SIMD Parallel Sparse Matrix-Vector and
Transposed-Matrix-Vector Multiplication
in DD Precision

Toshiaki Hishinuma!, Hidehiko Hasegawa'?, and Teruo Tanaka?

! University of Tsukuba, Tsukuba, Japan
2 Kogakuin University, Tokyo, Japan
hishinuma@slis.tsukuba.ac. jp

Abstract. We accelerate a double-precision sparse matrix and DD vec-
tor multiplication (DD-SpMV) and its transposition and DD vector mul-
tiplication (DD-TSpMV) using SIMD AVX2. AVX2 requires changing
the memory access pattern to allow four consecutive 64-bit elements to
be read at once. In our previous research, DD-SpMV in CRS using AVX2
needed non-continuous memory load, processing for the remainder, and
the summation of four elements in the AVX2 register. These factors
degrade the performance of DD-SpMV. In this paper, we compare the
storage formats of DD-SpMV and DD-TSpMV for AVX2 to eliminate
the performance degradation factors in CRS. Our result indicates that
BCRS4x1, whose block size fits the AVX2 register’s length, is effective
for DD-SpMV and DD-TSpMV.

Keywords: Matrix storage format, SpMV, Transposed SpMV, Double-
double precision arithmetic, AVX2

1 Introduction

High-precision arithmetic operations reduce rounding errors and improve the
convergence of Krylov subspace methods [1]; however, they are very costly.
Double-double-precision (DD) arithmetic, which is one type of high-precision
arithmetic, is constructed by combining double-precision operations, but it re-
quires more than 10 double-precision operations for one DD operation [2]. How-
ever, it can greatly speed up performance using SIMD because it has a smaller
memory access rate than double-precision arithmetic [4].

A sparse matrix and vector multiplication take much time in Krylov sub-
space methods. We accelerated the double-precision sparse matrix and the DD
vector multiplication (DD-SpMV) and its transposition and the DD vector mul-
tiplication (DD-TSpMV) using advanced vector extensions 2 (AVX2) [3] [4]. The
AVX2 instruction set, which is a 256-bit single instruction multiple data stream-
ing (SIMD) instruction set, provides fused multiply and add instruction (FMA).
AVX2 simultaneously computes four double-precision FMA instructions.

AVX2 required changing the memory access pattern to allow four consecu-
tive 64-bit elements to be read at once. In DD-SpMV and DD-TSpMV for a

2 Toshiaki Hishinuma, Hidehiko Hasegawa, and Teruo Tanaka

compressed row storage format (CRS) [5], a non-continuous memory load and
store are needed for using AVX2. In addition, since it must simultaneously com-
pute four double-precision data. Furthermore, processing for the remainder in
each row is needed, because AVX2 must simultaneously compute four double-
precision data. Consequently, the performance might be degraded. We call these
CRS problems, collectively, performance degradation factors.

To avoid them, we use the BCRS format [5], which divides matrix A into
r X ¢ small dense submatrices (called blocks), which might include some zero-
elements. BCRS4x1, 2x2, and 1x4 (r X ¢ = 4) can simultaneously compute four
elements.

BCRS4x1 (r = 4, ¢ = 1) is suitable for DD-SpMV using AVX2 because the
block size fits the SIMD register’s length [6]. However, since BCRS4x1 requires
up to four times the amount of operations and data as CRS. In DD-TSpMYV,
BCRS4x1 fails to eliminate performance degradation factors. Consequently, we
must compare BCRS1x4 and BCRS4x1.

In this paper, we show that the effective implementation of DD-SpMV and
DD-TSpMYV improves the AVX2 performance and analyze the optimal storage
format to eliminate the performance degradation factors in CRS.

2 Related work

XBLAS [7] is a well-known extended precision BLAS whose input and output
are double-precision that internally uses the DD operations. However, it does
not accelerate them using SIMD.

Lis [8], which is an iterative solver library, internally uses DD operations,
which are accelerated by SIMD SSE2. SSE2 has 128-bit SIMD registers.

On the other hand, Karakasis [9] and Im [10] accelerated a double-precision
SpMV. Blocking, which fits the SIMD register’s length, is effective for a double-
precision SpMV. In AVX2, BCRS4x1 is effective. Xing [11] implemented a double-
precision SpMV in ELLPACK and an ELLPACK sparse block format on MIC
(Intel many integrated core architecture).

