Robust and Fast BiCG using SIMD accelerated DD arithmetic

Hidehiko Hasegawa, Toshiaki Hishinuma
University of Tsukuba, Japan

Fast DD-precision SpMV and transposed SpMV on AVX2

* DD arithmetic[1] uses two double precision variables to implement one quadruple-precision variable. A DD addition consists of
11 double-precision additions, and a DD multiplication consists of 15 double-precision additions and 9 double-precision multiplications.

*Intel AVX2 is SIMD function, and can process 4 double-precision operations simultaneously.

*We add dummy operations to a sparse matrix in Compressed Row Storage format and extra data to a sparse matrix in Blocked Compressed Row
Storage format[2] to perform 4 double-precision operations simultaneously. Each block consists of 4 rows and 1 column.

*We use double-precision for Matrices to reduce memory space and the bytes/flops of SpMV. The bytes/flops are 1.33(28/21) for this, 10(20/2) for
the ordinary double-precision operations, and 1.56(28/21) for full DD-precision[3].

*BCRS(4,1) needs to store extra zero elements for the matrix, however it has good performance improvement on AVX2.

(Data ratio means (# of Data in BCRS(4,1)) / (# of Data in CRS); Improvement means (Time of CRS without AVX2)/(Time of BCRS(4,1) with AVX2))

soMv ) ) - i . “_-_'a'\:otc_co'sa‘r;J N i , . s s L -
.
*s . . S, . .
NN et ‘
““' & . ..o::' ", 4 P . ‘.
o :'. . s . . L * e &G .
E L] = - @ ". . -
- ...." o I . =z {:. . . - 5 . * e .
@8 . .o’y 4o . .0, . . *
- 2
g Pk A . : T s v, ] % s L
T & . B -
g :‘n . -_ vs * = L . * p { ‘d .
H - - : 's-‘.’ 4 e, t ot
g4 o * . ‘ . . E] "o te L]
g . . § . i Iee Wt
B . . 4 1 4 . - *
. s . - .
- 5 T e
- = .
. s -
. Wt

[ as 1 18 2 28 a a8 4 I
Data ratis

Mixed precision arithmetic Double-precision and DD-precision

The computation cost of DD-precision SpMV and transposed SpMV on AVX2 is approximately 3 times of that of ordinary double-precision
computation. This means “good accuracy” but “costly”. We should try to reduce total computation cost of iterative solvers as a “Hybrid”.
(1) Combination of Double and DD precisions in each iteration step
(2) DQ-SWITCH [4]

vCurrent solution x, is passed at the restart

Computation Result

v Upper and Lower part of DD-precision variables are stored in different arrays ASIC_100ks| TSOPF_RS_b39_c7[  memplus epb3
» Only Upper part is used for Double Precision (NE1957190) | B (NEFE 0093 M(NE¥7v758) MINSE3 6.17)
» Two Steps are performed by Different Precision f°}‘::‘;;f;rgfe‘::"k**” Al Double 3371(3.2s) 6204(2.55) oo oo
(3) Automatic restart for DQ-SWITCH if( nrm2<restart_tol ) break; b: DD 3156(3.85) 4043(1.75) = =
» Compute deviation of residual norm and restart at Clear al values except x b*: DD 3693(4.55) 5789(2.4s)| 12129( 5.0s)] oo
2 for(kek+Lik<maxtr;k++) {
Ve IZ":( nrm(i) — nrm(l)] Diverge: v >102 ;['enj;i"gf)‘;feak; p and p*: DD 3240(4.2s) 3871(1.9s)| 11613( 5.7s)| 13528(50.85)
P nrm(1) Stagnate | 1! } Vectors : DD 3011(2.7s) 3646(1.85)] 10938( 5.45)| 10432(35.95)
(4) Full DD-precision Full DD 3011(5.85) 3646(4.15)| 10938(12.3s)| 10434(78.85)
(Testing bed: 4 nodes, intel Core i7 4770 4core 3.4GHz (8MB, 16GB), DQ-SWITCH 3036(2.85) 3863(2.0s)) 11589( 6.1s)| 11756(33.2s)

Fedora21, intel C/C++ Compiler 13.0.1)

Conclusions

* Partial use of DD-precision in each iteration has small improvement, however sometimes does not converge.
* DD-precision except matrices is robust same as to Full DD-precision and reasonable computation time.
* DQ-SWITCH may have small improvement in keeping robustness.
* Automatic restart is not easy. Especially, BiCG has no special property to detect its restart.
= Mixed precision iterative methods are practically useful, because they are robust and fast. They also have parallelism in original algorithms.
* Incorporating preconditioning is one of our future works. For introducing preconditioning, there are some choices such as which part, precisions,

and kind of preconditioning.

References

[1] Bailey, D, H.: High-Precision Floating-Point Arithmetic in Scientific Computation, computing in Science and Engineering, pp. 54-61 (2005); [2]
Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, pp. 57-65 (1994); [3] Hishinuma, T., et
al. : SIMD Parallel Sparse Matrix-Vector and Transposed-Matrix-Vector Multiplication in DD Precision, VECPAR2016, LNCS 10150, pp.1-14 (2017).;
[4] Kotakemori, H., et al.: Implementation of Fast Quad Precision Operation and Acceleration with SSE2 for Iterative Solver Library, IPSJ Transactions
on Advanced Computing Systems, 1(1), pp. 73-84 (2008). (in Japanese); [5] The University of Florida Matrix Collection;

Contact : hasegawa@slis.tsukuba.ac.jp



