Xev-GMP: Automatic code generation
for GMP multiple-precision code from C code

Toshiaki Hishinuma *, Takuma Sakakibara®, Akihiro Fujiii, Teruo Tanaka® and Shoichi Hirasawa¥
*University of Tsukuba, Ibaraki, Japan, Email: hishinuma@slis.tsukuba.ac.jp
TKogakuin University, Tokyo, Japan
iKogakuin University, Tokyo, Japan, Email: fujii@kogakuin.ac.jp
§Kogakuin University, Tokyo, Japan, Email: teru@kogakuin.ac.jp
YTohoku University, Miyagi, Japan, Email: hirasawa@sc.cc.tohoku.ac.jp

Abstract—We propose directive-based automatic code gen-
eration for a multiple-precision code from a C code with
double precision. The multiple-precision code uses the GNU
Multiple Precision Arithmetic Library (GMP). Our code gen-
eration functions can be separated into binary operations by
automatically creating temporary variables, transforming C
mathematical functions into corresponding GMP functions,
and managing functions that return a double-precision value.
Our proposed system enables users to check the accuracy
dependency of many algorithms by adding a few directives
to C codes with double precision.

1. Introduction

In many cases, the kernel of a numerical simulation is
the solution of large and sparse systems of linear equations.
Krylov subspace methods are well-known algorithms for this
solution, but these methods diverge, stagnate, and increase
iterations because of rounding errors. High-precision arith-
metic may improve the convergence of these methods[1];
however, it is very costly. Computational costs have been
mitigated by advances in computing hardware; however,
programming costs remain a problem.

The GNU Multiple Precision Arithmetic Library
(GMP)[2] is a popular multiple-precision arithmetic library
in C. GMP does not require any special hardware and
runs on general-purpose processors. However, programming
using GMP presents several serious problems. The functions
in GMP cannot return multiple-precision data types. Op-
erations need to be separated into binary operations using
temporary variables. The programming cost of a C code
using GMP (a GMP code) is more than that of a C code writ-
ten in double precision (a C code). The “multiple-precision
arithmetic” of GMP does not include double-precision arith-
metic. Using GMP, one cannot employ a combination of
double and multiple precisions without rewriting the C code.
Moreover, transposing a C code into a GMP code is an
expensive process.

Bailey compiled a basic multiple-precision operation and
the transcendental library MPFUN([3]. The Omni OpenMP
Fortran 77 Compiler[4] can declare multiple-precision vari-
ables on the basis of GMP. The MPFR Library[5] can use the

operator overloading technique in C++. Programs using the
abovementioned libraries and compiler are not compatible
with all C programs, and it is necessary to rewrite the source
code.

By generating a source code using a directive, multiple
functions can be obtained via the management of a single
source code. This model’s advantage is its interoperability.
Here, we propose directive-based automatic code generation
for a multiple-precision code using GMP that is generated
from a C code written in double precision. These functions
will enable users to maintain a single source code for
double- and multiple-precision arithmetics.

We developed “Xev-GMP” directive-based code genera-
tion functions that can automatically create temporary vari-
ables, transform C mathematical functions into correspond-
ing GMP functions, and manage functions that generate the
call-by-pointer method returning a double-precision value.

2. Design concept of Xev-GMP

2.1. GNU Multiple Precision Arithmetic Library

The differences between the GMP code and the C code
are as follows.

e All operations in GMP are implemented by a func-
tion call.

e A function cannot return a multiple-precision value
in GMP. It must declare a “void” type.

GMP programming requires dividing an expression com-
posed of multiple terms into binary operations.

The multiple-precision floating-point GMP data-type is
defined as “mpf_t,” which consists of a 1-bit sign part,
an 11-bit exponent part, and an arbitrary bit signification
part. On a 64-bit system, the significand part of “mpf_t” is
implemented using a 64-bit integer array. The significand
part of GMP is at least 64-bit.