However, since these studies, which failed to evaluate TSpMV, are only dou-
ble precision, we must compare DD-SpMV in BCRS1x4 and BCRS4x1.

3 Implementation of DD-SpMYV and DD-TSpMYV using
AVX2

3.1 DD arithmetic

DD arithmetic, which is based on error-free, floating-point arithmetic algorithms
by Dekker [12] and Knuth [13], only consists of combinations of double-precision
values and uses two double-precision variables to implement one quadruple pre-
cision variable [2].

An IEEE 754 quadruple precision variable consists of a 1-bit sign part, a
15-bit exponent part, and a 112-bit significand part. A DD-precision variable

SIMD Parallel SpMV and TSpMV in DD Precision 3

consists of a 1-bit sign part, an 11-bit exponent part, and a 104-bit (52 x 2)
significand part. The exponent part of a DD-precision variable is 4 bits shorter
and the significand part is 8 bits shorter than the exponent and significand parts
of an IEEE 754 quadruple precision variable, respectively.

The simplest way to use IEEE 754 quadruple precision is with Fortran
REAL*16. We compared Fortran REAL*16 using an Intel Fortran compiler
13.0.1 (ifort) and DD arithmetic without any SIMD instructions. The compiler
option in ifort was -O3. Fortran REAL*16 in ifort was only implemented by in-
teger operations. We computed y = o X x + y, where x and y are the quadruple
precision vectors and « is quadruple precision variable. Two 10° vectors, & and
y, can be stored in the cache. The elapsed time of Fortran REAL*16 was 2.7 ms
and that of the DD arithmetic was 0.64 ms in 1 thread, which means that the
DD arithmetic was 4.2 times faster than Fortran REAL*16.

DD addition consists of 11 double-precision additions, and DD multiplication
consists of 10 double-precision operations: three double-precision additions, three
double-precision multiplications, and two double-precision FMA instructions (3
+ 3 4+ 2 x 2 =10 flops).

In DD multiplication, two sign inversions are needed. However, since AVX2
lacks sign inversion instruction, we use two double-precision multiplications for
two sign inversion. This flop count consists of these multiplications.

We implemented DD vector x using two double-precision arrays (z.hi and
x.lo) for the SIMD acceleration.

The bytes/flops of the DD operations are lower than those of the double-
precision operations. For example, in the DD-SpMV kernel stored in CRS, the
memory requirement is 28 bytes: 8 bytes for matrix A, 16-byte vector x, and
4 bytes for the vector column index. We postulate that loading vector x has a
cache miss.

The bytes/flops of double-precision SpMV is 20 (bytes)/2 (flops) = 10, those
of the DD matrix and the DD vector product is 36 (bytes)/23 (flops) = 1.56,
and those of DD-SpMV is 28 (bytes)/21 (flops) = 1.33. The byte/flop value of
DD-SpMYV is 13% of double-precision SpMV and 85% of the DD matrix and the
DD vector product.

DD-SpMYV is expected to greatly speed up the SIMD acceleration because
of the amount of data required for the memory. In many cases, for an iterative
solver library, input matrix A, which is given in double precision, is iteratively
used. To reduce the memory access of the sparse matrix and the vector product,
we use double-precision sparse matrix A and DD-precision vector & product.

3.2 Intel SIMD AVX2

In this section, we introduce Intel SIMD AVX2. AVX2 must simultaneously
compute, load, and store four double-precision variables. DD-SpMV and DD-
TSpMV use three types of load AVX2 instructions (.mm256_load_pd (load),
_mm256_broadcast_sd (broadcast), and .-mm256_set_pd (set)) and one store in-
struction (_mm256_store_pd (store)).

These instructions have the following descriptions:

4 Toshiaki Hishinuma, Hidehiko Hasegawa, and Teruo Tanaka

— The “load” instruction loads four continuous double-precision elements that
begin with the same source memory address.

— The “broadcast” loads one double-precision element from one source memory
address to all the elements of the SIMD register.

— The “set” loads four double-precision elements from four different source
memory addresses.

— The “store” stores four continuous double-precision elements from the reg-
ister to the memory beginning with the same source address.

We easily implemented the following three macro-functions (i.e. “SCAT-
TER”, “REDUCTION”, “FRACTION_PROCESSING”) to SIMD-ize DD-SpMV
and DD-TSpMV.

