AVXを用いた 倍々精度疎行列ベクトル積の高速化

菱沼利彰^{†1} 藤井昭宏^{†1} 田中輝雄^{†1} 長谷川秀彦^{†2} ^{†1} 工学院大学

†2 筑波大学

- 1. 研究背景•目的
- 2. 実装, 実験環境
- 3. 実験 倍々精度ベクトル演算-
- 4. 実験 倍々精度疎行列ベクトル積-
- 5. まとめ

- 1. 研究背景•目的
- 2. 実装, 実験環境
- 3. 実験 倍々精度ベクトル演算-
- 4. 実験-倍々精度疎行列ベクトル積-
- 5. まとめ

- 科学技術計算における高精度演算の重要性
 - □ Krylov部分空間法は丸め誤差が収束に影響
 - □ 倍々精度演算(=4倍精度演算)による収束の改善
 - 倍々精度演算には時間がかかる
- CPUの高速化技術:SIMD拡張命令
 - □ 既存: SSE2 (Pentium4~)(2000年)
 - <u>New</u>: intel AVX (Sandy Bridge~)(2011年)
 - AVXの性能は理論上SSE2の2倍

- AVXを用いて行列計算ライブラリを高速化する
- AVXを用いて倍々精度演算を高速化する
 - □ ベクトル演算 (SWoPP2012)
 - AVX化が性能に与える効果を分析
 - □ 疎行列ベクトル積(HPCS2013)
 - 疎行列の構造が性能に及ぼす影響を分析
- ・ 倍々精度演算でAVX化の効果を検証する
 - Xeon PhiやHaswellアーキテクチャ

→SIMD演算の必要性大

- 1. 研究背景•目的
- 2. 実装, 実験環境
- 3. 実験 倍々精度ベクトル演算-
- 4. 実験-倍々精度疎行列ベクトル積-

5. まとめ

AVXを用いた実装

- ・ 既存のSSE2コード(Lis)からAVXコードを作成
 - □ 同時演算数の増加(倍精度2つ→倍精度4つ)
 - □ 分岐命令の削減
 - □ 端数処理の増加(1,2,3)

y=ax+y (SSE2 C
$$\neg$$
- \checkmark)
for(i=0; i
x = load128(vx[i])
y = load128(vy[i])
x = mult128(x,a)
x = add128(x,y)
vy[i] = store128(x)
}

$$y=ax+y (AVX C \Box - F)$$
for(i=0; i

反復法ライブラリLis, http://www.ssisc.org/lis/

1 8

y = a * x + yのアセンブリコード

2オペランド命令 (SSE2)

move(x, temp)	//temp ← x
mult(temp, a)	//temp = a * temp
add(y, temp)	//y = y + temp

3オペランド命令 (AVX)

mult(a , x , temp) //temp = a * x add(temp , y , y) //y=temp + y

$y_{DD} =$	$a_{DD}x_{DD}$	+	y _{DD} の命令数の	内訳
100				

	SSE2	AVX	AVX-SSE2	
Load	2	2	0	
Store	1	1	0	
add + sub	26	26	0	
mult	9	9	0	命令数減
move	13	3	-10	
合計	51	41	-10	

- CPU : intel Core i7 2600K 4コア 3.4GHz 16GB
 L3キャッシュ : 8MB
 - □ メモリ帯域 : 21.2GB/s (10.6×2)
- OS : Fedora16
- コンパイラ: intel C/C++ Compiler 12.0.3
 - コンパイルオプション
 - ・ AVXコード : -O3 -xAVX -openmp -fp-model precise
 - ・ SSE2 コード: -O3 -**xSSE2** -openmp -fp-model precise

intel Core i7 2600Kの構成(1コア)

Kogakuin University

- 理論値
 - AVX:

3.4G×4(SIMD)×2(積和同時演算) = 27.2GFLOPS / core

SSE2:

