Fast computation of double precision sparse
matrix in BCRS and DD vector product using
AVX2

Toshiaki Hishinuma!, Akihiro Fujii', Teruo Tanaka', and Hidehiko Hasegawa?

! Major of Informatics, Kogakuin University, Tokyo, Japan
2 Faculty of Lib., Info. & Media Sci., University of Tsukuba, Tsukuba, Japan
em13015@ns.kogakuin.ac. jp

Abstract. In a double precision sparse matrix and a double-double pre-
cision (DD) vector product (DD-SpMV) : y = Az in CRS format using
AVX2, the non-contiguous memory access, processing for the remainder
and the summation elements in the SIMD register are factors that affect
performance. BCRS format with block size equal to the SIMD register’s
length or its multiples reduces performance degradation. However, since
BCRS consists of zero-elements, it may result in increased computations.
We accelerated DD-SpMV in BCRS using AVX2.

Keywords: SpMV, BCRS format, High precision arithmetic

1 Introduction

DD arithmetic is a high precision arithmetic system[1]. It uses two double pre-
cision variables to implement one quadruple precision variable.

Intel AVX2 computes four double precision variables simultaneously. In the
compressed row storage (CRS) format [2], SpMV using AVX2 requires processing
for the remainder (1, 2, 3) in each row. In SpMV in CRS using AVX2, the loading
of x is non-contiguous. Therefore, SpMV in CRS must relocate x for using AVX2.
In storing y, DD-SpMV using AVX2 requires the summation of the elements in
the SIMD register in each row. Processing for the remainder and summation of
elements in the SIMD register are factors that affect performance.

The block CRS (BCRS) format[2] partitions the matrix A into r x ¢ small
and dense submatrices (called blocks), which may consists of some zero-elements.
DD-SpMV using AVX2 in BCRS format can reduce factors that affect perfor-
mance in DD-SpMV in CRS format. However, since BCRS consists of zero-
elements, it may result in increased computations.

We implement BCRS 1x4 and BCRS 4x1. BCRS 1x4 reduces processing for
the remainder and improves memory access. BCRS 4x1 reduces processing for
the remainder and summation of elements in the SIMD register and improves
memory access. We accelerate DD-SpMV in BCRS using AVX2 with the block
size optimized for AVX2.



BCRSIx4/CRS < 1 BCRS4x1/CRS < 1
BCRS1x4/CRS >= 1 x BCRS4x1/CRS >= 1

Time ratio(BCRS4x1/CRS)
Time ratio(BCRS4x1/CRS)

0.5 0.5

L L L 0.25 M L L
10* 10° 10° 10’ 108 10* 10° 10° 10’ 108
The number of non-zeros The number of non-zeros

Fig. 1. Elapsed time ratio of DD-SpMYV using BCRS format (left : BCRS 1x4 compared
to CRS, right : BCRS 4x1 compared to CRS

2 Experimental results

The CPU is a 4-core 8-thread Intel Core i7 4770 3.4 GHz. The size of memory is
16 GB. OS is CentOS 6.4 and the compiler is an Intel C/C++ compiler 13.1.0.
Compiler options -03, -xCORE-AVX2, -openmp, and -fp-model precise are used.
We used a set of 100 sparse matrices that obtained from the University of Florida
Sparse Matrix Collection.

Figure 1 shows elapsed time ratio of DD-SpMV in BCRS using AVX2. The
elapsed time of DD-SpMV in BCRS 4x1 is 0.4-2.4 times that of DD-SpMV
in CRS. For 80 matrices, the elapsed time of BCRS 1x4 is less than that of
CRS. However, for 20 matrices, since the number of non-zeros is small (less than
107), the elapsed time of BCRS 1x4 is more than that of CRS. Elapsed time
of DD-SpMV in BCRS 4x1 is 0.3-2.3 times that of DD-SpMV in CRS. For 83
matrices, the elapsed time of BCRS 4x1 is less than that of CRS. However, for
17 matrices, since the number of non-zeros is small (less than 3.0 x 10¢), the
elapsed time of BCRS 4x1 is more than that of CRS. The effect of improving
memory access for small size matrices is small. However, DD-SpMV in BCRS
yields good performance and is suitable for large size matrices.

3 Conclusion

We accelerated the double precision sparse matrix in BCRS format and DD
vector product using AVX2. The best storage format is BCRS 4x1, which reduces
factors that affect performance in DD-SpMV in CRS format. The effect of BCRS
4x1 is good and BCRS 4x1 is effective for large size matrices.

References

1. Bailey, D ,H.: High-Precision Floating-Point Arithmetic in Scientific Computation,
computing in Science and Engineering, pp. 54-61 (2005).

2. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks
for Tterative Methods, STAM pp. 57-65 (1994)



