
1

 Nimses Blockchain:
System of Electronic Assets

Abstract. An economic system that provides participants
with an unconditional, basic income for each minute of their
lives requires both reliance on cryptography and provision
of acceptable throughput. Typical solutions relying either
on trust or cryptography do not meet these requirements.
The hybrid system of Nimses does meet the requirements
for such a global solution. A centralized server timestamps
transactions, linking them into a chain, where hashes of
the blocks in the chain are announced in the generally
recognized, immutable ledger. The transaction model of the
above-mentioned system allows operations to be processed
simultaneously and independently, where throughput is
limited only by the speed of reaching an internal consensus
about transaction order.

nimses.com

Modern centralized systems of electronic assets, which
solve the double-spending problem by means of a trusted
third party, basically rely on the trust of their users. As far
as trust is concerned, such systems can not compete with
ones which stem from cryptography and, as a rule, have
a peer-to-peer structure [1]. Usually, there is a mechanism
that incentivizes users to maintain the viability of the
system and requires huge computational resources. As a
result, elements such as a trusted third party and central
emitter become obsolete in such modern systems. Another
important disadvantage of this kind of systems is the
low transaction processing speed, which makes them
unsuitable for global use.

1. INTRODUCTION

A new system reliant on cryptography, but not on trust, is
needed. Such a system must provide sufficient throughput
for large-scale everyday use.

Nimses proposes a solution for the above problem. The
solution is based on a centralized timestamp server and
submission of an electronic asset as a chain of digital
signatures. The server acts as a trusted third-party to
solve the problem of double-spending, verifying the
chronological order of transactions. Trust is guaranteed due
to the anchoring of the operation history.

An electronic asset is defined as a public chain of digital
signatures and an account as an ordered pair (a unique
identifier hereinafter referred to as an address and an asset).

Initiating a regular transfer, the account owner creates and
signs a transaction; the hash1 of the previous transaction is
attached to the following one. This information is attached
to the asset. A payee can verify each digital signature to
ensure the correctness of the entire chain.

1 Here and below, a hash stands for the result of a one-way function.

2. TRANSACTIONS

Nimses Inc

2

There is a problem when a payee can’t verify how many times
the current asset has been spent by a previous owner. There
are two common solutions to this problem. The first is to shift
these concerns to a trusted central authority, which makes the
entire monetary system dependant on itself. The second is to
create a peer-to-peer network in which participants need to
publicly announce transactions, as well as be able to agree on
the only order of the transactions. This causes a low network
throughput and huge computational outlays.

The system rules are defined as a set of generally accepted
statements, established within it. For example transaction
commissions, tax levies, etc.

Having received a transaction, the server adds it to
the processing queue. The processing is organized as
follows: first, the server checks whether a transaction
corresponds to the correctness of the current system
state. If the check is positive, the server attaches the
latest links of assets named “input links” and some result
named “output links”, generated according to the system
rules, to the transaction. The output links are connected
with the input ones by means of the transaction, which
then become the new input links in the following
transactions. As a result, an accurate, chronological
order of the procedure is guaranteed. Following the
correct processing, the server attaches a timestamp to
the transaction and publicly announces it. The timestamp
indicates that specific data existed at that moment, and
thus entered the chain.

To simplify the anchoring of the data history, transactions
are organized into blocks, which consist of a Merkle tree
from the transaction hashes and the block header. These
trees are built from an ordered selection of transactions
in the chain for a predefined period. A block header is
defined as an ordered pair (the hash of the previous
block header and Merkle tree root of the current one).
Therefore, the blocks are linked in an ordered chain,
wherein an attempt to change the information of any
block requires the recomputation of all the subsequent
ones. Thus, it’s enough to anchor just the header hash
instead of the entire chain of transactions.

The problem, of course, is that providing a genuine version
of chain history by server relies on trust. We need a way
for the user to be assured that the previous links of the
assets haven’t been deleted. For that, the server regularly
anchors the state of the chain into a generally recognized
immutable ledger. This is how the chain is built, and the next
link strengthens all the previous ones.

The usage of blockchain simplifies both the anchoring of the
data history and the verification of a transaction’s existence.
To check whether a transaction is included into a block, it is
not necessary for a user to download the entire transaction
history, which is unacceptable due to its size and growth
speed. A user can request a link to the block, that contains
the transaction and Merkle path leading to it, to make sure
that the corresponding transaction belongs to the block,
and all subsequent blocks are accepted and verified by the
server.

