

NETWORK SIMULATOR- 3
(NS- 3)
PRACTICAL LAB MANUAL

NETWORK SIMULATOR- 3
(NS- 3)
PRACTICAL LAB MANUAL
LATE BHAUSAHEB HIRAY S.S. TRUST’S INSTITUTE OF COMPUTER
APPLICATION, BANDRA, EAST MUMBAI- 51

Author: Vikram Patalbansi

Faculty, Master of Computer Application (M.C.A.)
Late Bhausaheb Hiray S.S. Trust’s Institute of Computer Application

First Edition, 2023

Copyright © Late Bhausaheb Hiray S.S. Trust’s Institute of Computer Application, Bandra (E), Mumbai- 51, 2023

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means,
including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the
author, except in the case of brief quotations embodied in critical reviews and certain other non- commercial uses permitted by
copyright law. For permission requests, write to the publisher at the address below.
This book can8.504 ptbe exported from India only by the publishers or by the authorized suppliers. Infringement of this
condition of sale will lead to Civil and Criminal prosecution.

Paperback ISBN: 978-81-19221-78-3
eBook ISBN: 978-81-19221-82-0
WebPDF ISBN: 978-81-19221-80-6

Note: Due care and diligence has been taken while editing and printing the book; neither the author nor the publishers of the
book hold any responsibility for any mistake that may have inadvertently crept in.

The publishers shall not be liable for any direct, consequential, or incidental damages arising out of the use of the book. In case
of binding mistakes, misprints, missing pages, etc., the publishers’ entire liability, and your exclusive remedy, is replacement of
the book within one month of purchase by similar edition/ reprint of the book.

Printed and bound in India by
16Leaves
2/ 579, Singaravelan Street
Chinna Neelankarai
Chennai – 600 041, India

info@16leaves.com
www.16Lea ves.com
Call: 91- 9940638999

http://www.16Leaves.com

v

Contents

Practical 1 Installation of Ubuntu and NS3 1

Practical 2 List of Packages for Installing NS- 3 in Ubuntu/ Mint Systems 3

Practical 3 Steps for Installing NetAnim and Wireshark Simulator 9

Practical 4 Configure NetAnim Simulator 11

Practical 5 Conceptual Explanations of NS3 code 15

Practical 6 Experiment Specific Instructions 31

Practical 7 Default Network Topology (Point- to- Point) 33

Practical 8 Program to simulate Hybrid Topology (Point- to- Point + Bus Topology) 41

Practical 9 Program to Simulate Hybrid LAN with Wi- Fi 51

Practical 10 Program to Simulate Star Topology 63

Practical 11 Program to simulate UDP Server – Client communication. 71

Practical 12 Program to simulate Bus Topology using UDP Protocol 79

Practical 13 Program to Simulate Wireless Wi- Fi Network. 87

Practical 14 Program to simulate WiMAX wireless network. 95

Practical 15 Program to simulate IEEE 802.11 Wi- Fi Manager Nodes 103

Practical 16 Program to Simulate Wi- Fi nodes 123

Program 17 Program to Simulator Grid- Topology 131

Practical 18 Program to Simulate Hybrid Topology 137

Program 19 Program to simulator Mesh Topology 147

Practical 20 Program to Simulate handover in Mesh Topology 157

Program 21 Program to simulate FTP using TCP protocol. 169

Program 22 Program to simulate DHCP server and n clients. 179

Contents

newgenprepdf

Practical 1 1

Practical 1: Installation of Ubuntu and NS3

Networking with Linux
In this we are going to learn network topology logical working using NS- 3 and Wireshark simulator.

This simulator nothing but software model in analogus to hardware working of network.

For. Transmission of Packet over Network node shown in NS- 3 GUI window.

To download NS- 3 refer below website https:// www.nsnam.org/

https:// www.nsnam.org/

Step 1.

