediction
Scene Coordinate
Ground Truth
$$\mathbf{y}^{*}$$

Visual Camera Re-Localization from RGB and RGB-D Images Using DSAC, Brachmann and Rother, TPAMI'21

MIANTIC

Case II: Mapping images are RGB

 $\mathcal{V} = \left\{ \mathbf{y} \middle| \begin{array}{c} \text{in front of camera} \\ \text{below maximum distance} \\ \text{below maximum reprojection error} \end{array} \right\}$ $\ell_{L_1+\pi}(\mathbf{y}, \mathbf{h}^*) = \begin{cases} \|\mathbf{p} - \pi(\mathbf{y}, \mathbf{h}^*)\|, & \mathbf{y} \in \mathcal{V} \\ \|\mathbf{y} - \overline{\mathbf{y}}\|, & \text{otherwise} \end{cases}$ Scene Coordinate Scene Coordinate Prediction Heuristic y y

Visual Camera Re-Localization from RGB and RGB-D Images Using DSAC, Brachmann and Rother, TPAMI'21

Mapping Image

Training Objectives

End-To-End Training

[DSAC] "DSAC - Differentiable RANSAC for camera localization", Brachmann et al., CVPR'17 [DSAC++] "Learning less is more - 6D camera localization via 3D surface regression", Brachmann and Rother, CVPR'18

[DSAC] "DSAC - Differentiable RANSAC for camera localization", Brachmann et al., CVPR'17 [DSAC++] "Learning less is more - 6D camera localization via 3D surface regression", Brachmann and Rother, CVPR'18

Comparing reprojection error before and after end-to-end training:

Cambridge Landmarks [Ken15]

[Sho13] "Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images", Shotton et al., CVPR'13 [Ken15] "PoseNet: A Convolutional Network for Real-Time 6-DoF Camera Localization", Kendall et al., ICCV'15

ΜΙΑΝΤΙΟ

7Scenes Dataset [Sho13]

60%

Pseudo Ground Truth

Active Search

D-SLAM (Kinect Fusion) pseudo ground truth

SfM (COLMAP) pseudo ground truth

Active Search

D-SLAM (Kinect Fusion) pseudo ground truth

SfM (COLMAP) pseudo ground truth

DSAC* (RGB-D)

D-SLAM (Kinect Fusion) pseudo ground truth

SfM (COLMAP) pseudo ground truth

E. That And C. Rother. "Visual camera relocalization from RGB and RGB-D images using DSAC". TPAMI, 2021

Some Strategies:

- RGB-D mapping, RGB-D queries:
 - Random Forests: <10 minutes
 - Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images, Shotton et al., CVPR13
 - On-the-fly Adapatation: realtime
 - On-the-Fly Adaptation of Regression Forests for Online Camera Relocalisation, Cavallari et al., CVPR17
 - Let's take this online: Adapting scene coordinate regression network predictions for online RGB-D camera relocalisation, Cavallari et al., 3DV19
- **RGB-D** mapping, **RGB** queries:
 - Random Forests: <10 minutes
 - Uncertainty-driven 6D pose estimation of objects and scenes from a single RGB image, Brachmann et al., CVPR16
 - Few Shot Learning, Meta Learning: <5 minutes
 - Visual Localization via Few-Shot Scene Region Classification, Dong et al., 3DV22

