\r\n\r\n
\r\n
\r\n
\r\n\r\n
\r\n\r\n
\r\n\r\n\r\n
\r\n\r\n
\r\n\r\n\r\n\r\n
\r\n\r\n
\r\n\r\n
\r\n\r\n
\r\n\r\n
\r\n\r\n
\r\n\r\n
\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n"
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Run the following command to take the quiz\n",
"IRdisplay::display_html('
')"
]
},
{
"cell_type": "markdown",
"id": "0f0c9233",
"metadata": {},
"source": [
"### Data preparation\n",
"The GSA method is freely available as standalone package in CRAN repository. We can use the following code to install the package."
]
},
{
"cell_type": "code",
"execution_count": 35,
"id": "c3efb930",
"metadata": {},
"outputs": [],
"source": [
"# Install GSA from CRAN\n",
"suppressMessages({if (!require(\"GSA\"))\n",
" suppressWarnings(install.packages(\"GSA\"))\n",
"})\n",
"suppressMessages({\n",
" library(GSA)\n",
"})"
]
},
{
"cell_type": "markdown",
"id": "e4a2ed98",
"metadata": {},
"source": [
"The GSA method require an expression matrix, a numeric vector containing class of each sample and a vector of genes the inputs. We can easily get those inputs by load the data that we processed in the [**Module 01** ](./Module01-GEO_Data_Processing.ipynb)."
]
},
{
"cell_type": "code",
"execution_count": 36,
"id": "3982c128",
"metadata": {},
"outputs": [],
"source": [
"# Loading expression data with groups\n",
"data <- readRDS(\"./data/GSE48350.rds\")\n",
"expression_data <- data$expression_data\n",
"norm_expression_data <- data$norm_expression_data\n",
"groups <- data$groups"
]
},
{
"cell_type": "markdown",
"id": "ad173974",
"metadata": {},
"source": [
"We can also use the sample approach available in the [**Module 01** ](./Module01-GEO_Data_Processing.ipynb) to map the probe IDs to gene symbols. The step-by-step coding instruction is shown below:"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "e0d1acf4",
"metadata": {},
"outputs": [],
"source": [
"# Get the probe IDs\n",
"expression_data$PROBEID <- rownames(expression_data)\n",
"probeIDs <- rownames(expression_data)\n",
"# Perform gene mapping\n",
"suppressMessages({\n",
" annotLookup <- AnnotationDbi::select(hgu133plus2.db, keys = probeIDs, columns = c('PROBEID', 'GENENAME', 'SYMBOL'))\n",
"})\n",
"# Merge DE result data frame with annotation table\n",
"new_expression_data = merge(annotLookup, expression_data, by=\"PROBEID\")\n",
"# Remove NA value\n",
"new_expression_data <- new_expression_data[!is.na(new_expression_data$SYMBOL),]\n",
"# Remove duplicated genes symbol\n",
"new_expression_data <- new_expression_data[!duplicated(new_expression_data$SYMBOL,fromLast=FALSE),]\n",
"rownames(new_expression_data) <- new_expression_data$SYMBOL\n",
"# Drop PROBEID, GENENAME, and SYMBOL columns\n",
"new_expression_data <- new_expression_data[,-c(1:3)]\n",
"genenames= rownames(new_expression_data)"
]
},
{
"cell_type": "markdown",
"id": "f8acf4f4",
"metadata": {},
"source": [
"### GSA Enrichment analysis using GO terms\n",
"Using data obtaiend from the previous step, we can run the GSA method by callinf the function `GSA`. We can reuse `GO_term_hallmark` and `KEGG_hallmark` loaded in FGSEA to perform analysis. The code details are shown below:"
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "e026aa03",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"perm= 10 / 200 \n",
"perm= 20 / 200 \n",
"perm= 30 / 200 \n",
"perm= 40 / 200 \n",
"perm= 50 / 200 \n",
"perm= 60 / 200 \n",
"perm= 70 / 200 \n",
"perm= 80 / 200 \n",
"perm= 90 / 200 \n",
"perm= 100 / 200 \n",
"perm= 110 / 200 \n",
"perm= 120 / 200 \n",
"perm= 130 / 200 \n",
"perm= 140 / 200 \n",
"perm= 150 / 200 \n",
"perm= 160 / 200 \n",
"perm= 170 / 200 \n",
"perm= 180 / 200 \n",
"perm= 190 / 200 \n",
"perm= 200 / 200 \n"
]
}
],
"source": [
"# Getting\n",
"genesets = GO_term_hallmark\n",
"GSA.obj<-GSA(as.matrix(new_expression_data),as.numeric(groups$groups), genenames=genenames, genesets=genesets, resp.type=\"Two class unpaired\",nperms=100,random.seed=1)"
]
},
{
"cell_type": "code",
"execution_count": 54,
"id": "ebba9b67",
"metadata": {},
"outputs": [],
"source": [
"# List the results from a GSA analysis\n",
"res <- GSA.listsets(GSA.obj, geneset.names=names(genesets),FDRcut=.5)"
]
},
{
"cell_type": "markdown",
"id": "df55e53c",
"metadata": {},
"source": [
"A table of the negative gene sets. “Negative” means that lower expression of most genes in the gene set correlates with higher values of the phenotype y. Eg for two classes coded 1,2, lower expression correlates with class 2.\n",
"\n"
]
},
{
"cell_type": "markdown",
"source": [
"
\n",
" Please note that the output generated from GSA would be varied depending on R environment and software version. Especially, when the users run the scripts using\n",
" User-managed Notebooks instances which have a preinstalled suite of packages.\n",
"
"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "code",
"execution_count": 66,
"id": "ae97649e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": "
\nA matrix: 6 × 5 of type chr\n\n\tGene_set | Gene_set_name | Score | p-value | FDR |
\n\n\n\t9 | GO:0000045 | -0.3745 | 0 | 0 |
\n\t55 | GO:0000422 | -0.5436 | 0 | 0 |
\n\t620 | GO:0006091 | -0.4743 | 0 | 0 |
\n\t631 | GO:0006120 | -1.1936 | 0 | 0 |
\n\t729 | GO:0006457 | -0.4546 | 0 | 0 |
\n\t785 | GO:0006605 | -0.4504 | 0 | 0 |
\n\n
\n",
"text/markdown": "\nA matrix: 6 × 5 of type chr\n\n| Gene_set | Gene_set_name | Score | p-value | FDR |\n|---|---|---|---|---|\n| 9 | GO:0000045 | -0.3745 | 0 | 0 |\n| 55 | GO:0000422 | -0.5436 | 0 | 0 |\n| 620 | GO:0006091 | -0.4743 | 0 | 0 |\n| 631 | GO:0006120 | -1.1936 | 0 | 0 |\n| 729 | GO:0006457 | -0.4546 | 0 | 0 |\n| 785 | GO:0006605 | -0.4504 | 0 | 0 |\n\n",
"text/latex": "A matrix: 6 × 5 of type chr\n\\begin{tabular}{lllll}\n Gene\\_set & Gene\\_set\\_name & Score & p-value & FDR\\\\\n\\hline\n\t 9 & GO:0000045 & -0.3745 & 0 & 0\\\\\n\t 55 & GO:0000422 & -0.5436 & 0 & 0\\\\\n\t 620 & GO:0006091 & -0.4743 & 0 & 0\\\\\n\t 631 & GO:0006120 & -1.1936 & 0 & 0\\\\\n\t 729 & GO:0006457 & -0.4546 & 0 & 0\\\\\n\t 785 & GO:0006605 & -0.4504 & 0 & 0\\\\\n\\end{tabular}\n",
"text/plain": " Gene_set Gene_set_name Score p-value FDR\n[1,] 9 GO:0000045 -0.3745 0 0 \n[2,] 55 GO:0000422 -0.5436 0 0 \n[3,] 620 GO:0006091 -0.4743 0 0 \n[4,] 631 GO:0006120 -1.1936 0 0 \n[5,] 729 GO:0006457 -0.4546 0 0 \n[6,] 785 GO:0006605 -0.4504 0 0 "
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"neg.table <-res$negative\n",
"head(neg.table)"
]
},
{
"cell_type": "markdown",
"id": "c237dea8",
"metadata": {},
"source": [
"A table of the positive gene sets. \"Positive\" means that higher expression of most genes in the gene set correlates with higher values of the phenotype y."
