
The 11th International Symposium on Advanced Technology

An Evaluation of Double-Double Precision Operation

for Iterative Solver Library using AVX
Toshiaki Hishinuma

†
, Akihiro Fujii

†
, Teruo Tanaka

†
 and Hidehiko Hasegawa

††

†
Department of Computer Science, Faculty of Informatics, Kogakuin University, Tokyo, Japan

††
Faculty of Library, Information and Media Science, University of Tsukuba

E-mail: j209098@ns.kogakuin.ac.jp

Abstract
As computing performance improves generation after generation, high precision calculation is required in many

situations. One of the efficient methods to perform quadruple precision is to use Double-Double precision

routines which use two double precision variables for one quadruple precision variable. The iterative solver

library “Lis” has vectorized Double-Double precision routines with SSE2. To accelerate these routines, we

implemented Double-Double precision routines of Lis by using AVX instructions instead of SSE2. Although

AVX has theoretically twice the performance of SSE2 routines, the speedup ratio of our routines varied from 1.0

to 2.5.

The high precision operation sometimes requires

large and complex programs because of the rounding

error.

One of high precision operation routines is

Double-Double precision operation which uses two

double precision variables for one quadruple

precision variable
 [1]

.

A Library of Iterative Solvers for Liner Systems

(Lis)
 [2]

 has vectorized Double-Double precision

routines with Streaming SIMD Extensions (SSE2). In

order to accelerate these routines, we implemented

Double-Double precision operation of Lis by using

Intel Advanced Vector Extensions (AVX)

instructions instead of SSE2. We behavior to analyze

AVX
 [3]

First we give summary of Double-Double

precision operation and AVX, second we give

summary of performance of Double-Double precision

vector operations from numerical tests, and finally we

analyze performance of Double-Double precision

vector operations.

IEEE754 quadruple precision variable consists of

one bit sign part, 15 bit exponent part and 112 bit

significant part. But Double-Double precision

variables consist of 1 bit sign part and 11 bit

exponent and 104(=) bit significant part.

Double-Double precision variable's exponent and

significant part is shorter than IEEE754 quadruple

variable. In many cases Double-Double precision

routines are faster than IEEE754 quadruple routines

because there is no special quadruple hardware

instruction. Fig.1 shows number of bit for Double-

Double precision variable and IEEE754 quadruple

precision variable.

Fig.1 Number of bit for Double-Double precision

Now, Lis uses SSE2 for Double-Double precision

routines. SSE2 is single instruction multiple data

(SIMD) instructions and made by Intel in 2000. SSE2

has 16 128 bit SIMD registers. Therefore SSE2 can

calculate two double precision’s variables at once.

In 2011, Intel released AVX instructions on Sandy

Bridge Microarchitecture. AVX has 16 256 bit SIMD

registers and can calculate three operand instructions.

Therefore AVX can calculate four double precision

variables at once. AVX has twice the performance of

SSE2 routines theoretically. As sandy Bridge has

floating point adder and multiplier, it can multiply

and add can be processed at once.

Table 1 shows the execution environment. For

SSE2 execution and AVX execution, we use same

CPU and change compile-option.

Table 2 shows experimental items of Double-

Double precision vector operations. “ ” and “val” are

Double-Double precision values. and are

Double-Double precision vectors.

Table 1 Execution environment
CPU Intel Core i7 2600K 3.4GHz (16GB)

Intel Sandy Bridge Microarchitecture

Compiler Intel C/C++ Compiler 12.0.3

Compile-options(AVX) –O3–xAVX–openmp–fp-model precise

Compile-options(SSE2) –O3–xSSE2–openmp–fp-model precise

OS Fedora 16

Table 2 list of operations
Name of operations operation Load, store

axpy 2, 1

axpyz 2, 1

xpay 2, 1

scale 1, 1

dot 2, 0

nrm2 ‖ ‖ 1, 0

Fig.3 Performance of vector operations (4 threads)

 Fig.3 shows the performances when vector size is

 on four threads. Figure shows vector

operation performances named as GFLOPS. It is

Double-Double precision FLOPS.
From these results, the speedup ratio varied from

around 1.7 to 2.4 according to the routines of

arithmetic operations.

GFLOPS performance of “axpy” is higher than

those of “axpyz” and “xpay”. Because input and

output of “axpy” is smaller than “axpyz” and “xpay”

needs temporally variable to store . “scale” is the

worst performance, because “scale” only calculates

Double-Double precision additional operation.

AVX has twice the performance of SSE2 routines

theoretically. Some experimental results are faster

than theoretical value, because AVX can calculate

three operand instructions. AVX does not need move

instruction.

Fig.4 shows “axpy” performance when vector size

is - on one thread. From these

results, the speedup ratio varied from around 1.8 to

2.4. When vector size is around -
 , the speedup ratio varied widely from around 2.4.

But, when vector size is large, speedup ratio varied

widely from around 1.7, because cache stall comes

about when vector size is large.

Fig.5 shows "axpy without calculation" which
has six load instructions and two store instructions. In

this result, performance of memory follows a similar

pattern in “axpy”.

Fig.4. Performance of “axpy” operation (1 thread)

Fig.5 Performance of memory test (1 thread)

Fig.6 Performance of “axpy” operation (4 threads)

Fig.6 shows “axpy” performance when vector size

is - on four threads. The speedup

ratio varied from around 1.0 to 2.3. On four threads,

when vector size is large, AVX Double-Double

precision vector operation's performance becomes

same as SSE2, because only has memory access

increased by many threads and AVX is the same

memory access as SSE2.

We implemented Double-Double precision

operation of Lis by using AVX instructions instead of

SSE2. From numeral tests, the speedup ratio varied

from around 1.7 to 2.4 when vector can be stored in

cache.

AVX has theoretically twice the performance of

SSE2. However, in our results, AVX has more than

twice performance of SSE2. This result is achieved

by the reduction of move instruction because AVX

uses three operand instructions.

References:
[1] Bailey, D, H.: High-Precision Floating-Point

Arithmetic in Scientific Computation, Computing

in Science and Engineering, pp.54–61 (2005).

[2] A Library of Iterative Solver for Liner Systems

http://www.ssisc.org/lis/

[3] T. Hishinuma, A. Fujii, T. Tanaka, K. Asakawa,

H. Hasegawa, Acceleration of Double-Double

Precision Operation for Iterative Solver Library

using AVX (in Japanese), IPSJ-HPC12135016,

pp.1-6 (2012)
(x)

(x)

http://www.ssisc.org/lis/