On Ubuntu Terminal type command
sudo apt update

Step 2. After fetching latest package install it command is
sudo apt install

Step 3. After installation upgrade Ubuntu command is
sudo apt upgrade

Step 4. To Install C+ + complier in Ubuntu then follows following command
sudo apt- get install build- essential

Step 5: To install Python compiler use following command sudo apt- get install python python- dev

Step 6: To install Mercurial means animation and NS3 supported package use following commands
sudo apt- get install mercurial

Step 7: To unzip file install supported package command is
sudo apt- get install bzr

Step 8: to install TCPDUMP for pcap trace file reading support use following command
sudo apt- get install tcpdump

Step 9: to Generate XML supported file to be readble file external simulator API use the following command
sudo apt- get install libxml2 libxml2- dev

Step 10: Unzip the NS3 package we have command
tar xjf ns- allinone3.32.tar.bz2

Step 11: To compile all the package in ns- 3.32 execute following command

./ waf configure - - enable- examples – enable- tests

https://www.nsnam.org/
https://www.nsnam.org/

Network Simulator- 3 (NS- 3)2

Step 12: To run our simulator then every classess must be compile. Use the following command

./ waf – - run hello- simulator

After executing above commands then output will “ Hello Simulator” then assume that all NS3 API are in executable
code of Operating System.

$
$
$
$
$ cd
mkdir workspace cd workspace
wget https:// www.nsnam.org/ rele ase/ ns- allin one- 3.32.tar.bz2

tar xjf ns- allinone- 3.32.tar.bz2

Notice the use above of the wget utility, which is a command- line tool to fetch objects from the web; if you do not
have this installed, you can use a browser for this step.
Following these steps, if you change into the directory ns- allinone- 3.32, you should see a number of files and
directories

$ cd ns- allinone- 3.32
$ ls

bake constants.py
build.py netanim- 3.108 ns- 3.32
pybindgen- 0.21.0 README
util.py
You are now ready to build the base ns- 3 distribution and may skip ahead to the section on building ns- 3.

Now go ahead and switch back to the debug build that includes the examples and tests.
$./ waf clean

to compile all API classes use following commands

$./ waf configure - - build- profile= debug - - enable- examples – enable- tests

if you don’t see the “Hello Simulator” output, type the following:

$./ waf configure - - build- profile= debug - - enable- examples – enable- tests

and ten type command

./ waf con figure – enables- examples
and

./ waf - - run hello- simulator

https://www.nsnam.org/release/ns-allinone-3.32.tar.bz2

Practical 2 3

Practical 2: List of Packages for Installing NS- 3 in Ubuntu/ Mint
Systems

Perquisite for installing NS3.32

1 sudo apt upgrade

2 Sudo apt update

Network Simulator- 3 (NS- 3)4

3 Minimal requirements for C+ + users
apt- get install g+ + python3

4 Minimal requirements for Python API users
apt- get install g+ + python3 python3- dev pkg- config sqlite3

5 Netanim animator: qt5 development tools are needed for Netanim animator;
apt- get install qt5- default mercurial

Practical 2 5

6 ns- 3- pyviz visualizer
apt- get install gir1.2- goocanvas- 2.0 python- gi python- gi- cairo python- pygraphviz python3- gi python3- gi- cairo
python3- pygraphviz gir1.2- gtk- 3.0 ipython ipython3

7 Debugging:

8 apt- get install gdb valgrind

Network Simulator- 3 (NS- 3)6

9 Doxygen and related inline documentation:
apt- get install doxygen graphviz imagemagick
apt- get install texlive texlive- extra- utils texlive- latex- extra texlive- font- utils dvipng latexmk

10 The ns- 3 manual and tutorial are written in reStructuredText for Sphinx (doc/ tutorial, doc/ manual, doc/
models), and figures typically in dia (also needs the texlive packages above):
apt- get install python3- sphinx dia

11 To read pcap packet traces
apt- get install tcpdump

12 Support for generating modified python bindings
apt- get install cmake libc6- dev libc6- dev- i386 libclang- 6.0- dev llvm- 6.0- dev automake python3- pip
python3 - m pip install - - user cxxfilt

After installing the required packages, create a folder named workspace in the home directory and then put the
NS3 tar package into the workspace.
Go to terminal and input these commands consecutively after each command finishes executing:
cd
cd workspace
tar xjf <name of NS3 downloaded file name>

cd <name of extracted NS3>

./ build.py - - enable- examples - - enable- tests

Practical 2 7

It takes time be patient!!