]
},
{
"cell_type": "code",
"execution_count": 41,
"id": "e640ff47",
"metadata": {},
"outputs": [
{
"data": {
"text/html": "
\nA matrix: 6 × 5 of type chr\n\n\tGene_set | Gene_set_name | Score | p-value | FDR |
\n\n\n\t1115 | GO:0007422 | 0.361 | 0 | 0 |
\n\t1215 | GO:0008360 | 0.3628 | 0 | 0 |
\n\t1688 | GO:0014037 | 0.6887 | 0 | 0 |
\n\t1689 | GO:0014044 | 0.95 | 0 | 0 |
\n\t1885 | GO:0017145 | 0.5955 | 0 | 0 |
\n\t2100 | GO:0022011 | 1.0103 | 0 | 0 |
\n\n
\n",
"text/markdown": "\nA matrix: 6 × 5 of type chr\n\n| Gene_set | Gene_set_name | Score | p-value | FDR |\n|---|---|---|---|---|\n| 1115 | GO:0007422 | 0.361 | 0 | 0 |\n| 1215 | GO:0008360 | 0.3628 | 0 | 0 |\n| 1688 | GO:0014037 | 0.6887 | 0 | 0 |\n| 1689 | GO:0014044 | 0.95 | 0 | 0 |\n| 1885 | GO:0017145 | 0.5955 | 0 | 0 |\n| 2100 | GO:0022011 | 1.0103 | 0 | 0 |\n\n",
"text/latex": "A matrix: 6 × 5 of type chr\n\\begin{tabular}{lllll}\n Gene\\_set & Gene\\_set\\_name & Score & p-value & FDR\\\\\n\\hline\n\t 1115 & GO:0007422 & 0.361 & 0 & 0\\\\\n\t 1215 & GO:0008360 & 0.3628 & 0 & 0\\\\\n\t 1688 & GO:0014037 & 0.6887 & 0 & 0\\\\\n\t 1689 & GO:0014044 & 0.95 & 0 & 0\\\\\n\t 1885 & GO:0017145 & 0.5955 & 0 & 0\\\\\n\t 2100 & GO:0022011 & 1.0103 & 0 & 0\\\\\n\\end{tabular}\n",
"text/plain": " Gene_set Gene_set_name Score p-value FDR\n[1,] 1115 GO:0007422 0.361 0 0 \n[2,] 1215 GO:0008360 0.3628 0 0 \n[3,] 1688 GO:0014037 0.6887 0 0 \n[4,] 1689 GO:0014044 0.95 0 0 \n[5,] 1885 GO:0017145 0.5955 0 0 \n[6,] 2100 GO:0022011 1.0103 0 0 "
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"pos.table <-res$positive\n",
"head(pos.table)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"id": "79687f5d",
"metadata": {},
"outputs": [
{
"data": {
"text/html": "
\nA matrix: 12 × 2 of type chr\n\n\tGene | Score |
\n\n\n\tCEBPA | 1.553 |
\n\tNAGS | 0.686 |
\n\tOTC | 0.396 |
\n\tORC1 | 0.2 |
\n\tCPS1 | -0.097 |
\n\tARG1 | -0.632 |
\n\tSLC25A2 | -0.782 |
\n\tORC2 | -0.872 |
\n\tASL | -0.893 |
\n\tASS1 | -1.177 |
\n\tSLC25A15 | -1.925 |
\n\tARG2 | -2.268 |
\n\n
\n",
"text/markdown": "\nA matrix: 12 × 2 of type chr\n\n| Gene | Score |\n|---|---|\n| CEBPA | 1.553 |\n| NAGS | 0.686 |\n| OTC | 0.396 |\n| ORC1 | 0.2 |\n| CPS1 | -0.097 |\n| ARG1 | -0.632 |\n| SLC25A2 | -0.782 |\n| ORC2 | -0.872 |\n| ASL | -0.893 |\n| ASS1 | -1.177 |\n| SLC25A15 | -1.925 |\n| ARG2 | -2.268 |\n\n",
"text/latex": "A matrix: 12 × 2 of type chr\n\\begin{tabular}{ll}\n Gene & Score\\\\\n\\hline\n\t CEBPA & 1.553 \\\\\n\t NAGS & 0.686 \\\\\n\t OTC & 0.396 \\\\\n\t ORC1 & 0.2 \\\\\n\t CPS1 & -0.097\\\\\n\t ARG1 & -0.632\\\\\n\t SLC25A2 & -0.782\\\\\n\t ORC2 & -0.872\\\\\n\t ASL & -0.893\\\\\n\t ASS1 & -1.177\\\\\n\t SLC25A15 & -1.925\\\\\n\t ARG2 & -2.268\\\\\n\\end{tabular}\n",
"text/plain": " Gene Score \n [1,] CEBPA 1.553 \n [2,] NAGS 0.686 \n [3,] OTC 0.396 \n [4,] ORC1 0.2 \n [5,] CPS1 -0.097\n [6,] ARG1 -0.632\n [7,] SLC25A2 -0.782\n [8,] ORC2 -0.872\n [9,] ASL -0.893\n[10,] ASS1 -1.177\n[11,] SLC25A15 -1.925\n[12,] ARG2 -2.268"
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Individual gene scores from a gene set analysis\n",
"# look at 10th gene set\n",
"GSA.genescores(10, genesets, GSA.obj, genenames)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"id": "1cfde1f8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": "plot without title",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAANlBMVEUAAAAil+ZNTU1h0E9o\naGh8fHyMjIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD///9W+WhdAAAACXBIWXMA\nABJ0AAASdAHeZh94AAAfR0lEQVR4nO3djZaavAJG4YhI0fGP+7/ZCiqiIgR4kxDYzzqrtY5T\ncursD4wBTQFgMhN6AMASEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQI\nEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBAS\nIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBA\nSIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiA\nACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAh\nAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEC\n40M67TNTyvKTcDxAlMaGdE3Ny657E0Bk/IWUm+TvXN26HBOTu9gEEIjHkBJzrm+fTeJiE0Ag\nHkN62/t17woJCZFhjwQI+H2NdLxUt3iNhKXxGFKxa8xxpFcnmwDC8BlSccqr95GSbN/zPhIh\nITJeQ5rTJgAlQlqZzSb0CJbJ76Gd7RIhQnJlU/3v+YfN5w2M5TGkIUuERm4CPTb1L0UjqmZd\nNDUOS4RWpRlSffvjTkoagzdk1+UVyqYtpM2GksZhidCCvR+mPcp52/V8HtpVtwhpBPZIy/W+\nc/n6U8tkw4ZDu7FYIrRYr0O3zxdCxWdIjXs3zDaMwhKhxXqm0ziI+9pBfWbDDmkslggt13tB\nr1dEb799tLRhjzQOKxsW7P2Y7hnQ905n84qKfdIv28r995YvE9KibTaf5Xwe4tUP3Pw63ENp\n++b76/5DOqTGZEenm8DDs4zibdq7mp378EyJN5Labbc9JXl/H+kx49A5aUdIGm9LFr69rbp7\nvoO0eWQWZMCz9dlR+JByk1+L4pKbw/eXJ13bCN/eD+Oe8whlQZvi+cvjgc+XU/UuiZKa5hdS\nYqp576