3.4G×2(SIMD)×2(積和同時演算) = 13.6GFLOPS / core

Scalar

3.4G×2(積和同時演算) = <u>6.8GFLOPS / core</u> 多倍長精度計算フォーラム

- 1. 研究背景•目的
- 2. 実装, 実験環境

3. 実験 - 倍々精度ベクトル演算-

- 4. 実験 倍々精度疎行列ベクトル積-
- 5. まとめ

対象とするベクトル演算

Kogakuin University

名称	演算	Load	Store	倍精度の演算量
ахру	$y = \alpha x + y$	2	1	35
axpyz	$\boldsymbol{z} = \alpha \boldsymbol{x} + \boldsymbol{y}$	2	1	35
dot	$val = \mathbf{x} \cdot \mathbf{y}$	2	0	35
nrm2	$val = \ \boldsymbol{x}\ _2$	1	0	31
scale	$x = \alpha x$	1	1	24
храу	$y = x + \alpha y$	2	1	35

x, y, z:倍々精度のベクトル

α, *val* : 倍々精度のスカラー値

- 実験1:ベクトル演算の性能
 ベクトルがキャッシュにおさまる場合(4スレッド)
- 実験2:axpyの分析
 - □ ベクトルサイズNを変化させた性能(N=10³から8.0×10⁵)
 - □ マルチスレッドの性能向上比(1~8)
- OpenMPのスケジューリング方式はstaticを用いた

実験1キャッシュに収まる場合の性能(4スレッド)

Kogakuin University

キャッシュに収まる場合の性能

- SSE2と比べ1.7~2.4倍の向上
 - □ scaleはSSE2の性能が良く向上比が小さい(x1.7)
 - □ AVXはピーク性能の51~60%, SSE2は45~60%
- move命令の削減数が多いものは向上比が高い

演算名(演算量)	move命令削減数	性能:AVX/SSE2
ахру (35)	10	2.3
axpyz (35)	10	2.1
dot (35)	10	2.4
nrm2 (31)	13	2.4
scale (24)	2	1.7
xpay (35)	10	2.1

実験2 メモリアクセスの影響 (axpy,1スレッド)

ピーク性能との比較

Kogakuin University

- AVXはピーク性能の63% (キャッシュ内, N=10⁵)
- SSE2はピーク性能の52%
- axpy演算のカーネル演算の内訳

演算	Load	Store	add+sub	mult
演算回数	6	2	26	9

- □ 加減算命令と乗算命令に偏りがある(26:9)
 - 理論性能が出ることはない
- 加減算と乗算のバランスを考慮した理論値
 - □ AVX : $27.2 \rightarrow \underline{18.3}$ GFLOPS/core (67%)
 - □ SSE2: 13.6 \rightarrow <u>9.2</u>GFLOPS/core (67%)

補正ピーク性能との比較

Kogakuin University

• AVX, 1スレッド, キャッシュに収まる場合

名称	AVXの性能	対ピーク性能比	対補正ピーク性能比	補正ピーク性能
ахру	16.8GFLOPS	62%	92%	18.3GFLOPS
axpyz	16.9GFLOPS	62%	95%	18.3GFLOPS
dot	18.0GFLOPS	66%	98%	18.3GFLOPS
nrm2	17.2GFLOPS	63%	94%	17.6GFLOPS
scale	17.5GFLOPS	64%	96%	21.8GFLOPS
храу	16.5GFLOPS	61%	90%	18.3GFLOPS

- AVXの性能は16.5GFLOPSから18.2GLOPS
- 理論ピーク性能(27.2GFLOPS)の61%から66%
- □ 演算バランスを考慮した補正ピーク性能の90%から98%

実験2 メモリアクセスの影響 (axpy,4スレッド)

AVXの性能 (axpy,1~8スレッド)

• 1スレッドにおいて

()内は対ピーク性能

- AVXは16.8GFLOPS(62%), SSE2は7.4GFLOPS(54%)
 AVXはSSE2の2.3倍の性能
- 4スレッドにおいて
 - AVX1261.2GFLOPS(56%), SSE2127.4GFLOPS(51%)
 - AVXはSSE2の2.3倍の性能
 1スレッドと比較したAVX, SSE2の性能は3.7倍
- 加減算, 乗算のバランスが悪くマシン理論値は出ない
 演算バランスを考慮するとピーク性能は27.2→<u>18.3GFLOPS</u>
 - 加減算, 乗算のバランスを考慮すると90%以上