2.2. Xevolver: an XML-based code translation

framework

Recently, Takizawa et al. developed the Xevolver, which
is an XML-based code translation framework. Figure 1

Translation routine
(XsLT)

TABLE 1. LIST OF THE GENERATION FUNCTIONS IN XEV-GMP.

| Generation functions | Remarks

#pragma ---
double a = 1; double a = 1;
double b = 2; double b = 2;
double ¢ = 0; Syntaxtree Syntaxtree double ¢ = 0;
c=a+b; (XmL) (xmL) function(c,a,b);
Xevolver Framework
Csource file Csource file

Figure 1. Overview of the code translation using Xevolver.

shows an overview of the code translation using Xevolver.
This framework can make user-defined compiler directives
using XSL transformations (XSLT)[7]. Using Xevolver, the
user can easily create code generation functions. Code gen-
eration with Xevolver is performed with the following three
steps.

(1) A source code is parsed, and a parse tree is output
as an XML document[8] using the ROSE compiler
infrastructure (ROSE)[9].

(2) Code is generated using the code generation func-
tions of the directives in XSLT from an XML doc-
ument, and the generated parse tree is output as an
XML document.

(3) The Xevolver unparses the parse tree to generate a
modified version of the C code using ROSE.

“Xev-GMP” is a directive-based automatic code gener-
ation method for the GMP code that is generated from the
C code. A user can generate a GMP code from a C code by
writing “Xev-GMP” directives. To set the accuracy of each
value, we prepared two directives:

(A) #pragma xev gmp default(prec)
The user writes this directive in the header part of a
C source file. This specifies the default precision of
each value. When the user writes this directive, all
processes related to “mpf_t” are generated.

(B) #pragma xev gmp set(prec)
The user writes this directive around the declaration
part of the variable. This specifies the arbitrary preci-
sion of the variables. In the present implementation,
this is written in only one place in a C source file.

“Prec” is an integer variable.

3. Implementation of Xev-GMP

Table 1 shows a list of generation functions in “Xev-
GMP.” We developed translation functions including the
basic functions in C. In the next section, we explain the
typical code generation functions.

3.1. Variable declaration

Programming wusing GMP requires
functions for initialization, declaration,

calling the
and releasing

#

1 Including “gmp.h”

2 Specified precision

3 Mixed precision

4 Variable declaration
5 Variable initialization
6

7

8

9

Only at one place in a file.

Array
Comparison operator A ternary operator is impossible.
Arithmetics 4 and 7
Standard 1/0
10 | File I/O
11 | Record A nested record is impossible.

12 | Mathematical functions

13 | User defined functions

14 | Other functions

15 | Arithmetic in function operand

e.g., log(), sqrt()

e.g., atof(), omp_get_wtime()
e.g., log(a+b)

of the data type of “mpf_t” Four functions,

“mpf_set_default_prec(precision),” “mpf_init(dest),”

“mpf_set_d(dest, value),” and “mpf_clear(dest),” are used.

“Dest” is the “mpf_t” type destination value of a function,

“precision” is the integer value of the bit size of a

significand part, and “value” is the double-precision value.
We show these details as follows.

o “mpf_set_default_prec(dest)” sets the default preci-
sion. All subsequent calls to “mpf_init” use this
precision.

o “mpf_init(dest)” initializes the value to zero in the
default precision.

o« “mpf_set_d(dest, value)” assigns a new value to the
already initialized double-precision “value.”

o “mpf_clear (dest)” releases the space occupied by
the value.

We developed these generation functions for variable
declarations with the following five steps.

(1) Change the declaration of variables in double preci-
sion to a data type of “mpf_t.”

(2) Insert the initialization function “mpf_init” after the
declaration part of the variables.

(3) If “#pragma xev gmp set” has been used, insert the
initialization function “mpf_init2” after the declara-
tion part of the variable instead of “mpf_init.”

(4) If the initialization has been performed at the time
of the declaration of the double-precision value,
insert the assignment function “mpf_set_d” after the
initialization.

(5) Insert the releasing memory function “mpf_clear”
before “return.”

3.2. Arithmetic operations

A function in GMP is “mpf_add(dest, srcl, src2),” and
that of multiplication is mpf_mul(dest, srcl, src2). This
means that dest = srcl + / * src2. “Dest,” “srcl,” and “src2”
are “mpf_t” type variables.