To address the above shortcomings of both approaches,
Nimses use a hybrid solution based on a centralized
timestamp server that provides the correctness and
chronological order of transactions. This is similar to
a solution with a trusted central authority, but has a
mechanism of regularly anchoring the entire transaction
history in a public, immutable ledger.

3. TIMESTAMP SERVER

4. BLOCKS

3

The anchoring of a transaction’s history is established
through a public announcement of data in an immutable
ledger, as in a newspaper or Usenet-post, that guarantees
the unambiguous origin of the data. In 2017, it is reasonable
to use public peer-to-peer decentralized systems as a ledger
for anchoring, such as Bitcoin and Etherium, as these have a
sufficient level of reliability.

To provide transfers between more than two participants,
transaction input and output links represent themselves,
not as pairs, but as ordered sets. For such a transaction to
be validated by the system, it is required to be signed by
every payment sender.

7.0. Technical Requirements

• Potential users volume: 3x109 users
• Transaction latency: ~ 1 second
• Transaction throughput: up to 106 TPS

7.1. Assets

In the current implementation, there is a single asset type
corresponding to an account, . Initially, there are two types
of assets: nim and infinim.

Nims are emitted via an internal emission by the system,
which is a function of astronomical time. Infinims appear
due to the consumption of a certain number of nims
according to the system rules.

The asset type is encoded with 32-bits.

7.2. Accounts

A unique account address consists of a 16-byte numerical
sequence and a 4-byte asset type.

An account is described as follows: account type, asset
type, current balance, number of transactions in the chain
of digital signatures, set of associated public keys that
verifies the account holders, emission type, and other
service data.

Account state is defined as: timestamp, transaction number
in the corresponding chain of digital signatures, and the
final balance of the last link, which is calculated for this

5. ANCHORING TIMESTAMPS

6. COMBINING AND SPLITTING VALUE

7. NIMSES IMPLEMENTATION

timestamp regarding the previous one, with consideration
of the emission and transaction receipt.

Account type can be either a service or a user. User account
types fall under nim-token emission.

Accounts are separate entities in the system, representing
the current state of user assets. They are created by a
special transaction that associates a unique address, initial
state, and a set of public keys. Then, the registered address
is ready to participate in transactions.

A subset of some transactions is signed, not with the public
keys of corresponding accounts, but with special service
keys. These service keys are authorized with genesis root
keys. For example, a tax institute is allowed to withdraw
certain amounts of tax deductions from user accounts.

Address	 = {16 byte} + {asset_id: 4 byte}

Account	 = (Address, Asset, Type, Emission, {Public
Key}, State)

State	 = (Time Point, Balance, Nonce, ...)
Account Type = {
 COMMON,
 HUMAN,
 GENESIS,
 TAX,
 REMOVED,
 ...
}

4

7.3. Emission

One nim is emitted for every minute since a user has
registered.

In order to determine the number of emitted nims while a
transaction is processed, the timestamp server additionally
timestamps a transaction being recorded in the chain with
an astronomical timestamp and computes output links of
the chain, taking nim emission into account.

Infinim emission is a special case, wherein there is a
separate account of service type that accumulates nims up
to a certain amount, in order to generate an infininim.

7.4. Genesis

The chain begins with an initial state named Genesis.
Genesis is defined by a service account and a set of root
keys. The Genesis account determines the initial nim
emission as the system starts.

7.5. Transactions

A typical transaction consists of three parts: header, body
and sender witnesses.

Tx = (Header, Body, Witnesses)

A transaction header is a tuple of protocol version,
transaction type and time window, that shows duration
while one can be recorded in the chain.

TxTypes	 = {
 CREATE_ACCOUNT,
 SPEND,
 TAX_SPEND,
 GENESIS_SPEND,
 REG_KEY,
 REVOKE_KEY,
 ...
}

TxHeader = (Version, Type, Time Window)

The account address and number of either sent or
received assets are defined as value reference.

ValueRef	= (Account Address, Value)

A transaction body is an ordered pair of sets that
contains value references of senders and receivers
correspondingly.

Tx.Body	 = (From: {ValueRef}, To: {ValueRef})

Senders’ witness data is an ordered set of witness data of
every sender. A sender witness data is an ordered pair made
up of the sender’s signature and hash of the public key that
belongs to the signing pair. SHA3-256 is used as a hash
function [4] (FIPS-202).