To perform random store operation “scatter,” we implemented a “SCAT-
TER ' macro-function using “store” and ordinary instructions. We also imple-
mented “SCATTER” to store the double-precision temporary array using the
“store” instruction and stored valuables using ordinary double-precision store
instructions.

To store the summation of the elements in the SIMD register storage into one
source address, we implemented a “REDUCTION” macro-function that com-
putes a summation of four DD variables in two SIMD registers (high and low).
We implemented “REDUCTION” using the “shuffle” instruction, which rear-
ranges the double-precision elements. For example, the AVX2 register has {a,
b, ¢, d} elements. First, the “shuffle” instruction makes {b, a, d, ¢} elements
of AVX2 register from {a, b, ¢, d}. Second, we operate the DD addition using
the AVX2 of these registers, and then {a+b, a+b, c+d, c+d} AVX2 register
is made. Finally, we operate the DD addition using ordinary instructions for the
second and third elements. ‘REDUCTION” consists of “shuffle” instructions and
11 (DD addition using AVX2) + 11 (DD addition using ordinary instruction) =
22 flops.

To judge the processing for the AVX2 remainder, which is one, two, or
three elements for each row in the case of CRS, we implemented a “FRAC-
TION_PROCESSING” macro-function, which assigns zero to the “set” operand
at the execution and three conditional branchings.

“FRACTION_PROCESSING” consists of the following C code:

av = load(A[value[jl]);
yv = set_zero();
case (r == 3)
xv2 = set(x[index[j]], x[index[j+1]], x[index[j+2]1], 0);
yv2 = DD_MULT_ADD(yv2, av, xv2); break;
case (r == 2)
set(x[index[j]], x[index[j+1]1]1, 0, 0);
yv2 = DD_MULT_ADD(yv2, av, xv2); break;
case (r == 1)}
set(x[index[jl], 0, 0, 0);
yv2 = DD_MULT_ADD(yv2, av, xv2);

SIMD Parallel SpMV and TSpMV in DD Precision 5

The awv is the 256-bit AVX2 register type variables. Xv2 and yv2 are the
AVX2 register type variables for DD variables. “DD_MULT_ADD” computes DD
multiplication and addition using AVX2: yv2 + av x zv2. “Set_zero()” means an
AVX2 register type variable initialization with zero. “FRACTION_PROCESSING”
needs a maximum of three times as many branches on the conditions.

The “set” is costly compared to “load” and “broadcast [3].” “SCATTER,”
“REDUCTION,” and ““FRACTION_PROCESSING” are costly because “SCAT-
TER” occurs in the random memory store. “REDUCTION” requires more com-
putations because it needs a “shuffle” instruction and 22 double-precision addi-
tions. “FRACTION_PROCESSING” occurs in the conditional branching.

4 Performance degradation factors of DD-SpMV and
DD-TSpMYV in CRS using AVX2

4.1 DD-SpMV

The CRS format is expressed by the following three arrays: ind, ptr, and val.
The double-precision wal array stores the values of the non-zero elements of
matrix A since they are traversed row-wise. The ind array is the column indices
that correspond to the values, and ptr is the list of value indexes where each
row starts. DD-SpMYV in CRS using AVX2 consists of the following C code:

#pragma omp parallel for private (j, av, xv2, yv2)
for(i=0; i<N; i++){
yv2 = set_zero();
for(j=A->ptr[il; j<A->ptr[i+1]-3; j+=4){
xv2 = set(x[A->ind[j+0]],..,x[A->ind[j+3]1]);
av = load(&A->valljl);
yv2 = DD_MULT_ADD(yv2, av, xv2); break;
}
yv2 = FRACTION_PROCESSING();
y[i] = REDUCTION(yv2);
}

X and y are a double-precision array, and A is the CRS format. DD-SpMV in
CRS using AVX2 needs a “set” of x, the “REDUCTION” of y, and “FRAC-
TION_PROCESSING.”