Test the NS3 build and installation success by running test.py in the ns directory using the following commands:

cd ns- <version number>./ test.py

Practical 3 9

Practical 3: Steps for Installing NetAnim and Wireshark
Simulator

Installation of NS3 on Ubuntu 18.04/ Linux Mint 19
Step 1: Check Ubuntu Version

1. Open the terminal (use the Ctrl+ Alt+ T keyboard shortcut).
2. Type in the following command and hit Enter: cat / etc/ lsb- release

Step 2: Upgrade the package list by executing following command: sudo apt - f upgrade

Note: Make sure that your OS is having GCC version >= 5.4.0

1. To know GCC version on your system
2. Open the terminal (use the Ctrl+ Alt+ T keyboard shortcut). Type in the following command and hit Enter:

Option 1. Issue command “gcc – version” Example: ...
Option 2. Issue command “gcc - v”

Step 3: Install following required packages:

For ns- 3:
gcc
g+ +
python
python- dev

For NetAnim:
qt5- default

For PyViz:
libgtk- 3- dev
python- pygoocanvas
python- pygraphviz

For Wireshark and Gnuplot:

wireshark
gnuplot
Command to install all these packages together:

sudo apt- get install gcc g+ + python python- dev qt4- dev- tools libgtk- 3- dev python- pygoocanvas python- pygraphviz
wireshark gnuplot

Step 4: Download ns- allinone- 3.27.tar.bz2 and unzip it. For unzip write following command.

tar - xvjf ns- allinone- 3.27.tar.bz2

Network Simulator- 3 (NS- 3)10

Step 5: Go to ns- allinone- 3.27 folder and install ns3: Follow the bellow command to do so:

cd ns- allinone- 3.27
./ build.py - - enable- examples – enable- tests

This command will install ns- 3, NetAnim and PyViz. You will be having a list of built and unbuilt modules after
successful installation.

Step 6: Once the installation completes, go to ns- 3.27 and give the following command for testing the installation:

cd ns- allinone- 3.27/ ns- 3.27/ ./ test.py - c core
./ waf – run hello- simulator You are done!

Step 7: To install the Wireshark
ns- allinone- 3.32$sudo apt- get install wireshark

Step 8: To install GNUplot
ns- allinone- 3.32$ sudo apt- get gnuplot

Note:
Minimal requirements for C+ + users sudo apt- get install g+ + python3

Minimal requirements for Python API users
sudo apt- get install g+ + python3 python3- dev pkg- config sqlite3

NetAnim animator: - qt5 development tools are needed for NetAnim animator sudo apt- get install qt5- default
mercurial

Practical 4 11

Practical 4: Configure NetAnim Simulator

Prerequests: NS3 Installation on Ubuntu 1804

Related folders and files in this document

Configure NetAnim

Go to NS3 All- in- one folder and go further into NetAnim folder
cd ns- allinone- 3.30.1/ netanim- 3.108/

#
sudo apt- get install make - y

clean the source code, qmake and then make
make clean
qmake NetAnim.pro make

Now, NetAnim is ready to use.

Network Simulator- 3 (NS- 3)12

Run Tutorial Examples

Pay attention to the name of the file

go to ns3- 30.1 examples
cd .. # now we are at ns- allinone- 3.30.1/
cd ns- 3.30.1/ examples/ tutorial

instead of ruining the example, we copy it to scratch/ Note that, you cannot change the
folder unless you have configured the path
Also, you should not reuse the name "first", because NS3 will find out first.cc or first.py
instead of your file.
here we use tutorial1.cc
cp first.cc ../ ../ scratch/ tutorial1.cc cd ../ ../ scratch/

use your favourite code editor to edit the first.cc file.
I use vscode.