tJXWwC7z6CeB7FvUJqzD/UR3c/X0etWV9H3kN67mxYIuTF5yFas6THPqmo5/Q2b8d1\nSwmp/tlvnWz7eNB3J88/93TkPaR/z5BYIhRIPbXQmFeo5+p+T5HH6BlQdwJF65Hb1zfUQbX/\nFV5DyvaHo/m73bzmLBHyrt7R1LuloqhLet3ReGzkvvL4VZLt47p4DameSDAmYYmQf/UuqDFp\n974afElaO2otJLKQivP5cMiyasoh7+yIkBxpLADabN5fC0UV0rbnJc/zQduWRp5fav9jFCHN\nahNr1Fi28NgnvQ7oZn4a0o/dy8+f91+Ptz20GzxAQlqP5qKGeqauDmjWL4vadi1tu6X3EKwD\nmd4RIa3I6+VR4/jutY8KNSwLPzp6K6k9gPudnfNtzYdtux/WIVRIvI8UwPfan3qV3bwXBf08\nUBu183CCkFbk7b2i5z2PN2Eb5ycFGVu32XfEod3StZ5O3rj9bKgxiRdTSaHHVSOkZfvq4m35\nzyudxuLvGe2TGqk025lfRoS0cN+r5j5WhNcvk5pXdwhe0gxD6cO1vxftK6TPE/ceFTUXPYQ8\nuosvoCeu/b1sn9m8zoitv/4qqKh/l4b0SGP7XEbQMsUc4S7oA9f+Xrj3awTVv7zf8/kgXUdf\ncwPfEwVxB/TElVbXpOVEo+Zh3fMuWUet82yv31WbmQOu/b0qLXsbh+fxtSVUNP/oYJuhsEda\nl7a9TfMsWaXPhT2KJW2zxbW/0bhql3aSoXttz6I64trfKOoJcPk0w+/JhmJhHXHtb9y9FjcI\nPHc3jZXX7+ksLSNWNuBBtqRhacdslggJdxvBZMNKIyoREh4mZrTiiEqEhOlWHlGJkDDJ4uax\nRyIkjEZDL4SEUYjoHSFhMCL6RkgYhIjaERKsEdFvhAQbTM71ICT0oSELhIQuRGSJkPALEQ1A\nSGhDRAMREj4R0QiEhAYm58YiJDzQ0BSEhIKIpiOk1SMiBUJas9aXRGQ1BiEtVuPi2s2r9jyv\n7/N1jaznBX+YchiDkJZq+7wY1vMSp0XdzHtGb3c0ruoY+v9AXAhpoZ5xNK932rxo49s1uJt3\nFI1HwhohLdTnjsdK8X479P+HmBDSUr1/+MOwqKrDwYKQBiCkpWokMbShor4BW4S0WJ8dPabu\n6lAe8xHNmbrndbrr27BFSMv1qqEuqOURrwcU9R/aPuYVnQgJECAkQICQAAFCAgQICRAgJECA\nkAABvx/GvK8+jNlkOR/GjGXxGNI1NS87J5sAAvEYUm6Sv3N163JMTO5iE0AgHkNKzLm+fTaJ\ni00AgXgMyZhff5BtAgiEPRIg4Pc10vFS3eI1EpbG5/T3rjFrl16dbAIIw+/7SHn1PlKS7Xkf\nCcvCygZAgJAAAZYIAQIsEQIEWCIECPCGLCDAEiFAgD0SIMASIUCAJUKAAEuEAAFWNgAChAQI\n+Azp+s+Y3fHxlzD9jSXxuUQouS+0u/8lhIQl8Tr9fbjVdEiqZXbfIZmmkZsAAvH6hmz12yVJ\nL+yRsDABlghddztCwsJ4DCk1zzdh0x0hYVk8hnQw/x63LmZHSFgUn9PfeV3PsWc+gZAQGa9v\nyJ6z563LP0LCkrCyARAgJECAkACBUCEx2YBFISRAgEM7QICQAAFCAgS49jcgwLW/AQGu/Q0I\ncKVVQIBrfwMC7JEAAa79DQhw7W9AgGt/AwKsbAAECAkQICRAgJAAAUICBAgJECAkQICQAAFC\nAgQICRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIE\nCAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIECAkQICRAgJAAgfmEZJrc\nbAJwZT4hed4EoERIgAAhAQKEBAgQEiBASIBA7CFtNg6HAdiKPKRN9T8gtLhD2tS/AEFFFNLm\npb6r/gUIap4hbdo0v1jfpiPMwjxDat/ER1CP+9yPBugVRUhtBQFzMu+QKAiRmGlIFIS4zDMk\nCkJk5hkSS4QQGUICBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJ\nEJhnSJzWh8jMM6T7JlqvJURgmKM5h/SLy77IFKPEGNIPir64Th7GWVBIPww5QOTKrRhp+SH9\n0noR1/oXYJD1htSKQzuMQ0jvmGzAKF5DOu0zU8ryk6tNAEF4DOmampedk00AgXgMKTfJ37m6\ndTkmJnexCSAQjyEl5lzfPpvExSaAQDyGZMyvP8g2AQTCHgkQ8Psa6XipbvEaCUvjc/p715i1\nS69ONgGE4fd9pLx6HynJ9ryPhGVhZcMX1jZguMkhHbNyAi67iMbTtgnPCAnDTQ2pet1zuy+x\nLumQGpMd5aPSISQMNzGkg9ldy5AO5l//91Xf+Jhx6Jy0C/waiZIw2MSQEnO9B9L9Buv9+8qH\n5Ca/FsUlNwfxqIQICYNNDKk6rBsSUlnezdWk4lEJERIGmxhS+tgjnbvDuH9fM7g5LxEiJAym\neY10TLoP1e7fV37jv2dIM14iREgYbOqsXWZ1ftH9+0y2PxzN3+3mNZ/zEiFCwmCS95FM9mfz\nfQ/VzWTOS4QoCUP5XNlwPh8OWVZNOeSdHRESYsMSoRaEhKEE09+VpHPyYMomAiAkDCUK6WLx\nPlI8VxEiJAw1IaSjaep/HymiqwhREgaaskdqhpH27GOK3qsIvWU5fFRShISBVK+RLER0zQZC\nwkBcRagNIWEgVUinrPf72CNhuaaGlNu/rInpKkKUhGEmhvTqqOec11JEVxEiJAwz+cS+v1sf\nl8vO9M/axXQVIULCMIJZu/1tb3S2Wf49bhNBEBKGEYR0LM9F0r71Q0iIzMSQstuh3cWkxYmQ\nsGoTQzqWAVWTCP1XEXr/S2b9PhIlYaCp09/7+/njPZfXavlLCAlLwvlI7QgJg0x9jTR0TzR8\nE2EQEgbxuGh15CbCICQMIriunb1YTuwrURKGmBjSNdvZLGm4PzaeE/sKQsIwkw/tBi1a7Tqx\nb+Ko1AgJQ3gMKaLTKApCwjCc2PcDIWEIjyHFtUeiJAzhMaSYTuwrCAmD+FzZENGJfQUhYRCv\nS4TiObGvICQMwlq7XwgJAxDSL4SEAaYuEdpfZEP5sYlgKAn2pr8h66IlQkJkpq61+/vnoiVC\nQmQEr5FO+1TdEiEhMprJhnNy2y/1f675lE34R0iwJwnpuLP9ZPPRmwiBkmBtekjX/W13lB6v\nt5r6L6Q/bhOBEBKsTQ3pVE425PfVqLrzzgkJkZl8qrlJD89lc90rusduIhxCgrWp7yNlFp9C\nMW0T4RASrHE5rt8ICda4HFcHSoItr5fjGrWJgAgJtjxejmvkJgIiJNjyeBWhkZsIiJBgi5A6\nEBJscWJfF0qCJULqQkiwNDmkY1Ye1WXaE5IICZGZGtLu/vLIJNKSCAmRmRjSweyuZUiHoZ8h\na7+JkAgJliaGlJjrfXXDImftKAm2BEuECAkQLBEqGzqbVDakgpAQHc1rpGOivGIDISE6U2ft\nMquPspy0iZAICXYk7yOZ7E80nNZNBERIsMPKhm6UBCtTT6OQDeTnJsIiJFiZOv29W/A1G0qE\nBCvTryJkcv2pfYSEyEx9jXS5X/hbfIhHSIiMYLLhkidGfIg3n5AoCVY0s3aHZZ4hWyIk2FDs\nkaqjO+k7SYSEyEheIyW53dlIp/19IUTWNz9BSIiMYNbun+Ws3TVtXCqle0kRISEyk99Hsj+k\ny03yd//YissxMZ3XOiYkRMbjyobEnOvb5+5PrphRSJQEG5MnG/52totW3yb2umf5CAmRkVz8\nxO40CvZIWK7JJ/Yl5TuxVif23V4jHe+zezG9RiIk2Jg8a3ffy1idar5rzNqlna+uCAmRUX0+\nktXKhlNevY+UZPt43keiJNiQ7ZFknx/7uYngCAn9PL5GGrmJ4AgJ/TzO2hXXf69V4vFMfxMS\nLEx/H8n64ifX5L7Q7v6XEBKWxOPFT/Ly8O96SKqdV0QhURL6eQwpuX/jJUkvhISFmRrSNS+n\n65LcYtHds53rbkdIWJiJIV2SxyX0LT4fqbxO+OPWjpCwLBND2pl/ZR3X/DGH0OX1GUoXsyMk\nLIrPlQ15/aBjzzUeCAmREXzQWOlqtUToXO+2Lv8iComS0GtiSLnZlcvmTrvu1dxTNjEDhIQ+\nPlc2jNxEeISEPpqVDTu7lXYxXkWoREjo4/EN2TivIlQiJPTxukSo8ypCpmnkJlyhJPSYGtIh\nvXWRmtTi2naRXrOhREjoMTGkY7nzqFZ195cU6VWESoSEHpNXNvxV12v4s5i2Y4+E5RKsbDiX\nr3csXtZEehWhEiGhhyCkzBztlgjFeRWhCiWh2+RDu/OxPEqzObSL9SpCJUJCt+mTDcbsyx3S\nUj+x746Q0G3y9Pf91Y72c8YICbHx+IbsvDYxDCGhW6iQ4nofiZDQY0JIZQujV/VEFhIloVuo\nkOSjcoyQ0InXSHYICZ0ICRCYdGg39MyHWE/sA/p4DCneE/uAPlMP7bLqY11Oyb8fD27oObFv\n4qiAkCZfRej5QWP9VxGK+DQKoIfHC0RGfGIf0GPyBSLtP/qSPRKWa/KhXVJOwN1e8+x7vy/i\nE/uAHqoLRPZfQz/qE/uKYsNbsuiguUBkZnc2Urwn9pUrGygJv7Gywcqm/gVoQ0hWCAndCMkO\nh3boREiWmGxAF0ICBAgJECAkQICQAIHJIR2z6rLFF9F42jYBzJ5kidDtvkRaEiEhMhNDOpjd\ntQzpYCzO7Bu3CSACk0+juN5PLVr65biAToIT+wgJmBhS+tgjlZ/aJ0RIiIzmNdIxMQfZkApC\nQnQmX0XI6vJakzYBzJ/kfSSTaT8eiZAQG1Y2AAKEBAhM/ujLtCguqUl7LsIwZRPA/E0M6VjO\nfSflbIO0JEJCZCaGtDN/1XtIf9ppO0JCZAQrG6rrfrOyAasmCCkzR0LCyk0+tDsfy8t4c2iH\ndZs+2WDKy34bY3et1RGbACIwefr7fjn8VLu0gZAQGd6QBQQICRCYENLwTzV3OSogJEICBDi0\nAwQICRBQhXSy+ezLaZsA5mtqSDmvkQDBp5o/sbIBazb5ApF/xc5cLjvOR8KqCVZ/7297ozOL\nVrFqgpCO5TXteI2EVZsYUnY7tLuYtDgRElZNcc2G6qNdJn8ahbNlEoB7U6e/9+Wf/pnqXAod\nQkJkWNkACBASIDBp9bd0JG2bACIxOSQnORESIkNIgAAhAQKEBAgQEiBASIAAFz8BBAgJEGBl\nAyBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEChAQIEBIg\nQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEC/kM6pMZkR6ebAHzzGNL9Ovu7+yX3\ncyebAALxHVJu8mtRXHJzcLEJIBDfISXmWt6+mtTFJoBAfIf0/Byl7s9TIiRExndI/54hJS42\nAQTiNaRsfziav9vNa94920BIiIzXkOrPyDQmubrYBBCIz/eRzufDIcuqKYe8syNCQmxY2QAI\nEBIg4DWk0z6rXiVl+cnVJoAgPIZ0Tc3LzskmgEA8hpSb5O9c3bocE6a/sSgeQ0rMub595g1Z\nLIr31d9tf5BtAgiEPRIg4Pc10vFS3eI1EpbG5/T3rjFrl7JECEvi932kvHofKcn2vI+EZWFl\nAyBASIAAS4QAAZYIAQLzWSJkmlq+fbsduV3AvWjekN1W/wPmKZYlQtv6F2CGYtkjERJmLZol\nQhzaYc7iWSL0NtmwZeoBsxLvEqHtlpowG5GvbCAmzEPkIZXYNSG8BYRUoSYEFSokJ6eaExNC\nWVRIJXZNCGEph3bvqAmeRReSfR/UBH+iC2ng+gZighfxndg3vAt2TXAuwhP7xjVBTXBpPif2\nWW9iQg7UBEdiOY2iaWIKxAS9WE7saxJkwK4JWjHukabvkp6/UxNEojmxr2naT//7KYLEBIV4\nTuxrmvKj33LSOrsmTBXniX3ikO73UxPGi29lQ2ViST+/nZowzgpD+rjU5Hc4xITBIg1Jd0Wh\nH/un710TcaHD2kPqvF5esyUuB4YusYY05qd62/D211j8XVygEp2WGdK2VfOLzb/Hpg9CQqdo\nQ3r8VHcm8/bwX1+0fO3DoR26xBOSdTLt3zV5TEw2oMPMQ+pKpuMH2z40QGLmIXVpff+nJx/K\nghsRh/QsacDehxc6cCTakMYcvTH1BldiC+ktn6FNEBJciSOkH7ufwU1waAdHZh1S79Hb8JLo\nCE7MM6QhswfADMwzJPsPGnM5CsBa5CFREuaBkACB2EOiJMwCIQEC0YdESZgDQgIE4g+JkjAD\nhAQILCAkSkJ4hAQILCEkSkJwhAQILCIkSkJohAQILCMkSkJghAQILCQkSkJYSw2JizPAq6WE\n9Pnxyuyj4NUyQ+ICdvBsMSG9dUNI8GyZIXFoB8+WE9JHSXQEnxYUEvsghENIgMCSQqIkBLOw\nkEgJYSwrJDpCIAsKacsOCcEsJyTehEVASwnpcVRHSAhjGSG9XhxREoJYREjbz5vkBM8WENKW\nhd8ILvqQPqe8CQkhxB7SdzIs/EYAcYfU9g4sISGAmEP6sZCh/31ZVkBALeKQftXQGxL7LMhF\nG1LHXqW/I0qCWKQhdR6cERK8izOk7gz6XgJxaAe5GEPqDYXJBvg2n5BMU8fj+jNhhwPv5hOS\n5Sb6GyEk+BdZSDYHZduCkuBbVCHZvbYhJPgXU0h2dXAiBQKIJyTbqbbt22+AF9GEZB0GISGA\nSEIa8M7P9uN3wIMoQhryBipXb0AIMYQ0KIltyy3AtfmHNHA9DyEhhLmHNHhZ3NcVhQAPZh7S\n4Ba+PgAT8GHWIY1Ypf19aS7AgxmHNOpkB0JCEPMNaVwF244/Ac7MNaSR5961XS0ScG+eIY0+\nhfXz+ygJfswzpNGbICSEsfCQKAl+LCuk1iuBA+4tPSRKgheEBAgsPiRKgg+LCqm1GUKCB8sP\niZLgASEBAosK6QdKgnOEBAisISRKgnOEBAisIqTxJfFJSrCzjpDGlsQnxMASIfV9FyXBwmJC\n6jkIG5UDIcHWUkLqOwgbvUuiI9hYSEj9+46RJdERrBASILCQkCwOwigJDi0lpP6DMEKCQ4sJ\nqR8lwR1CAgRWFBIlwR2PIZl3LjbRjZDgjMeQDqFDoiQ44/PQ7pzsXG+iGyHBFa+vkc4md72J\nbpQER/xONhzM2fUmOhESHFnTrF1hWRIL7DAYIbU9hpIw0MpCskiEk5AwgteQTvusmvnO8pOr\nTfQhJDjhMaRr2ngXqXsi3OFOz6okOsJAHkPKTfJ3n7S7HJPuifCgITHZgOE8hpQ05r7PJnGx\nCRtUAge8rrX79QfZJmwQEhxY3x6JkuCA39dIx0t1K+RrpIKS4IDP6e9dY9YuvTrZhBVCgpzf\n95Hy6n2kJNsHex+pQklQW9vKhgohQW2VIVES1Na2ROiOkCC2uiVCd5QErfksEbK+oIMCIUFr\nhW/IVigJUutbInRHSJBa6x6JkiC1xiVCFUKC0hqXCN1REoRWuUSoQkgQWufKhgolQYeQAIEV\nh0RJ0AkVUuj3kUqEBJk1h0RJkFnzoR0hQWbVIVESVAgJEFjniX01SoLGSk/seyIkaMznxD7F\nJoajJEis9jSKJ0qCwlpP7KsREhRWv0eiJCis9sS+GiFBYL0n9tUoCdPN9MQ+n7Zet4aFGp6D\n193FjLY9lxHYCj/S4CMIPoBOhBSH8CMNPoLgA+hESHEIP9LgIwg+gE6EFIfwIw0+guAD6ERI\ncQg/0uAjCD6AToQUh/AjDT6C4APoREhxCD/S4CMIPoBOhBSH8CMNPoLgA+hESHEIP9LgIwg+\ngE6EFIfwIw0+guAD6ERIcQg/0uAjCD6AToQUh/AjDT6C4APoNO/RAZEgJECAkAABQgIECAkQ\nICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIE/ISUJybJr+13vH3t4Go8liM4\npB8P889upKMv9j5xBI2n6OthXgbQeIbcDWAELyHdPwImbb3j7WtnRz8atiPIq5tJyCfHbqRn\nhyF1jaDxFH09zMsAGs+QuwGM4SOkk0nOxTkxp5Y73r52+93NeCxHcDb/ruV/cv85GYR2pFmI\nETSeoq+HeRlA4xlyN4BRfISUm+Pt1z+zb7mj+bWD2bk6WLEbQXbfuqvdog3LkR5eD/A5gsZT\n9PUwLwNoPEPuBjCKj5+ZzJQfktn4j2jjjubXTO7qZ9h2BHchQ7Ic6cEcQoyg8RR9/7N5GcBd\nOQZ3AxjFx8+M+fwPfeOO5tfOzn6GbUdQuZqdk0FYsRxpZo7/bq+0fY+g8RR9PczPACrVM+Ru\nAKPMKaTC2T/LoJAO1TFDINYhVVwU3/dzPIOQqmeIkGYe0iUJebBgOVJj/m7/Yc5dHODNP6T7\nM0RI8w7pmgQ8sBt8EOpg8nf2IT2eoRWGlHz+X27ckbQ+SwFHsAv7xsSAkRZu/rm6RtD4/Xsw\nvgbweIbcDWAUH8O4z69cPqdhLq+ZqPprjv5ZrEdwSXcXJyOwNeDfqnDzz9U1gsY2vwfjZwD1\nM+RuAKP4CGlfvXo/mrzljo+vOQrJdgTHkBN2nwP7uqNxMzHle/tOfoq6RlB6PEVfD/MzgNcz\n5G4Ao/gIyXplg7OQLEdwCd6R7Ujz8ufnmruYX+xe2VA/RWFWNjSeoRWubCjS11zt/Wlo3JG+\nzeO6OuK1G8E/43ItqHKk16S66eS/xl0jKF5P0fu9ngbQfIbcDWAMLz8z12qd7n175uOOxs3C\nXUh2IzCNpykUy3+r8mbqZnVD1wiK11P0fq+nATSfIXcDGGMmcx5A3AgJECAkQICQAAFCAgQI\nCRAgJECAkAABQgIECAkQICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIECAkQ\nICRAgJAAAUICBAgJECAkQICQAAFCAgQICRAgJECAkAABQgIECCl6QT9gEA88CdEjpDngSYge\nIc0BT0L0CGkOeBJm7JZI3vzg7qtJq99Tcy2Omak/6fsZ0/3XQ2oSN593jt8IacaM2ZubXX3H\nzlxuv15u91RfMCYvvkLKzPv3wAtCmrHbPudcnBPz97zjz+xvv+7N8falv/KPpvgM6Wh21+K6\nuz0EPhHSjJkqh6PJXveUx3apeT2g+Awpux32lQeBWQGfCGnGHtMIjdmEf7dju0t1QFdcjvtd\nS0jmKcB414x/7xl7hfRs43Q7tsvNqShfLj1zIaQ54N97xr5DKpK0/F+5a0oPx0trSOHGu2b8\ns8+YqfY9R/PvdVduDtWEQ9XLR0in+2skphlCIKQZe87aNdK4tVPNJpSNnV+vkVJzKKfqTDmT\nd/ue4sBkg2eENGPGVK+E3ppI728R5Y9XQqd7SIfqcVVX9xdPySXIiNeLkGbsFkZ2ey30dt/f\nY//071bZqZoZr/LZJ7cDwHplg/lHR54R0owxcRAPnqoZI6R48FTNGCHFg6dqxggpHjxVgAAh\nAQKEBAgQEiBASIAAIQEChAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAgQEiBASIAAIQEC\nhAQIEBIgQEiAACEBAoQECBASIEBIgAAhAQKEBAj8BylnugSwyYBJAAAAAElFTkSuQmCC"
},
"metadata": {
"image/png": {
"width": 420,
"height": 420
}
},
"output_type": "display_data"
}
],
"source": [
"# Plot the result, this function makes a plot of the significant gene sets, based on a call to the GSA (Gene set analysis) function.\n",
"suppressWarnings(GSA.plot(GSA.obj, fac=1, FDRcut = 0.5))"
]
},
{
"cell_type": "markdown",
"id": "7107ef92",
"metadata": {},
"source": [
"### GSA Enrichment analysis using KEGG pathways\n",
"We can use the same procedure to per enrichment analyis with KEGG pathway. All the codes are similar but `genesets` are assigned from `KEGG_hallmark`. The code is shown below."
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "361aff0b",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"perm= 10 / 100 \n",
"perm= 20 / 100 \n",
"perm= 30 / 100 \n",
"perm= 40 / 100 \n",
"perm= 50 / 100 \n",
"perm= 60 / 100 \n",
"perm= 70 / 100 \n",
"perm= 80 / 100 \n",
"perm= 90 / 100 \n",
"perm= 100 / 100 \n"
]
}
],
"source": [
"genesets = KEGG_hallmark\n",
"GSA.obj<-GSA(as.matrix(new_expression_data),as.numeric(groups$groups), genenames=genenames, genesets=genesets, resp.type=\"Two class unpaired\", nperms=100, random.seed=1)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "00afb710",
"metadata": {},
"outputs": [],
"source": [
"# List the results from a GSA analysis\n",
"res <- GSA.listsets(GSA.obj, geneset.names=names(genesets),FDRcut=.5)"
]
},
{
"cell_type": "markdown",
"id": "e15cdae3",
"metadata": {},
"source": [
"A table of the negative gene sets. \"Negative\" means that lower expression of most genes in the gene set correlates with higher values of the phenotype y. Eg for two classes coded 1,2, lower expression correlates with class 2."
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "c9e7aad4",
"metadata": {},
"outputs": [
{
"data": {
"text/html": "
\nA matrix: 6 × 5 of type chr\n\n\tGene_set | Gene_set_name | Score | p-value | FDR |
\n\n\n\t218 | hsa04260 | -0.6738 | 0 | 0 |
\n\t328 | hsa05022 | -0.5187 | 0 | 0 |
\n\t256 | hsa04714 | -0.5235 | 0.01 | 0.4543 |
\n\t323 | hsa05012 | -0.738 | 0.01 | 0.4543 |
\n\t325 | hsa05016 | -0.7177 | 0.01 | 0.4543 |
\n\t327 | hsa05020 | -0.6895 | 0.01 | 0.4543 |
\n\n
\n",
"text/markdown": "\nA matrix: 6 × 5 of type chr\n\n| Gene_set | Gene_set_name | Score | p-value | FDR |\n|---|---|---|---|---|\n| 218 | hsa04260 | -0.6738 | 0 | 0 |\n| 328 | hsa05022 | -0.5187 | 0 | 0 |\n| 256 | hsa04714 | -0.5235 | 0.01 | 0.4543 |\n| 323 | hsa05012 | -0.738 | 0.01 | 0.4543 |\n| 325 | hsa05016 | -0.7177 | 0.01 | 0.4543 |\n| 327 | hsa05020 | -0.6895 | 0.01 | 0.4543 |\n\n",
"text/latex": "A matrix: 6 × 5 of type chr\n\\begin{tabular}{lllll}\n Gene\\_set & Gene\\_set\\_name & Score & p-value & FDR\\\\\n\\hline\n\t 218 & hsa04260 & -0.6738 & 0 & 0 \\\\\n\t 328 & hsa05022 & -0.5187 & 0 & 0 \\\\\n\t 256 & hsa04714 & -0.5235 & 0.01 & 0.4543\\\\\n\t 323 & hsa05012 & -0.738 & 0.01 & 0.4543\\\\\n\t 325 & hsa05016 & -0.7177 & 0.01 & 0.4543\\\\\n\t 327 & hsa05020 & -0.6895 & 0.01 & 0.4543\\\\\n\\end{tabular}\n",
"text/plain": " Gene_set Gene_set_name Score p-value FDR \n[1,] 218 hsa04260 -0.6738 0 0 \n[2,] 328 hsa05022 -0.5187 0 0 \n[3,] 256 hsa04714 -0.5235 0.01 0.4543\n[4,] 323 hsa05012 -0.738 0.01 0.4543\n[5,] 325 hsa05016 -0.7177 0.01 0.4543\n[6,] 327 hsa05020 -0.6895 0.01 0.4543"
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"neg.table <-res$negative\n",
"head(neg.table)"
]
},
{
"cell_type": "markdown",
"id": "e226ae92",
"metadata": {},
"source": [
"A table of the positive gene sets. \"Positive\" means that higher expression of most genes in the gene set correlates with higher values of the phenotype y. See \"negative\" above for more info."
