
・ DD arithmetic[1] uses two double precision variables to implement one quadruple‐precision variable. A DD addition consists of
11 double‐precision additions, and a DD multiplication consists of 15 double‐precision additions and 9 double‐precision multiplications.
・Intel AVX2 is SIMD function, and can process 4 double‐precision operations simultaneously.
・We add dummy operations to a sparse matrix in Compressed Row Storage format and extra data to a sparse matrix in Blocked Compressed Row
Storage format[2] to perform 4 double‐precision operations simultaneously. Each block consists of 4 rows and 1 column.
・We use double‐precision for Matrices to reduce memory space and the bytes/flops of SpMV. The bytes/flops are 1.33(28/21) for this, 10(20/2) for
the ordinary double‐precision operations, and 1.56(28/21) for full DD‐precision[3].
・BCRS(4,1) needs to store extra zero elements for the matrix, however it has good performance improvement on AVX2.
(Data ratio means (# of Data in BCRS(4,1)) / (# of Data in CRS); Improvement means (Time of CRS without AVX2)/(Time of BCRS(4,1) with AVX2))

・ DD arithmetic[1] uses two double precision variables to implement one quadruple‐precision variable. A DD addition consists of
11 double‐precision additions, and a DD multiplication consists of 15 double‐precision additions and 9 double‐precision multiplications.
・Intel AVX2 is SIMD function, and can process 4 double‐precision operations simultaneously.
・We add dummy operations to a sparse matrix in Compressed Row Storage format and extra data to a sparse matrix in Blocked Compressed Row
Storage format[2] to perform 4 double‐precision operations simultaneously. Each block consists of 4 rows and 1 column.
・We use double‐precision for Matrices to reduce memory space and the bytes/flops of SpMV. The bytes/flops are 1.33(28/21) for this, 10(20/2) for
the ordinary double‐precision operations, and 1.56(28/21) for full DD‐precision[3].
・BCRS(4,1) needs to store extra zero elements for the matrix, however it has good performance improvement on AVX2.
(Data ratio means (# of Data in BCRS(4,1)) / (# of Data in CRS); Improvement means (Time of CRS without AVX2)/(Time of BCRS(4,1) with AVX2))

[1] Bailey, D, H.: High‐Precision Floating‐Point Arithmetic in Scientific Computation, computing in Science and Engineering, pp. 54‐61 (2005); [2]
Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, pp. 57‐65 (1994); [3] Hishinuma, T., et
al. : SIMD Parallel Sparse Matrix‐Vector and Transposed‐Matrix‐Vector Multiplication in DD Precision, VECPAR2016, LNCS 10150, pp.1‐14 (2017).;
[4] Kotakemori, H., et al.: Implementation of Fast Quad Precision Operation and Acceleration with SSE2 for Iterative Solver Library, IPSJ Transactions
on Advanced Computing Systems, 1(1), pp. 73‐84 (2008). (in Japanese); [5] The University of Florida Matrix Collection;

[1] Bailey, D, H.: High‐Precision Floating‐Point Arithmetic in Scientific Computation, computing in Science and Engineering, pp. 54‐61 (2005); [2]
Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, pp. 57‐65 (1994); [3] Hishinuma, T., et
al. : SIMD Parallel Sparse Matrix‐Vector and Transposed‐Matrix‐Vector Multiplication in DD Precision, VECPAR2016, LNCS 10150, pp.1‐14 (2017).;
[4] Kotakemori, H., et al.: Implementation of Fast Quad Precision Operation and Acceleration with SSE2 for Iterative Solver Library, IPSJ Transactions
on Advanced Computing Systems, 1(1), pp. 73‐84 (2008). (in Japanese); [5] The University of Florida Matrix Collection;

Robust and Fast BiCG using SIMD accelerated DD arithmetic

Mixed precision arithmetic Double‐precision and DD‐precisionMixed precision arithmetic Double‐precision and DD‐precision

・ Partial use of DD‐precision in each iteration has small improvement, however sometimes does not converge.
・ DD‐precision except matrices is robust same as to Full DD‐precision and reasonable computation time.
・ DQ‐SWITCH may have small improvement in keeping robustness.
・ Automatic restart is not easy. Especially, BiCG has no special property to detect its restart.
・ Mixed precision iterative methods are practically useful, because they are robust and fast. They also have parallelism in original algorithms.
・ Incorporating preconditioning is one of our future works. For introducing preconditioning, there are some choices such as which part, precisions,
and kind of preconditioning.