4.2 DD-TSpMYV in CRS using AVX2
DD-TSpMYV in CRS using AVX2 consists of the following C code:

num_threads = omp_num_threads() ;

work = malloc(num_threads * N);

#pragma omp parallel private (i, j, k, av, xv2, yv2){
k = omp_get_thread_num() ;

6 Toshiaki Hishinuma, Hidehiko Hasegawa, and Teruo Tanaka

#pragma omp for
for(i=0; i<N; i++){
xv2 = broadcast (&x[i]);
for(j=A->ptr[il; j<A->ptr[i+1]1-3; j+=4){
5323tk
yv2 = set(y[A->ind[j+0]],..,y[A->ind[j+3]]1);
av = load(&A->valljl);
yv2 = DD_MULT_ADD(yv2, av, xv2); break;
SCATTER(yv2, work[A->ind[jj+0],..,work[A->ind[jj+3]1]);
}
av = load(&A->valljl);
yv2 = FRACTION_PROCESSING(A,x);
SCATTER(yv2, work[A->ind[jj+0],..,work[A->ind[jj+3]]);
33
for(i=0;i<N,i++)
for(j=0;j<num_threads,i++)
y[il = DD_ADD(y[i], work[A->ind[i+j*N]);

DD-TSpMV in CRS needs a “set” of y, a “SCATTER” of y, and “FRAC-
TION_PROCESSING.”

In multi-threading, DD-TSpMV in CRS needs the number of thread work
vectors and their array-reduction after computation.

5 Implementation and Evaluation of DD-SpMYV and
DD-TSpMYV in other storage formats

CRS has some performance degradation factors, and AVX2 must change the
memory access pattern to allow four consecutive 64-bit elements to be read at
once. In this section, we compare the features of some storage formats using
performance degradation factors.

5.1 DD-SpMV

BCRS r x c is expressed by the following three arrays: bind, bptr, and bval.
The length of the double-precision array bwval is the number of blocks (blk) x r
X ¢ store values of the non-zero blocks since they are traversed row-wise. The
bind array is the column indices that correspond to the blocks, and bptr is the
list of block indexes where each block row starts.

Table 1 shows the features of CRS, BCRS1x4, BCRS4x1, and ELL [5].

BCRS4x1 does not need “set,” “REDUCTION,” or “FRACTION_PROCESSING.”

It needs “REDUCTION,” and ELL needs a “set” of . In DD-SpMV, BCRS4x1
is the best estimation because it eliminates the performance degradation factors
in CRS. However, it needs more operations and data.

DD-SpMV in BCRS4x1 using AVX2 consists of the following C code:

SIMD Parallel SpMV and TSpMV in DD Precision 7

Table 1. Features of DD-SpMYV in each storage format

| CRS | BCRSIx4 [BCRS4xI] ELL
Loading set load broadcast |set
Loading y set_zero set_zero set_zero |set_zero
Storing y REDUCTION|REDUCTION |store store
FRACTION_PROCESSING |each row none none each col.
Computation ratio (max) |1 4 4 the num. of row

#pragma omp parallel for private (jb, av, xv2, yv2)
for(i=0; i<N-3; i+=4){ // block_row is about N/4.
yv2 = set_zero();
for(j=A->bptr[il; j<A->bptr[i+1]; j++){
xv2 = broadcast(x[A->bind[j]]);
av = load (&A->bvallj * 4]);
yv2 = DD_MULT_ADD(yv2, av, xv2); break;
}
y[i] = store(yv2);

In the inner-loop (j-loop), DD-SpMV in CRS needs four double-precision
elements of A and four non-contiguous and indirect DD elements of . BCRS4x1
only needs four double-precision elements of A and one indirect DD element of
2. The amount of bytes/flops of BCRS4x1 is smaller than that of CRS. The
memory requirement of BCRS4x1 in the inner-loop is smaller than that of CRS.

5.2 DD-TSpMV

The performance degradation factors of DD-TSpMV in CRS are non-continuous
load/store, “FRACTION_PROCESSING,” and the initialization and summation
of the work vectors in multi-threading. In DD-SpMV, the BCRS4x1 feature is
the best. However, in DD-TSpMV, BCRS4x1 fails to eliminate the work vectors.

We improved DD-TSpMYV in BCRS4x1 for high performance in DD-SpMV
and DD-TSpMV on only one storage format. Its BCRS4x1 applied column-wise
multi-threading; the others applied row-wise multi-threading. The DD-TSpMV
performance in BCRS4x1 applied additional column-wise multi-threading, which
is improved here because BCRS4x1 only computes one column in j-loop; i.e., it
can easily be thread-partitioned. DD-TSpMV in BCRS4x1 using the AVX2 of
column-wise multi-threading consists of the following C code:

num_threads = omp_num_threads() ;

work = malloc(4* N); // The length of SIMD.