Add Code for NetAnim

1 Add the header file

#include “ns3/ netanim- module.h”

Practical 4 13

2 Add the following statement before Simulation::Run()

AnimationInterface anim (“animation.xml”);

3 Set give positions to your nodes.

anim.SetConstantPosition (node, double x, double y);

2.2.3.6. Build and Run

go back to ns- 3.30.1
cd ../

use waf to compile and run the code
./ waf - - run tutorial1

You should see

Network Simulator- 3 (NS- 3)14

Use NetAnim to Show The Animation

go to netanim- 3.108
cd ../ netanim- 3.108/

run NetAnim
./ NetAnim

Practical 5 15

Practical 5: Conceptual Explanations of NS3 code

Conceptual Overview
Node

In Internet jargon, a computing device that connects to a network is called a host or sometimes an end system.
Because |ns3| is a network simulator, not specifically an Internet simulator, we intentionally do not use the term
host since it is closely associated with the Internet and its protocols.
Instead, we use a more generic term also used by other simulators that originates in Graph Theory - - - the node.

In |ns3| the basic computing device abstraction is called the node. This abstraction is represented in C+ + by the
class Node.

The Node class provides methods for managing the representations of computing devices in simulations.
You should think of a Node as a computer to which you will add functionality. One adds things like applications,
protocol stacks and peripheral cards with their associated drivers to enable the computer to do useful work. We use
the same basic model in |ns3|.

Application

Typically, computer software is divided into two broad classes. System Software organizes various computer
resources such as memory, processor cycles, disk, network, etc., according to some computing model. System
software usually does not use those resources to complete tasks that directly benefit a user. A user would typically
run an application that acquires and uses the resources controlled by the system software to accomplish some goal.
Often, the line of separation between system and application software is made at the privilege level change that
happens in operating system traps. In |ns3| there is no real concept of operating system and especially no concept
of privilege levels or system calls. We do, however, have the idea of an application.
Just as software applications run on computers to perform tasks in the “real world,” |ns3| applications run
on |ns3|

Nodes to drive simulations in the simulated world.

In |ns3| the basic abstraction for a user program that generates some activity to be simulated is the application.

This abstraction is represented in C+ + by the class Application.
The Application class provides methods for managing the representations of our version of user- level applications in
simulations.

Developers are expected to specialize the Application class in the object- oriented programming sense to create new
applications.

In this tutorial, we will use specializations of class Application called UdpEchoClientApplication and
UdpEchoServerApplication.

As you might expect, these applications compose a client/ server application set used to generate and echo
simulated network packets

Network Simulator- 3 (NS- 3)16

Channel

In the real world, one can connect a computer to a network. Often the media over which data flows in these
networks are called channels. When you connect your Ethernet cable to the plug in the wall, you are connecting
your computer to an Ethernet communication channel. In the simulated world of |ns3|, one connects a Node to an
object representing a communication channel.

Here the basic communication subnetwork abstraction is called the channel and is represented in C+ + by the
class Channel.

The Channel class provides methods for managing communication subnetwork objects and connecting nodes to
them. Channels may also be specialized by developers in the object oriented programming sense.

A Channel specializationmay model something as simple as a wire. The specialized Channel can also model things as
complicated as a large Ethernet switch, or three- dimensional space full of obstructions in the case of wireless networks.

We will use specialized versions of the Channel called CsmaChannel, PointToPointChannel and WifiChannel.

The CsmaChannel, for example, models a version of a communication subnetwork that implements a carrier sense
multiple access communication medium. This gives us Ethernet- like functionality.

Net Device

It used to be the case that if you wanted to connect a computer to a network, you had to buy a specific kind of
network cable and a hardware device called (in PC terminology) a peripheral card that needed to be installed in
your computer. If the peripheral card implemented some networking function, they were called Network Interface
Cards, or NICs.

Today mostcomputers come with the network interface hardware built in and users don’t see these building blocks.

A NIC will not work without a software driver to control the hardware. In Unix (or Linux), a piece of peripheral hardware
is classified as a device. Devices are controlled using device drivers, and network devices (NICs) are controlled

using network device drivers collectively known as net devices.

In Unix and Linux you refer to these net devices by names such as eth0.

In |ns3| the net device abstraction covers both the software driver and the simulated hardware. A net device is
“installed” in a Node in order to enable the Node to communicate with other Nodes in the simulation via Channels.