The left part of Figure 2 shows a syntax tree of the
expression “a =b + ¢ * d” and that the expression contains

a=b+c*d

tmp3=c*d

tmpl=tmp3+b a=tmpl

Figure 2. Syntax tree of “a =Db + ¢ * d” (left: C code, right: GMP code).

o @
@ &

Figure 3. Numbering rules for temporary variables.

three operators, “+,” “*” and “=” In the GMP code, the
process must be divided into two binary arithmetic op-
erations: “mpf_mul” and “mpf_add” for a = b + ¢ * d.
Our code generation function assigns each operation to a
corresponding function, as in the right side of Figure 2.
Therefore, the following GMP code is generated.

mpf_mul(tmp3, c, d);
mpf_add(tmpl, b, tmp3);
mpf_set(a, tmpl);

“Mpf_set(dest, srcl)” assigns a new value to the already
initialized “mpf_t” type variable.

There are two problems for a translation generating
GMP arithmetic operations from a C code. The first is the
numbering of the temporary variables, and the second is the
declaration and releasing of the variables.

To solve these problems, we perform the conversion
in two steps. In the first step, we recursively search a
syntax tree and assign temporary variables according to
certain rules. In the second step, we search the C code
for temporary variables. Then, we add the declaration and
releasing operations of these variables.

We use the position number of the depth and width in
the arithmetic tree to count the temporary variables. We use
the number corresponding to the position in the complete
binary tree so that we can reuse the temporary variables in
different arithmetic trees.

First, we number all the nodes of the arithmetic tree and
then assign a number to the operators. This approach can
reuse temporary variables in different lines and reduce the
number of necessary temporary variables. However, it calls
extra “mpf_set” functions for the “=" operation.

Figure 3 shows the numbering rules of the temporary
variables. The “=" operation is the root node. The left-child
node of the root node is the only destination value. We

define the right-child node of the root node as number 1.
Then, we form a temporary complete binary tree and number
the nodes such that the root node is number 1. Finally, we
delete the unused nodes (the gray nodes in Figure 3).

For example, we create two temporary variables to rep-
resent the operators in the expression “b * ¢ + d.” The
operators “+” and “*” correspond to nodes 1 and 3 in the
syntax tree in Figure 3. Therefore, the temporary variables
“tmp1” and “tmp3” are added.

Next, we apply the second step. We append the decla-
ration and initialization of the temporary variables in the
header part of the function and release the variables before
the “return.”

3.3. Function calls

There are three types of functions:

(a) Functions that have been implemented by GMP,
e.g., “mpf_sqrt()” and “mpf_fabs().”

(b) User-defined functions; and

(©) Other functions,
e.g., atof() and omp_get_wtime().

We made a function list for (a). For example, we gen-
erate “mpf_sqrt(a, b)” from “a = sqrt(b)” using this list.

If (b) returns a double-precision value, it is necessary
to change that value into an argument of the function. We
implement the generation function of (b) with the following
three steps.

step 1 Add the return value in the argument of a user-
defined function.

step 2 Before the “return” sequence of the function,
store the value to the returned argument vari-
able.

step 3 Change the argument of the “return” sequence
to zero.

As a result, “x = function(*x, a)” can be generated from
“function(a).”

(c) returns a double-precision value, and it cannot be
applied in GMP. For example, GMP does not have a
time-measuring function. One time-measuring function is
OpenMP’s “omp_get_wtime()”, which returns a double-
precision value. In this case, we directly use these functions

with “mpf_set_d.” “Mpf_set_d(time, omp_get_wtime())” is
generated from “time = omp_get_wtime().”

Using these generation functions, the following code
generation is performed.

(1) Perform the “mpf_sqrt” function using (a).

(2) Create the declarations and release the temporary
variables.

(3) Change the format for calling the functions, which
is generated by (b).

(4) Set the return value to the argument of the user-
defined function that was generated by (b).

(5) Perform the “mpf_set_d” function for
“omp_get_wtime” using (c).

3.4. Evaluation of Xev-GMP using the SOR solver

We evaluated the implementation cost and the result
of the GMP code generated using “Xev-GMP.” The Xe-
volver framework was XevXML commit ID: [6354fb6]
(20150618). “Xev-GMP” ver. 0.9-beta, ROSE ver. 3-0.95a-
20584, and gcc-4.4.7 were used. The compiler options -O3
and -lgmp were used to link the gmp-6.0.0 library on the
CentOS 6.2.