#pragma omp parallel private(work, jb, av, xv2, yv2){
k = omp_get_thread_num() ;

8 Toshiaki Hishinuma, Hidehiko Hasegawa, and Teruo Tanaka

Table 2. DD-TSpMV features in each storage format

[CRS [BCRSIx4/BCRS4xl] ELL
Loading « broadcast |broadcast|load broadcast
Loading y set load broadcast |set
Storing y SCATTER|store store REDUCTION
Fraction_processing each row |none none each col.
Computation ratio (max)||1 4 4 number of rows

alpha = N / num_threads * k;
beta = N / num_threads * (k+1);
for (i = 0; i < N-3; i+=4){
xv2 = load(x[il);
#pragma omp for
for (j = bptrl[il; j < bptrli+1]; j++){
if (alpha < bind[jb] <= beta){ //thread-partitioning
av = load(A->bvalljl);
yv2 = broadcast (work[bind[j]);
yv2 = DD_MULT_ADD(yv2, av, xv2); break;
y[il = store(yv2);

333

BCRS4x1 can eliminate “REDUCTION” and continuously store work vectors
in j-loop. Since it needs only four work vectors, it is expected to speed up per-
formance on more multi-core systems.

Table 2 shows the TSpMV features in each storage format. BCRS1x4 and
BCRS4x1 do not need “set” “scatter,” or “REDUCTION.” ELL needs “set”
and “REDUCTION.” In addition, BCRS4x1 only needs four work vectors and
continuous storage for them. In DD-TSpMV, BCRS1x4 or BCRS4x1 is the best.

6 Experimental results

We performed our tests on a machine with a 4-core 8-thread Intel Core i7 4770
3.4 GHz CPU, an 8-MB L3 cache, and 16-GB memory. We used Fedora 20 OS
and Intel C/C++ compiler 15.0.0 as well as compiler options -03, -xCORE-
AVX2, -openmp, and -fp-model precise. Our code was written in C and used
AVX2 intrinsic instructions. We also used an openMP guided scheduling option
and 4-thread multi-threading.

6.1 DD-SpMYV and DD-TSpMYV overheads

We evaluated the performance in each storage format with 23 matrices, which
were taken from The University of Florida Sparse Matrix Collection (Florida
Collection) [14].

SIMD Parallel SpMV and TSpMV in DD Precision 9

Fig. 1 and Fig. 2 shows the overhead of DD-SpMV and DD-TSpMV. We mea-
sured the elapsed time of the non-continuous load to change the load instruction
from the set instruction. calculation kernel means elapsed time without over-
heads.

From Fig. 1, we compared the DD-SpMV in CRS overheads in the following
results, where the calculation kernel is the baseline:

— Non-continuous load (set instruction) overheads are 74-630%.
— “FRACTION_PROCESSING” overheads are 4-89%.
— “REDUCTION” overheads are 27-380%.

The effect of the non-continuous load and “REDUCTION” is very large. When
the nnz/row is small, the overhead effects are large because “FRACTION_PROCESSING”
and “REDUCTION '’ occurred in each row.

The total time of BCRS1x4 is 1.6-7.3 times slower than the calculation kernel
in CRS. The elapsed time of BCRS1x4 is more than four times slower because
it needs “REDUCTION".

In all cases, BCRS1x4 is slower than BCRS4x1 because of the “REDUC-
TION” overhead. The total time of BCRS4x1 is 1.2-3.2 times slower than the
calculation kernel in CRS. The computation ratios of BCRS4x1 are 1.1-3.9 times.
The elapsed time and the computation ratio are proportional.

From Fig. 2, we compared the DD-TSpMV in CRS overheads in the following
results, where the calculation kernel is the baseline:

— Non-continuous load/store (set instruction and “SCATTER”) overheads are
140-640%.

— “FRACTION_PROCESSING” overheads are 3-79%.

— “Initialization and summation of work vectors” overheads are 12-150%.

The overheads of non-continuous load/store, Initialization, and the summation
of work vectors are large.

The total time of BCRS1x4 is 1.4-5.1 times slower than the calculation kernel
in CRS. The elapsed time of BCRS1x4 is more than four times slower.

The total time of BCRS4x1 is 1.2-3.8 times slower than the calculation kernel
in CRS. The computation ratios of BCRS4x1 are 1.1-3.9 times. The elapsed time
and the computation ratio are proportional.

