
・ DD arithmetic[1] uses two double precision variables to implement one quadruple‐precision variable. A DD addition consists of
11 double‐precision additions, and a DD multiplication consists of 15 double‐precision additions and 9 double‐precision multiplications.
・Intel AVX2 is SIMD function, and can process 4 double‐precision operations simultaneously.
・We add dummy operations to a sparse matrix in Compressed Row Storage format and extra data to a sparse matrix in Blocked Compressed Row
Storage format[2] to perform 4 double‐precision operations simultaneously. Each block consists of 4 rows and 1 column.
・We use double‐precision for Matrices to reduce memory space and the bytes/flops of SpMV. The bytes/flops are 1.33(28/21) for this, 10(20/2) for
the ordinary double‐precision operations, and 1.56(28/21) for full DD‐precision[3].
・BCRS(4,1) needs to store extra zero elements for the matrix, however it has good performance improvement on AVX2.
(Data ratio means (# of Data in BCRS(4,1)) / (# of Data in CRS); Improvement means (Time of CRS without AVX2)/(Time of BCRS(4,1) with AVX2))
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Robust and Fast BiCG using SIMD accelerated DD arithmetic
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・ Partial use of DD‐precision in each iteration has small improvement, however sometimes does not converge.
・ DD‐precision except matrices is robust same as to Full DD‐precision and reasonable computation time.
・ DQ‐SWITCH may have small improvement in keeping robustness.
・ Automatic restart is not easy. Especially, BiCG has no special property to detect its restart.
・ Mixed precision iterative methods are practically useful, because they are robust and fast. They also have parallelism in original algorithms.
・ Incorporating preconditioning is one of our future works. For introducing preconditioning, there are some choices such as which part, precisions,
and kind of preconditioning.
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The computation cost of DD‐precision SpMV and transposed SpMV on AVX2 is approximately 3 times of that of ordinary double‐precision
computation. This means “good accuracy” but “costly”. We should try to reduce total computation cost of iterative solvers as a “Hybrid”.
(1) Combination of Double and DD precisions in each iteration step
(2) DQ‐SWITCH [4]

✓Current solution xk is passed at the restart
✓Upper and Lower part of DD‐precision variables are stored in different arrays
✓Only Upper part is used for Double Precision
✓Two Steps are performed by Different Precision

(3) Automatic restart for DQ‐SWITCH
✓Compute deviation of residual norm and restart at

(4) Full DD‐precision
(Testing bed: 4 nodes, intel Core i7 4770 4core 3.4GHz (8MB, 16GB),

Fedora21, intel C/C++ Compiler 13.0.1)
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ASIC_100ks
(N = 99,190)

TSOPF_RS_b39_c7
(N = 141,098)

memplus
(N = 17,758)

epb3
(N = 84,617)

All Double 3371(3.2s) 6204(2.5s) ∞ ∞

p : DD 3156(3.8s) 4043(1.7s) ∞ ∞

p*: DD 3693(4.5s) 5789(2.4s) 12129( 5.0s) ∞

p and p*: DD 3240(4.2s) 3871(1.9s) 11613(  5.7s) 13528(50.8s)

Vectors : DD 3011(2.7s) 3646(1.8s) 10938(  5.4s) 10432(35.9s)

Full DD 3011(5.8s) 3646(4.1s) 10938(12.3s) 10434(78.8s)

DQ‐SWITCH 3036(2.8s) 3863(2.0s) 11589(  6.1s) 11756(33.2s)
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for(k=0;k<matitr;k++){
The first step
if( nrm2<restart_tol ) break;

}
Clear all values except x
for(k=k+1;k<maxtr;k++) {
The second step
if( nrm2<tol ) break;

}

ConclusionsConclusions
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