・ 1スレッドにおいて

()内は対ピーク性能

- AVXは11.8GFLOPS(43%), SSE2は7.4GFLOPS(54%)
 AVXはSSE2の1.7倍の性能
- ・ 4スレッドにおいて
 - □ メモリ性能を上限とした性能に制約される
 - □ AVX, SSE2ともに性能は13GFLOPS(AVXで12%)
 - □ マルチスレッドにおいてAVXとSSE2は同等の性能
- ・メモリ性能の制約を受け性能は約13GFLOPSになる

- 1. 研究背景•目的
- 2. 実装, 実験環境
- 3. 実験 倍々精度ベクトル演算-
- 4. 実験 倍々精度疎行列ベクトル積-

5. まとめ

倍精度疎行列A_Dと倍々精度ベクトルx_{DD}の積:Ax

- ・ 倍精度疎行列A_DはCRS形式で格納
 - □ 実問題では,入力は倍精度
 - □ 倍々精度演算はメモリネックとなる
- 演算の内訳
 - □ 加減算25回, 乗算8回から成る(演算量33)
- 加減算と乗算のバランスを考慮した理論値
 - □ AVX : $27.2 \rightarrow \underline{18}$ GFLOPS/core (66%)
 - □ SSE2 : $13.6 \rightarrow \underline{9}$ GFLOPS/core (66%)

y_{nn}=A_n

- AVXではjのループを4つずつ同時演算
- ・端数(1,2,3)の処理が必要
 □ パディング
 - 生成時
 - 実行時
 - SSE2+Scalar
 - Scalar

- 生成時パディング
- 実行時パディング
- SSE2+Scalar
 - □ AVXとSSE2のレジスタは論理的には別
 - □ AVXとSSE2のレジスタは物理的には共通
 - □ 命令の切替時, レジスタ内容がメモリに退避される
 - <u>AVX, SSE2命令を同一コードで使うと性能が低下</u>
- Scalar

端数処理の比較(CRS形式,N=10⁵)

	帯幅63の性能(実行時間)	帯幅1023の性能(実行時間)
生成時パディング	44.3GFLOPS (47ミリ秒)	47.4GFLOPS (71ミリ秒)
実行時パディング	42.2GFLOPS (49ミリ秒)	47.4GFLOPS (71ミリ秒)
SSE2+Scalar	39.0GFLOPS (53ミリ秒)	41.1GFLOPS (81ミリ秒)
Scalar	41.1GFLOPS (48ミリ秒)	47.1GFLOPS (71ミリ秒)

- CRS生成時パディングの性能が最も高い
- SSE2+Scalarは性能が低い
 AVXとSSE2の切り替えコストが大きい
- 実行時パディングとScalarの性能差は小さい

実験1:メモリアクセスの影響

実験2:AVX化の効果

実験3:非零要素の数による性能の影響

- □ 端数の数による影響
- OpenMPのスケジューリング方式はguidedを用いた

実験に用いる疎行列

Kogakuin University

B. テスト用帯行列

- □ if($0 \le j i \le m$) ai j=value
- else ai j = 0
- を満たす疎行列
- F. The Univ of Florida Matrix Collection (フロリダコレクション)の疎行列15種

メモリアクセスの影響(テスト用帯行列,帯幅32,)

不規則な構造を持つ疎行列の性能(1スレッド)

不規則な構造を持つ疎行列の性能(4スレッド)

不規則な構造を持つ疎行列の性能

	実行時パディングの性能 (対ピーク)	Scalarの性能(対ピーク)
F, 1スレッド	5.1 ~ 12.4GFLOPS (19% ~ 46%)	3.4 ~ 12.2GFLOPS(12% ~ 45%)
F, 4スレッド	18.4 ~ 45.0GFLOPS (17% ~ 41%)	13.3 ~ 43.7GFLOPS(12% ~ 40%)

- 端数処理は実行時パディングが有効
 Scalarとの比は4スレッドで1.03倍から1.37倍
- 1スレッドと4スレッドの性能比はAVXで3.3倍から3.7倍
- 平均非零要素数が多いものは性能が高い