Just as in a real computer, a Node may be connected to more than one Channel via multiple NetDevices.

The net device abstraction is represented in C+ + by the class NetDevice.

The NetDevice class provides methods for managing connections to Node and Channel objects; and may be
specialized by developers in the object- oriented programming sense. We will use the several specialized versions of
the NetDevice called CsmaNetDevice, PointToPointNetDevice, and WifiNetDevice.

Just as an Ethernet NIC is designed to work with an Ethernet network, the CsmaNetDevice is designed to work with a
CsmaChannel;
the PointToPointNetDevice is designed to work with a PointToPointChannel and a WifiNetNevice is designed to work
with a WifiChannel.

Practical 5 17

Topology Helpers

In a real network, you will find host computers with added (or built- in) NICs.

In |ns3| we would say that you will find Nodes with attached NetDevices. In a large simulated network you will need
to arrange many connections between Nodes, NetDevices and Channels.

Since connecting NetDevices to Nodes, NetDevices to Channels, assigning IP addresses, etc., are such common
tasks in |ns3|, we provide what we call topology helpers to make this as easy as possible.

For example, it may take many distinct |ns3| core operations to create a NetDevice, add a MAC address, install that
net device on a Node, configure the node’s protocol stack, and then connect the NetDevice to a Channel. Even more
operations would be required to connect multiple devices onto multipoint channels and then to connect individual
networks together into internetworks.

We provide topology helper objects that combine those many distinct operations into an easy to use model for your
convenience.

A First ns- 3 Script

4If you downloaded the system as was suggested above, you will have a release of
|ns3| in a directory called repos under your home directory. Change into that release directory, and you should find
a directory structure something like the following:

AUTHORS examples scratch utils waf.bat* bindings LICENSE src utils.py waf- tools build ns3
test.py* utils.pyc wscript
CHANGES.html README
testpy- output VERSION wutils.py
doc
RELEASE_ NOTES testpy.supp waf*
wutils.pyc

Change into the examples/ tutorial directory. You should see a file named first.cc located there. This is a script that
will create a simple point- to- point link between two nodes and echo a single packet between the nodes. Let’s take a
look at that script line by line, so go ahead and open first.cc in your favourite editor.

Boilerplate

The first line in the file is an emacs mode line. This tells emacs about the formatting conventions (coding style) we
use in our source code.

/ * - *- Mode:C+ + ; c- file- style:”gnu”; indent- tabs- mode:nil; - *- */

This is always a somewhat controversial subject, so we might as well get it out of the way immediately. The |ns3|
project, like most large projects, has adopted a coding style to which all contributed code must adhere. If you
want to contribute your code to the project, you will eventually have to conform to the |ns3| coding standard as
described in the file doc/ codingstd.txt or shown on the project web page here.

Network Simulator- 3 (NS- 3)18

We recommend that you, well, just get used to the look and feel of |ns3| code and adopt this standard whenever
you are working with our code. All of the development team and contributors have done so with various amounts of
grumbling. The emacs mode line above makes it easier to get the formatting correct if you use the emacs editor.

The |ns3| simulator is licensed using the GNU General Public License. You will see the appropriate GNU legalese at
the head of every file in the |ns3| distribution.

Often you will see a copyright notice for one of the institutions involved in the |ns3| project above the GPL text and
an author listed below.

/ *
* This program is free software; you can redistribute it and/ or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation;
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 1307 USA
*/

Module Includes

The code proper starts with a number of include statements.

#include “ns3/ core- module.h”
#include “ns3/ network- module.h”
#include “ns3/ internet- module.h”
#include “ns3/ point- to- point- module.h”
#include “ns3/ applications- module.h”

To help our high- level script users deal with the large number of include files present in the system, we group
includes according to relatively large modules. We provide a single include file that will recursively load all of the
include files used
in each module. Rather than having to look up exactly what header you need, and possibly have to get a number of
dependencies right, we give you the ability to load a group of files at a large granularity.
This is not the most efficient approach but it certainly makes writing scripts much easier.
Each of the |ns3| include files is placed in a directory called ns3 (under the build directory) during the build
process to help avoid include file name collisions.