ACE – CVPR23 Highlight – TUE PM 86

AL

Training Buffer

Training Buffer

MIANTIC

Accelerated Coordinate Encoding

Accelerated Coordinate Encoding

raining Time: 0:00:08.66

NIANTIC

Accelerated Coordinate Encoding

	Mapping w/	Mapping	Man Sizo	7 5	Scenes	12 Scenes		
	Mesh/Depth	Time	Iviap Size	SfM poses	D-SLAM poses	SfM poses	D-SLAM poses	
AS (SIFT)	No		~200MB	98.5%	68.7%	99.8%	99.6%	
D.VLAD+R2D2	No	~1 Eh	~1GB	95.7%	77.6%	99.9%	99.7%	
hLoc (SP+SG)	No	1.511	~2GB	95.7%	76.8%	100%	99.8%	
pixLoc	No		~1GB	N/A	75.7%	N/A	N/A	
DSAC* (Full)	Yes	15h	28MB	98.2%	84.0%	99.8%	99.2%	
DSAC* (Tiny)	Yes	11h	4MB	B 85.6% MB N/A	70.0%	84.4%	83.1%	
SANet	Yes	~2.3min	~550MB		68.2%	N/A	N/A	
SRC	Yes	2min [‡]	40MB	81.1%	55.2%	N/A	N/A	
DSAC* (Full)	No	15h	28MB	96.0%	81.1%	99.6%	98.8%	
DSAC* (Tiny)	No	11h	4MB	84.3%	69.1%	81.9%	81.6%	
ACE	No	5min	5min 4MB 97		80.8%	99.9%	99.6%	

ACE on Larger Scenes

"Expert Sample Consensus Applied to Camera Re-Localization", Brachmann and Rother, ICCV'19

		Mapping w/	Mapping	Map Size	Cambridge Landmarks					Avg
		Mesh/Depth	Time		Court	King's	Hospital	Shop	St. Mary's	(cm/°)
FM	AS (SIFT)	No		~200MB	24/0.1	13/0.2	13/0.2	4/0.2	8/0.3	14/0.2
	hLoc (SP+SG)	No		~800MB	16/0.1	12/0.2	12/0.2	4/0.2	7/0.2	11/0.2
	pixLoc	No	~35min	~600MB	30/0.1	14/0.2	14/0.2	5/0.2	10/0.3	15/0.2
	GoMatch	No		~12MB	N/A	25/0.6	25/0.6	48/4.8	335/9.9	N/A
	HybridSC	No		~1MB	N/A	81/0.6	81/0.6	19/0.5	50/0.5	N/A
APR	PoseNet17	No	4-24h	50MB	683/3.5	88/1.0	88/0.1	88/3.8	157/3.3	267/3.0
	MS-Transformer	No	~7h	~18MB	N/A	83/1.5	83/1.5	86/3.1	162/4.0	N/A
(w/ Depth)	DSAC* (Full)	Yes	15h	28MB	49/0.3	15/0.3	15/0.3	5/0.3	13/0.4	21/0.3
	SANet	Yes	~1min	~260MB	328/2.0	32/0.5	32/0.5	10/0.5	16/0.6	84/0.8
	SRC	Yes	2min [‡]	40MB	81/0.5	39/0.7	39/0.7	19/1.0	31/1.0	42/0.7
SCR	DSAC* (Full)	No	15h	28MB	34/0.2	18/0.3	18/0.3	5/0.3	15/0.6	19/0.4
	DSAC* (Tiny)	No	11h	4MB	98/0.5	27/0.4	27/0.4	11/0.5	56/1.8	45/0.8
	ACE	No	5min	4MB	43/0.2	28/0.4	28/0.4	5/0.3	18/0.6	25/0.4
	Poker (Quad ACE Ensemble)	No	20min	16MB	28/0.1	18/0.3	18/0.3	5/0.3	9/0.3	17/0.3

Scene Coordinate Regression

- High Accuracy
- Low Memory Demand
- Fast Mapping
- Large Scale by $n\times$ Small Scale

Absolute Pose Regression Relative Pose Regression Correspondence Regression (aka Scene Coordinate Regression)

- Can be fast at query time
- Slow at mapping time
- Moderate accuracy (powered by NerF)

NIANTIC

- Low or no mapping costs
- Scale ambiguity is key challenge
- New dataset and benchmark to measure and drive progress:

Map-Free Relocalisation

- High Accuracy
- Low Memory Demand
- Fast Mapping
- Large Scale by n× Small Scale

Fin