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "bcd7ff3e",
"metadata": {},
"outputs": [
{
"data": {
"text/html": "
\nA matrix: 2 × 5 of type chr\n\n\tGene_set | Gene_set_name | Score | p-value | FDR |
\n\n\n\t169 | hsa04520 | 0.5032 | 0 | 0 |
\n\t173 | hsa04810 | 0.2173 | 0 | 0 |
\n\n
\n",
"text/markdown": "\nA matrix: 2 × 5 of type chr\n\n| Gene_set | Gene_set_name | Score | p-value | FDR |\n|---|---|---|---|---|\n| 169 | hsa04520 | 0.5032 | 0 | 0 |\n| 173 | hsa04810 | 0.2173 | 0 | 0 |\n\n",
"text/latex": "A matrix: 2 × 5 of type chr\n\\begin{tabular}{lllll}\n Gene\\_set & Gene\\_set\\_name & Score & p-value & FDR\\\\\n\\hline\n\t 169 & hsa04520 & 0.5032 & 0 & 0\\\\\n\t 173 & hsa04810 & 0.2173 & 0 & 0\\\\\n\\end{tabular}\n",
"text/plain": " Gene_set Gene_set_name Score p-value FDR\n[1,] 169 hsa04520 0.5032 0 0 \n[2,] 173 hsa04810 0.2173 0 0 "
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"pos.table <-res$positive\n",
"head(pos.table)"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "0d676c13",
"metadata": {},
"outputs": [
{
"data": {
"text/html": "
\nA matrix: 30 × 2 of type chr\n\n\tGene | Score |
\n\n\n\tOGDH | 1.545 |
\n\tIDH2 | 1.427 |
\n\tSUCLG2 | 0.717 |
\n\tPCK1 | -0.022 |
\n\tPCK2 | -0.16 |
\n\tPC | -0.213 |
\n\tDLST | -0.235 |
\n\tPDHA2 | -0.239 |
\n\tACO1 | -0.6 |
\n\tSDHC | -0.676 |
\n\tIDH1 | -0.851 |
\n\tIDH3B | -1.241 |
\n\tPDHB | -1.449 |
\n\tDLD | -1.453 |
\n\tIDH3G | -1.621 |
\n\tSDHB | -1.751 |
\n\tSDHD | -1.842 |
\n\tDLAT | -1.904 |
\n\tMDH1 | -2.045 |
\n\tSDHA | -2.068 |
\n\tACLY | -2.094 |
\n\tSUCLG1 | -2.193 |
\n\tIDH3A | -2.202 |
\n\tCS | -2.314 |
\n\tOGDHL | -2.378 |
\n\tFH | -2.453 |
\n\tMDH2 | -2.547 |
\n\tSUCLA2 | -2.584 |
\n\tPDHA1 | -3.078 |
\n\tACO2 | -3.559 |
\n\n
\n",
"text/markdown": "\nA matrix: 30 × 2 of type chr\n\n| Gene | Score |\n|---|---|\n| OGDH | 1.545 |\n| IDH2 | 1.427 |\n| SUCLG2 | 0.717 |\n| PCK1 | -0.022 |\n| PCK2 | -0.16 |\n| PC | -0.213 |\n| DLST | -0.235 |\n| PDHA2 | -0.239 |\n| ACO1 | -0.6 |\n| SDHC | -0.676 |\n| IDH1 | -0.851 |\n| IDH3B | -1.241 |\n| PDHB | -1.449 |\n| DLD | -1.453 |\n| IDH3G | -1.621 |\n| SDHB | -1.751 |\n| SDHD | -1.842 |\n| DLAT | -1.904 |\n| MDH1 | -2.045 |\n| SDHA | -2.068 |\n| ACLY | -2.094 |\n| SUCLG1 | -2.193 |\n| IDH3A | -2.202 |\n| CS | -2.314 |\n| OGDHL | -2.378 |\n| FH | -2.453 |\n| MDH2 | -2.547 |\n| SUCLA2 | -2.584 |\n| PDHA1 | -3.078 |\n| ACO2 | -3.559 |\n\n",
"text/latex": "A matrix: 30 × 2 of type chr\n\\begin{tabular}{ll}\n Gene & Score\\\\\n\\hline\n\t OGDH & 1.545 \\\\\n\t IDH2 & 1.427 \\\\\n\t SUCLG2 & 0.717 \\\\\n\t PCK1 & -0.022\\\\\n\t PCK2 & -0.16 \\\\\n\t PC & -0.213\\\\\n\t DLST & -0.235\\\\\n\t PDHA2 & -0.239\\\\\n\t ACO1 & -0.6 \\\\\n\t SDHC & -0.676\\\\\n\t IDH1 & -0.851\\\\\n\t IDH3B & -1.241\\\\\n\t PDHB & -1.449\\\\\n\t DLD & -1.453\\\\\n\t IDH3G & -1.621\\\\\n\t SDHB & -1.751\\\\\n\t SDHD & -1.842\\\\\n\t DLAT & -1.904\\\\\n\t MDH1 & -2.045\\\\\n\t SDHA & -2.068\\\\\n\t ACLY & -2.094\\\\\n\t SUCLG1 & -2.193\\\\\n\t IDH3A & -2.202\\\\\n\t CS & -2.314\\\\\n\t OGDHL & -2.378\\\\\n\t FH & -2.453\\\\\n\t MDH2 & -2.547\\\\\n\t SUCLA2 & -2.584\\\\\n\t PDHA1 & -3.078\\\\\n\t ACO2 & -3.559\\\\\n\\end{tabular}\n",
"text/plain": " Gene Score \n [1,] OGDH 1.545 \n [2,] IDH2 1.427 \n [3,] SUCLG2 0.717 \n [4,] PCK1 -0.022\n [5,] PCK2 -0.16 \n [6,] PC -0.213\n [7,] DLST -0.235\n [8,] PDHA2 -0.239\n [9,] ACO1 -0.6 \n[10,] SDHC -0.676\n[11,] IDH1 -0.851\n[12,] IDH3B -1.241\n[13,] PDHB -1.449\n[14,] DLD -1.453\n[15,] IDH3G -1.621\n[16,] SDHB -1.751\n[17,] SDHD -1.842\n[18,] DLAT -1.904\n[19,] MDH1 -2.045\n[20,] SDHA -2.068\n[21,] ACLY -2.094\n[22,] SUCLG1 -2.193\n[23,] IDH3A -2.202\n[24,] CS -2.314\n[25,] OGDHL -2.378\n[26,] FH -2.453\n[27,] MDH2 -2.547\n[28,] SUCLA2 -2.584\n[29,] PDHA1 -3.078\n[30,] ACO2 -3.559"
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Individual gene scores from a gene set analysis\n",
"# look at 10th gene set\n",
"GSA.genescores(10, genesets, GSA.obj, genenames)"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "2284bc1f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": "plot without