We used the SOR solver program included in the ANSI
C version of SciMark 2.0[10].

We made two changes in the C code. First, we added the
“#pragma xev gmp default(128)” in the header part of the C
code. Second, we changed the type of the function to double
precision from “void,” which returned “omega_over_four.”

As a result, “Xev-GMP” generated 65 lines of GMP code
from 32 lines of C code by inserting only a single directive
line.

We examined the execution result of the GMP code by
comparing the results of the C code and the 128-bit GMP
code. The differences in the corresponding values in the
GMP and C codes were less than 1.0E-8. Therefore, we
concluded that the generated GMP code ran correctly.

The code generated with “Xev-GMP” used six tempo-
rary variables and four “mpf_set.” If the code were optimal,
it would require two temporary variables and would not need
“mpf_set.”

3.5. Discussion

Xev-GMP requires only the information of the precision
in a single directive line. The programming cost of using
Xev-GMP is small. It does not require knowledge of GMP.
A user can use high-precision arithmetic without being
conscious of GMP programming and does not need to have
knowledge of GMP programming.

Our functions can reuse temporary variables in different
lines and reduce the number of necessary temporary vari-
ables. However, it calls extra “mpf_set” functions for the
“=" operation. Therefore, it is not an optimal code. The
elapsed time of the code generated by Xev-GMP is 2%
slower than the optimal code, and it requires four extra GMP
variables. We believe that the influence of this problem on

the performance and extra memory data space required is
small.

Xev-GMP enables users to check the accuracy depen-
dency of many algorithms by adding a few directives to C
codes with double precision.

4. Conclusions

We proposed directive-based automatic code generation
for a GMP multiple-precision code from a C code with
double precision.

Our code generation functions recursively search a parse
tree and divide the process into two steps. They automati-
cally create temporary variables, transform C mathematical
functions into corresponding GMP functions, and manage
functions that return a double-precision value.

With our proposed system, it is possible to generate a
GMP code from an ordinary C code by adding only a single
directive line. This directive can reduce the programming
cost. This code generation enables users to evaluate the
accuracy-dependent behavior of their codes without rewrit-
ing them. It is also possible to generate a GMP code from
a C code by specifying only the required precision as the
directive.

In the future, we will implement “Xev-GMP” searching
functions to search across multiple C source files with a
more flexible precision input user interface.

Acknowledgments

This work was partially supported by JST CREST “An
Evolutionary Approach to Construction of a Software Devel-
opment Environment for Massively-Parallel Heterogeneous
Systems,” JSPS KAKENHI Grant Number 25280041, and
JSPS KAKENHI Grant Number 25330144.

References

[1] Tomonori Kouya, A Highly Efficient Implementation of Multiple
Precision Sparse Matrix-Vector Multiplication and Its Application to
Product-type Krylov Subspace Methods, International Journal of Nu-
merical Methods and Applications, Vol. 7, Issue 2, pp. 107-119, 2012.

[2] The GNU Multiple Precision Arithmetic Library, https://gmplib.org/.
[3] MPFUN, http://www.davidhbailey.com/dhbsoftware/.

[4] Omni OpenMP Fortran 77 Compiler, http://www.hpcs.cs.tsukuba.ac.jp/
omni-compiler/old-doc/omf77.html/.

[5] Fousse Laurent et al., MPFR: A Multiple-precision Binary Floating-
point Library with Correct Rounding, ACM Trans. Math. Softw.,
Volume 33, Issue 2, Article No. 13, pp. 1-14, 2007.

[6] Hiroyuki Takizawa, Shoichi Hirasawa, et al., Xevolver: An XML-based
Code Translation Framework for Supporting HPC Application Migra-
tion, IEEE International Conference on High Performance Computing,
pp. 1-11, 2014.

[71 XSL Transformations, http://www.w3.org/TR/xslt/.

[8] Extensible Markup Language, http://www.w3.org/XML/.
[91 ROSE compiler infrastructure, http://rosecompiler.org/.
[10] SciMark 2.0, http://math.nist.gov/scimark2/.

