Fast Computation of double precision sparse matrix in BCRS and DD vector product using AVX2

Toshiaki Hishinuma[†], Teruo Tanaka[†], Akihiro Fujii[†], and Hidehiko Hasegawa^{††} [†]Kogakuin University ^{††}University of Tsukuba

- High precision arithmetics can improve the convergence of Krylov subspace methods.
- We have accelerated "Double-Double" (DD) precision arithmetics using AVX2. DD arithmetics is one of high precision arithmetics.
- DD-SpMV (y_{DD}=A_Dx_{DD}) in CRS (compressed row storage format) using AVX2 needs "processing for the remainder" and "sum. of elements in the SIMD register" for each rows. They are factors that affect performance.
- BCRS (Block CRS) can reduce these factors that affect performance. However it may result in increased computation.

"Double-Double" precision

- Double-Double precision(DD) arithmetic uses two double precision variables to implement one quadruple precision variable.
- DD mult. and add. consists of 19 double precision operations.

Double precision sparse matrix and DD vector product using AVX2

- AVX2 must process four double precision data simultaneously.
 - DD-SpMV in CRS needs "processing for the remainder" for each rows (1, 2, 3).
- When storing y, DD-SpMV in CRS needs "sum. of elements in the SIMD register".
- BCRS can reduce "processing for the remainder" and "sum. of elements".

1 1 1 1			
	Processing for	Num of elements	Storing V

Performances of DD-SpMV in BCRS format

(Intel Core i7 4770K 3.4GHz 4core 16GB, CentOS 6.4, intel C/C++ Compiler 13.1.0)

12

CRS DD-SpMV in BCRS4x1 is not bounded

The effect of DD-SpMV in BCRS4x1 [ms] Table3 (band matrix nnz/row = 33)

(Suma much, miz) = 33)					
CRS	BCRS1x4	BCRS4x1			
0.16 -7 %	0.15	0.15			
0.04	0.04	none			
0.05	none	none			
0.25 -24 %	0.19 -22%	0.15			
CRS	BCRS1x4	BCRS4x1			
9.07 -11 %	8.16	8.16			
1.12	1.12	none			
1.32	none	none			
11.51 -29 %	9.28 <u>-13 %</u>	8.16			
	CRS 0.16 -7 % 0.04 0.05 0.25 -24 % CRS 9.07 -11 % 1.12 1.32 11.51 -29 %	CRS BCRS1x4 0.16 -7 % 0.15 0.04 0.04 0.05 none 0.25 -24 % 0.19 CRS BCRS1x4 9.07 -11 % 8.16 1.12 1.12 1.32 none 11.51 -29 % 9.28			

• "processing for the remainder" and "sum. of elements in SIMD reg." are 21% of elapsed time.

• The computation time of BCRS1x4 is 7-11% faster than that of CRS.

It is the effect of improving memory access by BCRS4x1.

• The effect of improving memory access is large for the large size matrices.

Table 4 Total elapsed time of DD-SpMV [ms]				
(relative performance)				
	Total time (100 mat.) The number of the best matrices		
CRS	730 (1.35)	14		
BCRS 1x4	880 (1.33)	4		

BCRS 4x1	540 (1.02)	82
The best combinations	530 (1)	100

The case of optimally-combinations of CRS, BCRS1x4 BCRS4x1

- Total elapsed time of BCRS4x1 is 1.02 times of the best combinations.
- BCRS4x1 does not need combinations of other storage format.
- BCRS4x1 is the best storage format.

Conclusions

- We accelerate DD-SpMV in BCRS4x1 using AVX2. It does not need "processing for the remainder" and "sum. of element in SIMD reg.".
- Performances of DD-SpMV in BCRS4x1 are not bounded by memory access speed.
- BCRS4x1 is effective for the large size matrices (N>10⁶). That of the effect of improving memory access is large.
- The best storage format is BCRS4x1. Total elapsed time of BCRS4x1 is 1.02 times of the best combinations.