title",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAAANlBMVEUAAAAil+ZNTU1h0E9o\naGh8fHyMjIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD///9W+WhdAAAACXBIWXMA\nABJ0AAASdAHeZh94AAAYdklEQVR4nO3diVbiygKG0bo5gIDI8P4vexkcsLXpYH4qg3uvs/rQ\ntHZK8WtIpRLKAeis9D0AmAIhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIE\nCAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKC\nACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBI\nECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQI\nCQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkCfh7Sy2pR\nThbLl+B4YJR+GtJ+Vj7Mo0OC8flpSMvSPG/Pt3abpixzA4Ix+mlITdm+396WJjMYGKufhlTK\n334Dv5BnJAjosI+02Z1v2UeCn09/z69m7Wb75JBgfDocR1qejyM1i5XjSPx6pgkgoEJIBUbm\nBz/lP+6j9RIhT3qMTMWQ7lgiJCRGpmJIdywREhIjUzGkOw7IComRqRjSHUuEhMTIeEaCn/nv\nv6vf1N1HartESEgM3n/n/97UnP5uv0RISAzdf++/nNU9jtR2iZCQGLo+QxrSJqCb/l7aDWoT\n0FFfkw2v1rNSFpuHbgJqq34c6XXG4fZ5fUJiZGqHtCzL/eGwW5b11z/utJQW+lQ7pKac5733\nZfaITUBPaof09mRjiRCj82l24Q+1Q3p6C8kSIUbmMt/9l5qqhrRYrTfl+Xhzv7REiJG5HIH9\nfPToQ9WQ3icSSmksEWJc/vv8y+W+95s1jyNtt+v1YnGecljevhqXkBiC/04+fvcWzn/X97ze\ntLIB/vTfqy93v7bz+ifXVQkJ3vwloD8+5v2JSEhwrU1AVx99/UvfL+0cR6J/9wX0/lnvv/Q0\n2fDpLxESvflZQB+f/s0UuJd2/B4dA7r6e77cJSSmLxXQDUJiuioE9Ma1vxm1byupGNAb1/6m\nfz/8kb86pPN2R/WA3rj2N73720LQlp/2upq0n4DeuNIqfftjIeg3H/DF22ecb9Xr50aqrv1N\n376sqP4um79/WsWObmzMMxK96/LSruLruZvPnK79Tf9+PtlQ01BCcu1vuutzRmEgL+1c+5uu\nvmZUNaxhTDYMaxOMznfTDlUnG24REuPw/RKG91/6JiQG6lM5f3lR1VNIVn8zGu1etPXy0s75\nSIxG2+eaHmbxvh2akBik4ez9fCEkRmQw83FfeWnHiPS6mPs2kw3wGEKCACFBgJAgQEgQICQI\nEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQE\nAUKCACFBgJAgQEgQICQIqBrSy2pRThbLl0dtAnpRMaT9rHyYP2QT0JOKIS1L87w939ptmrJ8\nxCagJxVDasr2/fa2NI/YBPSkYkil/O03sU1ATzwjQUDdfaTN7nzLPhJTU3P6e341azfbP2QT\n0I+6x5GW5+NIzWLlOBLTYmUDBAgJAiwRggBLhCDAEiEIcEAWAiwRggDPSBBgiRAEWCIEAZYI\nQYCVDRAgJAioGdL+qZT55vUvMf3NlNRcItRcFtpd/hIhMSVVp7/Xx5rWzXmZ3deQyrUfbgJ6\nUvWA7Pl/u2a284zExPSwRGg/nwuJiakY0qy8HYSdzYXEtFQMaV2eXm/tylxITErN6e/lez2b\nf8wnCImRqXpAdrt4u7V7EhJTYmUDBAgJAoQEAX2FZLKBSRESBHhpBwFCggAhQYBrf0OAa39D\ngGt/Q4ArrUKAa39DgGckCHDtbwhw7W8IcO1vCLCyAQKEBAFCggAhQYCQIEBIECAkCBASBAgJ\nAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAh\nQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChhNSufaYTcCjDCekypuA\nJCFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBI\nECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQI\nCQKEBAFVQ3pZLcrJYvnyqE1ALyqGtJ+VD/OHbAJ6UjGkZWmet+dbu01Tlo/YBPSkYkhN2b7f\n3pbmEZuAnlQMqZS//Sa2CeiJZyQIqLuPtNmdb9lHYmpqTn/Pr2btZvuHbAL6Ufc40vJ8HKlZ\nrBxHYlqsbIAAIUFA/ZDWs1IWm4duAmqrfhzpdcbh5qSdkBib2iEty3J/OOyWZf2ITUBPaofU\nlPO8977MHrEJ6EnnkDaLUyCLXYvPK2+/XP0/NiroU9eQzrs8x/uaf5d0bufpLSRLhJiSjiGt\ny3x/CmRdnv79eWWxWm/K8/HmfmmJEJPSMaTTLs+nl2y3Pu/V+WZjiRBT0jGk88u6liEdttv1\nerE4Tzksb3YkJMamY0iz12ek7e1ZuC6bgBHI7CNtmtvHhbpsAkag66zdotXFTF65ihBTFTmO\nVBbPLT7PVYSYruFcRahc++EmoCeu2QABgenvs+ZmGJ8/9stvEqOCPoVC2rV4NeYZienqENLm\n017Nv48juYoQ09XlGel6Fm72jwntE1cRYrJS+0ituIoQU+XiJxCQCull0XUk/9wEDFfXkJYP\nOYYqJEamY0gfHf3jAltf/hLHkZiSzif2PR/mZbeblxazdp/+EiExJYFZu9Xx2Wjbbvn3TzYB\nIxAIaXM6F8k+Er9ax5AWx5d2uzI7vAiJX61jSJtTQOcVC/++ipAT+5iurtPfq8vF6v5xLe8z\nJ/YxXcM5sS+xCehJ132kFs9Eb5xGwXRVXLTqxD6mK3Bdu7Y8IzFdHUPaL+atlzQ4sY/p6vzS\n7o5Fq07sY7JqhuTEPibLiX0QICQIEBIECAkChAQBQoIAIUFA1yVCq11sKH/ZBIxA9wOyj2hJ\nSIxM17V2z0+PaElIjExgH+llNUu3JCRGJjPZsG2Oz0vB9zUXEiMTCWkzb//O5j/cBAxa95D2\nq+PT0WyzP9YUu5C+kBiZriG9nCYblpdTX3PXthMSI9P5VPMyW7+do3f79PGfbgJGoOtxpMWd\n70Jx/yZgBCpejuuHm4ARqPoesj/aBIxAxctx/XATMAIVL8f1w03ACFS9itCPNgEjICQIcGIf\nBAgJAjqHtFmcXtUtsickCYmR6RrS/LJ7VJpoSUJiZDqGtC7z/Smkdav3kP3RJmAEOobUlP1l\ndYNZO361wBIhIUFgidCpoW2ZxYZ0EBKjk9lH2jTJKzYIidHpOmu3eF3XkLtew5dNwPBFjiOV\nxXNoON9uAgbPygYI6HoaRWwgf90EjEDX6e+5azZA4ipCZZk/tU9IjEzXfaTd5cLf7V7ivawu\nk3yLf7UnJEYmMNmwWzalzUu8/ezqNMDb0+VCYmQys3brNmfILkvzfLkk627TlJvX8RISI5N4\nRjq/uvv3kaSmbN9vb29flVVIjExkH6lZtjkb6dOT1u1nMCExMoFZu6eWs3aekZiuzseR2i8O\nOu4jbS7PXPaRmJqaKxvmV7N2s5ufKSRGpvNkw/O8/aLVl+X5OFKzWDmOxLRELn7iNAp+u84n\n9jWnI7FO7OOX6zxrd5mJa3Wq+f7pYwWE6W8mJfX+SC1WNuyby0K7Fh8vJEYm9oz07/ePXZ5e\n/u3XzXl3SkhMSsV9pObyibtmthMSE1Nx1u6tnf18LiQmpvtxpNYXP/l4m8zZXEhMS8WLn3xc\nH3xX5kJiUmpeRWj5Xs/mH+cvCYmR6RrSfnmarmuWrRbdbRdvt3ZPQmJKOoa0a14voe/9kfjV\nOoY0L0+n56L9siz+9uE/ISRGpuLKBlcRYroCbzR2sm+zRMhVhJisjiEty/z05PIyv33G6+vH\n3ryKULl2/6igTxVXNrhmA9OVWdkwb3M2kqsIMV0VD8h6RmK6KobkKkJMV9eQ1rNjF7Mya3Nt\nO1cRYrI6hrQ57eucz3xtU5KrCDFVnVc2PJ+v1/CcvYyQkBiZwMqG7Wl/J3voR0iMTCCkRdkI\niV+u80u77eY0k333SzvHkZiU7pMNpaxOXdz5psxCYlI6T39fjgi1eJ+xH28Chq/mqeaD2gQk\nCQkCOoR02s2578wHJ/YxVRVDcmIf01V30eqtE/sSm4CeOI0CAjq9tLvv7HAn9jFdFUPyjMR0\ndX1ptzi/rctL8/SXD77ixD6mq/NVhN7eaOzfVxFyYh/TVfcCkU7sY6I6XyCy/Vtf/nATMAKd\nX9o1pyeX4z7PKjWiPzcBI5C6QGT0GvpCYmwyF4hc3Hk20n2bgMGz+hsChAQBQoIAIUGAkCBA\nSBAgJAgQEgR0DmmzOF+2eBcaz3ebgMGLLBE63tdESxISI9MxpHWZ708hrUuLM/t+tgkYgc6n\nUewvpyJ5Nwp+tcCJfUKCjiHNXp+RTu/aFyQkRiazj7Rpyjo2pIOQGJ3OVxFqdQniTpuA4Ysc\nRyqL7NsjCYmxsbIBAoQEAZ3f+nJ2OOxmZfaPC9V12QQMX8eQNqe57+Y02xAtSUiMTMeQ5uX5\nfAzpOTttJyRGJrCy4Xzdbysb+NUCIS3KRkj8cp1f2m03p8t+e2nH79Z9sqGcLvtdSvRaq0Ji\nZDpPf1/eMmyWXdogJEbGAVkIEBIEVHwz5seOCvokJAjw0g4ChAQBqZBeou99KSRGpmtIS/tI\nEHhX8zdWNvCbdb5A5PNhXna7effzkR42BQiPF1j9vTo+G20tWuVXC4S0OV3Tzj4Sv1rHkBbH\nl3a7Mju8CIlfLXHNhvNbu3g3Cn6zrtPfq9Pvnsr5XIocITEyVjZAgJAgoNPq7+hIvtsEjETn\nkB6Sk5AYGSFBgJAgQEgQICQIEBIEuPgJBAgJAqxsgAAhQYCQIEBIECAkCBASBAgJAoQEAUKC\nACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAH1Q1rPSllsHroJ\nqK1iSJeLsc4v12W9/ebNQmJkaoe0LMv94bBblvUjNgE9qR1SU/an2/sye8QmoCe1Q3q72P7t\ni+4LiZGpHdLTW0jNIzYBPaka0mK13pTn48398vZsg5AYmaohvb+RUinN/hGbgJ7UPI603a7X\ni8V5ymF5syMhMTZWNkCAkCCgakgvq8V5L2mxfHnUJqAXFUPaz67eunn+kE1ATyqGtCzN8/Z8\na7dpTH8zKRVDasr2/fbWAVkmpfrq7+9+E9sE9MQzEgTU3Ufa7M637CMxNTWnv+dXs3YzS4SY\nkrrHkZbn40jNYuU4EtNiZQMECAkCLBGCAEuEIGA4S4TKtR9uAnrigCwEWCIEAZ6RIMASIQiw\nRAgCLBGCACsbIEBIECAkCOgrJMeRmBQhQYCXdhAgJAgQEgQ4sQ8CnNgHAcM5sS+xCeiJ0ygg\nwIl9EOAZCQKc2AcBTuyDACf2QYCVDRAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJ\nAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAh\nQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAg\nJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCgOGEVK49ZhPwKMMJqfImIElI\nECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQI\nCQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIECAkChAQBQoIA\nIUGAkCBASBAgJAioGFL57BGbgJ5UDGktJCar5ku7bTN/9CagH1X3kbZl+ehNQC/qTjasy/bR\nm4A+mLWDACFBgJAgoGpIL6vFeeZ7sXx51CagFxVD2s+ujiLdnggXEiNTMaRlaZ4vk3a7TXN7\nIlxIjEzFkJqrue9taR6xCehJ1bV2f/tNbBPQE89IEFB3H2mzO9+yj8TU1Jz+nl/N2s32D9kE\n9KPucaTl+ThSs1g5jsS0WNkAAUKCgBEtEfrf/368YXiw8SwR+p+UGK7hLBH6xwUdTh0piaEa\nzQHZ/72m9MONw0ONZ4nQ/15TggEazTPSZQ9JRwzTqJYI2UViqCwRggBLhCDAygYIEBIECAkC\n+grJqeZMipAgwEs7CBASBAgJAkZ0Yh8M13hO7IMBG86JfYlNQE9GdBoFDNd4TuyDAfOMBAGj\nOrEPhsqJfRAw0BP7YGTuz6HPp4vhPVUNb0R3Gt4XMLgRPWhAQro2vBHdaXhfwOBGJKQKhjei\nOw3vCxjciIRUwfBGdKfhfQGDG5GQKhjeiO40vC9gcCMSUgXDG9GdhvcFDG5EQqpgeCO60/C+\ngMGNSEgVDG9EdxreFzC4EQmpguGN6E7D+wIGNyIhVTC8Ed1peF/A4EYkpAqGN6I7De8LGNyI\nhFTB8EZ0p+F9AYMb0QRDgskQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFB\ngJAgQEgQUCekZVOa5f77Oz792bpW2C1HtJ798WGD0e4L+PE14cMjunpkv3xYLwO6emAzA6ry\nPb68Bczs2zs+/dm20mPedkTL881mgCW1+wK2FUO6NaKrR/bLh/UyoKsHNjSgGt/jl9JsD9um\nvHxzx6c/O/6/TkgtR7QtT/vTv6VPVQZ1j9ZfwGIII7p6ZL98WC8DunpgUwOq8YO7LJvjr89l\n9c0d13+2LvNar0LajWhxGU2tp8k7tPwC1h8f0OeIrh7ZLx/Wy4CuHtjUgGr8jCzK6U0yr/51\nvLrj+s/KstbPbNsRXQwwpJZfwLqshzCiq0f263e3lwFdnMaUGlCNn5Hy5z/sV3dc/9m22s9s\n2xGd7cu8yqDu0fILWJTN03FPuu8RXT2yXz6snwGdnR/Y1ICGFNKhyjf4zhGd/lnfVBnUPVqH\ndFbjH4J//dwOMKTzAyukSiM67JpqO+zttfwCSnk+/sO7rPECb3whXR5YIVUa0b4Z3gu7u1+b\nVphtHl1Irw/smEJq/hzr1R3Nt9/uAY1oXuOQx93u+AIOdb6rt0Z09f+vg+trQK8PbGpANX5w\nLxMjuz/nT3YfU0zvf1YppNYj2s3muyojutMd39JDne/qrRFdjeHr4PoZ0PsDmxpQjR/c1Xlv\nfVOW39zxx59VCqntiDYDnLA7a/kFNOV07L7Gj+3NEZ28PrJfPqyfAX08sKkB1fjBbb2yoVpI\nLUe0G2pHbb+A5ennY7+sMe14e2XD+yM7jJUNVw/smFY2HGYfk7CX7+fVHbNPE7SVQmo5oqdS\nc9HnXdp9AfvmfLPKgaRbIzp8PLKf7+1pQNcPbGhAVX5G9ucFtpftlT/uuLp5qBdSuxGVq+/3\nwLT8lp5uzuqsbrg1osPHI/v53p4GdP3AhgY0wJ8RGB8hQYCQIEBIECAkCBASBAgJAoQEAUKC\nACFBgJAgQEgQICQIEBIECAkChAQBQoIAIUGAkCBASBAgJAgQEgQICQKEBAFCggAhQYCQIEBI\nECAkCBASBAgJAoQEAUKCACGN3hDfUPD38SCMnpCGwIMwekIaAg/C6AlpCDwIA3ZMZHn9jtv7\nMjv/f1b2h82ivL9F91tMl1/Xs9LUeSNzPghpwEpZnd7Dfv5+x7zsjr/ujvesLm9vvzx8CWlR\nPn8OVQhpwI7POdvDtinPb3c8l9Xx11XZHP/o+fTbcvgzpE2Z7w/7+fFDqElIA1bOOWzK4uOe\n02u7Wfn4gMOfIS2OL/tOLwIXB2oS0oC9TiNczSY8HV/b7c4v6A67zWr+TUjlTQ/j/c18vwfs\nI6S3Nl6Or+2W5eVw2l16y0VIQ+D7PWBfQzo0s9N/p6em2Xqz+zak/sb7m/m2D1g5P/dsytPH\nXcuyPk84nHv5I6SXyz6SaYY+CGnA3mbtrtI4tnOeTTg1tv3YR5qV9Wmqrpxm8o6fc1ibbKhM\nSANWynlP6FMTs8shouXrntDLJaT1+ePOXV12nppdLyP+vYQ0YMcwFsd9oU/3Pb8+Pz0dK3s5\nz4yf81k1xxeA7ysbypOOKhPSgJk4GA8P1YAJaTw8VAMmpPHwUA2YkMbDQwUBQoIAIUGAkCBA\nSBAgJAgQEgQICQKEBAFCggAhQYCQIEBIECAkCBASBAgJAoQEAUKCACFBgJAgQEgQICQIEBIE\nCAkChAQBQoIAIUHA/wH0tEulONSm0wAAAABJRU5ErkJggg=="
},
"metadata": {
"image/png": {
"width": 420,
"height": 420
}
},
"output_type": "display_data"
}
],
"source": [
"# Plot the result, this function makes a plot of the significant gene sets, based on a call to the GSA (Gene set analysis) function.\n",
"suppressWarnings(GSA.plot(GSA.obj, fac=1, FDRcut = 0.5))\n"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "67951b37",
"metadata": {
"tags": [
"remove-input"
]
},
"outputs": [
{
"data": {
"text/html": "\r\n\r\n
\r\n
\r\n\r\n
Quiz_Submodule4\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n \r\n\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n\r\n
\r\n\r\n
\r\n
\r\n
\r\n\r\n
\r\n\r\n
\r\n\r\n\r\n
\r\n\r\n
\r\n\r\n\r\n\r\n
\r\n\r\n
\r\n\r\n
\r\n\r\n
\r\n\r\n
\r\n\r\n
\r\n\r\n
\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n"
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"IRdisplay::display_html('
')\n"
]
}
],
"metadata": {
"celltoolbar": "Tags",
"environment": {
"kernel": "ir",
"name": "r-cpu.4-1.m93",
"type": "gcloud",
"uri": "gcr.io/deeplearning-platform-release/r-cpu.4-1:m93"
},
"kernelspec": {
"display_name": "R",
"language": "R",
"name": "ir"
},
"language_info": {
"codemirror_mode": "r",
"file_extension": ".r",
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
"version": "4.2.2"
},
"toc-showcode": true,
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}