端数の影響(テスト用帯行列, サイズ105)

Kogakuin University

34

帯幅と平均非零要素数の関係(実行時パディング)

35

非零要素数による影響

- Scalarは端数の数による影響が大きい
 - 実行時パディングは11.4GFLOPS(帯幅63)から 12.1GFLOPS(帯幅64)
 - □ Scalarは10.3GFLOPS(帯幅63)から12.3GFLOPS(帯幅64)
- 帯幅が広いほど性能が高い
 - □ 帯幅64のとき
 - AVXI12.1GFLOPS(44%), SSE2116.8GFLOPS(50%)
- フロリダコレクションの性能は平均非零要素数に関係
 対応する帯行列の1.07倍から0.97倍

()内は対ピーク性能

36

AxとA^Txの比較

•
$$y_{DD} = A^{T}_{D} * x_{DD} \mathcal{O} \square \longrightarrow \mathcal{K}$$

Ax
for(i=0; i
for(j=A_{D_row_ptr}[i]; j < A_{D_row_ptr}[i+1]; j++)
y_{DD}[i] = y_{DD}[i] + A_{D_value}[j] * x_{DD}[A_{D_index}[j]]
A^Tx
for(i=0; i
for(j=A_{D_row_ptr}[i]; j
y_{DD}[A_{D_index}[j]] = y_{DD}[A_{D_index}[j]] + A_{D_value}[j] * x_{DD}[i]

- AxとA^Txの違いはx_{DD}とy_{DD}へのアクセス
 - Axはx_{DD}へのアクセスがA_{index}に従う
 - A^Txはy_{DD}へのアクセスがA_{index}に従う

A^TxとAxの性能(実行時パディング,1スレッド,N=10⁵)

多倍長精度計算フォーラム

- 1. 研究背景•目的
- 2. 実装, 実験環境
- 3. 実験 倍々精度ベクトル演算-
- 4. 実験 倍々精度疎行列ベクトル積-
- 5. まとめ

まとめ (ベクトル演算)

- 4スレッドにおいて
 - □ キャッシュに収まるとき
 - AVXは61.2GFLOPS(ピーク性能の56%), SSE2は27.4GFLOPS(ピーク性能の51%)
 - AVXとSSE2の性能比は2.3倍
 □ move命令の削減効果
 - □ キャッシュに収まらないとき
 - ・メモリ性能の制約を受け性能は約13GFLOPSに低下

- Scalar
 - □ 10.3GFLOPSから12.3GFLOPS(帯幅61~64, 1スレッド)
- 実行時パディング
 - 11.4GFLOPSから12.1GFLOPS(帯幅61~64, 1スレッド)
 実行時パディングは端数の数による影響を受けにくい
- 実行時パディングは端数計算が多い問題では有効
 フロリダコレクション(4スレッド)において
 - Scalarの1.03倍から1.37倍(5.1GFLOPS~12.4GFLOPS)

まとめ (倍精度疎行列と倍々精度ベクトルの積)

- A_Dを倍精度化:性能はメモリネックになりにくい
 キャッシュに収まる場合と収まらない場合の性能比は0.9倍
- ・性能は平均非零要素数に関係する
 ・対応する帯幅の帯行列と比べ1.07倍から0.97倍
- A^TxとAxの性能差は小さい
 - □ 平均非零要素数が少ないとき、AxはA^Txの性能の0.7倍
 - □ 平均非零要素数が多いとき, AxはA^Txの性能の1.2倍

今後の課題

- 倍々精度演算の演算バランスの改善
 - 乗算と比べ加減算が多く、演算器が並列に動かない
 加減算を他の演算で置き換える
- ・ 端数処理手法の切り替え
 - □ サイズ,繰り返し回数から最適な端数処理手法を切り替え

- Bailey, D ,H.: High-Precision Floating-Point Arithmetic in Scientific Computation, Computing in Science and Engineering, pp. 54–61 (2005).
- 2. 反復解法ライブラリLis, <u>http://www.ssisc.org/lis/</u>
- 3. The University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/matrices/
- Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM pp. 57–65 (1994)