The ns3/ core- module.h file corresponds to the ns- 3 module you will find in the directory src/ core in your
downloaded release distribution.
If you list this directory you will find a large number of header files.

Practical 5 19

When you do a build, Waf will place public header files in an ns3 directory under the appropriate build/ debug or
build/ optimized directory depending on your configuration. Waf will also automatically generate a module include
file to load all of the public header files.

Since you are, of course, following this tutorial religiously, you will already have done a

$./ waf - d debug - - enable- examples - - enable- tests configure

in order to configure the project to perform debug builds that include examples and tests. You will also have done a

$./ waf

to build the project.

So now if you look in the directory ../ ../ build/ debug/ ns3

you will find the four module include files shown above. You can take a look at the contents of these files and find
that they do include all of the public include files in their respective modules.

Ns3 Namespace

The next line in the first.cc script is a namespace declaration.

using namespace ns3;
The |ns3| project is implemented in a C+ + namespace called ns3.
This groups all |ns3|- related declarations in a scope outside the global namespace, which we hope will help with
integration with other code.
The C+ + using statement introduces the |ns3| namespace into the current (global) declarative region.
This is a fancy way of saying that after this declaration, you will not have to type ns3:: scope resolution operator
before all of the |ns3| code in order to use it.

If you are unfamiliar with namespaces, please consult almost any C+ + tutorial and compare the ns3 namespace
and usage here with instances of the std namespace
and the using namespace std; statements you will often find in discussions of cout and streams.

Logging

The next line of the script is the following,
NS_ LOG_ COMPONENT_ DEFINE (“FirstScriptExample”);

We will use this statement as a convenient place to talk about our Doxygen documentation system.
If you look at the project web site, ns- 3 project, you will find a link to “Documentation” in the navigation bar. If you
select this link, you will be taken to our documentation page.

There is a link to “Latest Release” that will take you to the documentation for the latest stable release of |ns3|.
If you select the “API Documentation” link, you will be taken to the |ns3| API documentation page.
Along the left side, you will find a graphical representation of the structure of the documentation.
A good place to start is the NS- 3 Modules “book” in the |ns3| navigation tree.

If you expand Modules you will see a list of |ns3| module documentation. The concept of module here ties directly
into the module include files discussed above.

Network Simulator- 3 (NS- 3)20

The |ns3| logging subsystem is discussed in the:ref:`UsingLogging` section, so we’ll get to it later in this tutorial,
but you can find out about the above statement by looking at the Core module, then expanding the Debugging tools
book, and then selecting the Logging page.

Click on Logging.

You should now be looking at the Doxygen documentation for the Logging module.
In the list of Macros’s at the top of the page you will see the entry for NS_ LOG_ COMPONENT_ DEFINE.

Before jumping in, it would probably be good to look for the “Detailed Description” of the logging module to get a
feel for the overall operation. You can either scroll down or select the “More...” link under the collaboration diagram
to do this.

Once you have a general idea of what is going on, go ahead and
take a look at the specific NS_ LOG_ COMPONENT_ DEFINE documentation.

It summarize, this line declares a logging component called FirstScriptExample that allows you to enable and
disable console message logging by reference to the name.

Main Function

The next lines of the script you will find are,

int
main (int argc, char *argv[])
{

This is just the declaration of the main function of your program (script). Just as in any C+ + program, you need to
define a main function that will be the first function run. There is nothing at all special here. Your |ns3| script is just
a C+ + program.
The next line sets the time resolution to one nanosecond, which happens to be the default value:

Time::SetResolution (Time::NS);
The resolution is the smallest time value that can be represented (as well as the smallest representable difference
between two time values).

You can change the resolution exactly once. The mechanism enabling this flexibility is somewhat memory hungry, so
once the resolution has been set explicitly we release the memory, preventing further updates.

(If you don’t set the resolution explicitly, it will default to one nanosecond, and the memory will be released when
the simulation starts.)