・ Partial use of DD‐precision in each iteration has small improvement, however sometimes does not converge.
・ DD‐precision except matrices is robust same as to Full DD‐precision and reasonable computation time.
・ DQ‐SWITCH may have small improvement in keeping robustness.
・ Automatic restart is not easy. Especially, BiCG has no special property to detect its restart.
・ Mixed precision iterative methods are practically useful, because they are robust and fast. They also have parallelism in original algorithms.
・ Incorporating preconditioning is one of our future works. For introducing preconditioning, there are some choices such as which part, precisions,
and kind of preconditioning.

Hidehiko Hasegawa, Toshiaki Hishinuma
University of Tsukuba, Japan

The computation cost of DD‐precision SpMV and transposed SpMV on AVX2 is approximately 3 times of that of ordinary double‐precision
computation. This means “good accuracy” but “costly”. We should try to reduce total computation cost of iterative solvers as a “Hybrid”.
(1) Combination of Double and DD precisions in each iteration step
(2) DQ‐SWITCH [4]

✓Current solution xk is passed at the restart
✓Upper and Lower part of DD‐precision variables are stored in different arrays
✓Only Upper part is used for Double Precision
✓Two Steps are performed by Different Precision

(3) Automatic restart for DQ‐SWITCH
✓Compute deviation of residual norm and restart at

(4) Full DD‐precision
(Testing bed: 4 nodes, intel Core i7 4770 4core 3.4GHz (8MB, 16GB),

Fedora21, intel C/C++ Compiler 13.0.1)

The computation cost of DD‐precision SpMV and transposed SpMV on AVX2 is approximately 3 times of that of ordinary double‐precision
computation. This means “good accuracy” but “costly”. We should try to reduce total computation cost of iterative solvers as a “Hybrid”.
(1) Combination of Double and DD precisions in each iteration step
(2) DQ‐SWITCH [4]

✓Current solution xk is passed at the restart
✓Upper and Lower part of DD‐precision variables are stored in different arrays
✓Only Upper part is used for Double Precision
✓Two Steps are performed by Different Precision

(3) Automatic restart for DQ‐SWITCH
✓Compute deviation of residual norm and restart at

(4) Full DD‐precision
(Testing bed: 4 nodes, intel Core i7 4770 4core 3.4GHz (8MB, 16GB),

Fedora21, intel C/C++ Compiler 13.0.1)

Fast DD‐precision SpMV and transposed SpMV on AVX2Fast DD‐precision SpMV and transposed SpMV on AVX2

ReferencesReferences

Computation ResultComputation Result

ASIC_100ks
(N = 99,190)

TSOPF_RS_b39_c7
(N = 141,098)

memplus
(N = 17,758)

epb3
(N = 84,617)

All Double 3371(3.2s) 6204(2.5s) ∞ ∞

p : DD 3156(3.8s) 4043(1.7s) ∞ ∞

p*: DD 3693(4.5s) 5789(2.4s) 12129(5.0s) ∞

p and p*: DD 3240(4.2s) 3871(1.9s) 11613(5.7s) 13528(50.8s)

Vectors : DD 3011(2.7s) 3646(1.8s) 10938(5.4s) 10432(35.9s)

Full DD 3011(5.8s) 3646(4.1s) 10938(12.3s) 10434(78.8s)

DQ‐SWITCH 3036(2.8s) 3863(2.0s) 11589(6.1s) 11756(33.2s)











 


p

i nrm

nrminrm

p
v

1

2

)1(

)1()(1 Diverge :

Stagnate :
210v
110v

for(k=0;k<matitr;k++){
The first step
if(nrm2<restart_tol) break;

}
Clear all values except x
for(k=k+1;k<maxtr;k++) {
The second step
if(nrm2<tol) break;

}

ConclusionsConclusions

Contact : hasegawa@slis.tsukuba.ac.jp