Witnesses = ({Witness})

Witness	 = (Signature, Public Key Hash)

A digital signature that is derived by means of signing
both the header and body of a transaction with any key
pair from the set which is attached to a sender account
is a sender signature. There is ECDSA [2] (NIST.FIPS.186-
4) on SECP256R1 [3] (RFC 5480) curve chosen as a digital
signature algorithm.

Signature = ECDSA(Public Key, Tx.SigId[i], Private Key)

Having a transaction added in the chain is supplemented
by hashes of the input links and output links. Every link is
identified with a 256-bit hash. Their uniqueness is assured
by the system and is verified when a transaction is added to
the chain. Transaction uniqueness is provided in the same
way.

Transactions may be signed either by private user accounts
keys or by special service keys.

7.6. Service Keys

The system introduces service keys to provide some necessary
functions of Nimses’ economic system. Tax withdrawals or
penalties for a violation of the rules stand as examples of
these functions. These service keys can be used instead of
user keys and are registered in the system by means of root
key signature. Their secret parts are stored on special devices
known as “Hardware Security Modules” in secure networks
and can not be extracted from there.

Key Types = {
 KEY_USER,
 KEY_ROOT,
 KEY_MASTER,
 KEY_IDENTITY,
 KEY_TAX,
 KEY_FAMILYPAYMENT,
 ...
}

Rules of transaction validation are determined by a type of
transaction and type of participating accounts.

7.7. Consensus

Participants of peer-to-peer networks must come to an
agreement on the only version of the transaction history
to prevent the double-spending problem. There are
some general algorithms that are used for this approach:
proof-of-work, proof-of-authority, proof-of-stake and
others, which provide a uniqueness-of-history version.
Centralized systems address this shortcoming and
can use more efficient methods that prevent double-
spending.

Since there is no need in replicating the entire history
all over a huge number of participants to come to an
agreement, it allows processing transactions in parallel,
thus high throughput is provided.

5

Timestamp server is defined as a private distributed
network of separate nodes, which use a globally
distributed storage of NewSQL class. This architecture
provides linear scalability of both space and transaction
throughput. The internal nodes reach consensus by
means of the Paxos algorithm.

Current implementation of Nimses takes about one
second to process a transaction and is able to provide
simplified proof of whether a transaction is included
in the chain immediately after the block is written.
Therefore, throughput is directly proportional to the
speed of reaching the internal consensus.

7.8. Blocks

Blocks amalgamate transactions in ordered sets and
serve as tools that provide publicity, immutability, and
chronological order.

A block consists of a set of transactions and a block
header. A block header contains the hash of the previous
block and the roots of three Merkle trees.

Block Header = (Version, Height, CommitAt, Gen, Prev
Block Hash, Tx Root, Witness Root, Receipt Root,
Witness)

Having a block formed and written, the block hash is
recorded in a third-party trusted ledger. Blocks can be
also complemented with signatures of extra validators in
the system, that confirm the correctness of the chain and
transformations.

7.9. Merkle Tree

The computation of the Merkle tree for transaction
identifiers is similar to the algorithm described in
RFC6962[5] section 2.1.2. SHA3-256[4] (FIPS-202) is used
as a hash function. The last node is duplicated on levels
with an odd number of vertices.

The hybrid system of Nimses meets the specified technical
requirements. User trust stems from the infeasibility of
changing chain history that has been anchored in a third-
party ledger. The described custom model of transactions
that allows parallel processing, dynamic size, and time
period of a block, provides sufficient throughput that
meets the requirements for a planetary system of asset
exchange.

[1] Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic
Cash System, https://bitcoin.org/bitcoin.pdf
[2] Federal Information Processing Standards Publication,
Digital Signature Standard, July 2013, https://nvlpubs.
nist.gov/nistpubs/fips/nist.fips.186-4.pdf
[3] S. Turner, D. Brown, K. Yiu, R. Housley, T. Polk, Elliptic
Curve Cryptography Subject Public Key Information, RFC
5480, March 2009, https://tools.ietf.org/html/rfc5480
[4] Federal Information Processing Standards
Publication, SHA-3 Standard: Permutation-Based Hash
and Extendable-Output Functions, August 2015,
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.202.pdf
[5] B. Laurie, A. Langley, E. Kasper, Certificate
Transparency, RFC 6962, June 2013,
https://tools.ietf.org/html/rfc6962

8. CONCLUSION

9. REFERENCES