The next two lines of the script are used to enable two logging components that are built into the Echo Client and
Echo Server applications:

LogComponentEnable(“UdpEchoClientApplication”,
LOG_ LEVEL_ INFO);

LogComponentEnable(“UdpEchoServerApplication”,
LOG_ LEVEL_ INFO);

Practical 5 21

If you have read over the Logging component documentation you will have seen that there are a number of levels of
logging verbosity/ detail that you can enable on each component.
These two lines of code enable debug logging at the INFO level for echo clients and servers. This will result in the
application printing out messages as packets are sent and received during the simulation.

Now we will get directly to the business of creating a topology and running a simulation. We use the topology helper
objects to make this job as easy as possible.

Topology Helpers
NodeContainer

The next two lines of code in our script will actually create the |ns3| Node objects that will represent the computers
in the simulation.

NodeContainer nodes;
nodes.Create (2);

Let’s find the documentation for the NodeContainer class before we continue. Another way to get into the
documentation for a given class is via the Classes tab in the Doxygen pages.

If you still have the Doxygen handy, just scroll up to the top of the page and select the Classes tab. You should see a
new set of tabs appear, one of which is Class List.

Under that tab you will see a list of all of the |ns3| classes. Scroll down, looking for ns3::NodeContainer.

When you find the class, go ahead and select it to go to the documentation for the class.

You may recall that one of our key abstractions is the Node.

This represents a computer to which we are going to add things like protocol stacks, applications and
peripheral cards.

The NodeContainer topology helper provides a convenient way to create, manage and access any Node objects that
we create in order to run a simulation.

The first line above just declares a NodeContainer which we call nodes. The second line calls the Create method on
the nodes object and asks the container to create two nodes.

As described in the Doxygen, the container calls down into the |ns3| system proper to create two Node objects and
stores pointers to those objects internally.

The nodes as they stand in the script do nothing. The next step in constructing a topology is to connect our nodes
together into a network.

The simplest form of network we support is a single point- to- point link between two nodes. We’ll construct one of
those links here.

Network Simulator- 3 (NS- 3)22

PointToPointHelper

We are constructing a point to point link, and, in a pattern which will become quite familiar to you, we use a
topology helper object to do the low- level work required to put the link together.

Recall that two of our key abstractions are the NetDevice and the Channel.

In the real world, these terms correspond roughly to peripheral cards and network cables.

Typically these two things are intimately tied together and one cannot expect to interchange, for example, Ethernet
devices and wireless channels.

Our Topology Helpers follow this intimate coupling and therefore you will use a single PointToPointHelper to configure
and connect |ns3| PointToPointNetDevice and PointToPointChannel objects in this script.
The next three lines in the script are,

PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute (“DataRate”, StringValue(“5Mbps”));
pointToPoint.SetChannelAttribute (“Delay”, StringValue(“2ms”));

The first line, PointToPointHelper pointToPoint;

instantiates a PointToPointHelper object on the stack. From a high- level perspective the next line,

pointToPoint.SetDeviceAttribute (“DataRate”, StringValue(“5Mbps”));

tells the PointToPointHelper object to use the value “5Mbps” (five megabits per second) as the “DataRate” when it
creates a PointToPointNetDevice object.

From a more detailed perspective, the string “DataRate”
corresponds to what we call an Attribute of the PointToPointNetDevice.

If you look at the Doxygen for class ns3::PointToPointNetDevice and find the documentation for the GetTypeId
method, you will find a list of Attributes defined for the device. Among these is the “DataRate” Attribute.

Most user- visible |ns3| objects have similar lists of Attributes. We use this mechanism to easily configure
simulations without recompiling as you will see in a following section.
Similar to the “DataRate” on the PointToPointNetDevice you will find a “Delay” Attribute associated with the
PointToPointChannel.

The final line,
pointToPoint.SetChannelAttribute (“Delay”, StringValue(“2ms”));
tells the PointToPointHelper to use the value “2ms” (two milliseconds) as the value of the propagation delay of every
point to point channel it subsequently creates.

NetDeviceContainer

At this point in the script, we have a NodeContainer that contains two nodes.

We have a PointToPointHelper that is primed and ready to make PointToPointNetDevices and wire
PointToPointChannel objects between them.