6.2 Convert costs of BCRS4x1 from CRS

Next we evaluated the convert costs of BCRS4x1 from CRS using 100 matrices
taken from the Florida Collection. The convert BCRS4x1 from CRS consists of
the following C code:

for(bi=0;bi<nr;bi++){
i = bix*r;
ii = 0;
kk = Aout.bptr[bil;

10 Toshiaki Hishinuma, Hidehiko Hasegawa, and Teruo Tanaka

C— Non-continuous loading x mmmmm BCRS4x1

C— REDUCTION I BCRS1x4

— FRACTION_ PROCESSING mmmm CRS calculation kernel
1200 T
1000 A L
800 - -

600

Time ratio [%]

400

200
100

Fig. 1. DD-SpMV overhead

while(i+ii<n && ii<=r-1){
for(k=Ain.ptr[i+ii];k<Ain.ptr[i+ii+l1];k++){
Aout.bindex[kk] = Ain.index[k]/c;
Aout.value[ij] = Ain.valuel[k];
Kk = kk+1;

We measured the convert times and compared them to the computation times
of DD-SpMV in BCRS4x1. The average convert time was 4.2, the minimum
convert time was 2.6, and the maximum convert time was 5.1 times slower than
the elapsed time of DD-SpMV in CRS. The convert time is small.

6.3 BCRS4x1 effect

Fig 3 compares the time ratio of BCRS4x1 to CRS for 100 sparse matrices taken
from the Florida Collection.

SIMD Parallel SpMV and TSpMV in DD Precision 11

1000 T T T T T T T T T ‘l T T . T T T R T T T T T T T T
M C—1 Non-continuous loading and storing y
900 - [Initialization and summation work vectors N
—= FRACTION_PROCESSING
mmmm BCRS4x1
800 A mmm BCRS1x4 -
I CRS calculation kernel
700 A _) L
)
=600 4 i
2
=]
£ 500 A -
[5)
E 400 - -
= i
300 A i ‘ -
4 L 1 I 1 M H L
|l I!' o - |||
= H i .
100 LI L LI LOI LI LB i LI LI LN O

’b&éo&fl‘// Q& qpf‘[58 O 0,9 ’e) } 6 é 0,9
o(z @ 2 6%, & @ O
O, sz;% 4 % @/ Pch el O’ 4’/4 & %g%;“w%
i N
\6/
6

Fig. 2. DD-TSpMYV overhead

In many cases, BCRS4x1 is faster than CRS using AVX2. The time ratios of
DD-SpMV in CRS using AVX2 are 0.06 - 1.34 with an average of 0.38 compared
with CRS without SIMD. The time ratios of DD-SpMV in BCRS4x1 are 0.09 -
1.96 times faster (average 0.43) than the case of CRS using AVX2. In DD-SpMV,
the 96/100 matrix performance outperforms Scalar CRS.

The time ratios of DD-TSpMV in CRS using AVX2 are 0.06 - 1.14 with an
average of 0.34 compared with CRS without SIMD. The times of DD-TSpMV
in BCRS4x1 using AVX2 are 0.08 - 1.07 with an average of 0.38 compared with
CRS using AVX2. In DD-TSpMV, the 100/100 matrix is better than Scalar
CRS.

For example, the time ratio of “cell2” in BCRS4x1 using AVX2 is 1.96 times
slower than that in CRS using AVX2. It has different placement of the non-zero
elements in each row, nnz/row is 5, and the computation ratio is 1.9. When
nnz/row is less than 8, BCRS4x1 is bad because it cannot improve the memory
access.

7 Discussion

In DD-SpMV in CRS, the overheads by performance degradation factors are
130-1010% compared to the calculation kernel. The average overhead is about

12 Toshiaki Hishinuma, Hidehiko Hasegawa, and Teruo Tanaka

X 1 < comp. ratio £ 2 . 2 < comp. ratio £ 3 e 3 < comp. ratio < 4

2 - - - - - - - -
5 .
['4
O
g 20t 2 1 *
S ok o N ‘e
< *& e N a
~ & X% S X -
x x O x - M x LR
Q1L PN x | . X x e
O % ¢ Xao X X X ‘.>§< :
M % M . MIVSE N
o xR . XX

> a
IS L N R R
e 1 .
e} x 4 . x
) X a X x %
~ x4 x X
©) x x
G273 b 1 %, .
o x X XX B
5 woa X o x
a A

2—4 L L L L 2% A ! !

27t 273 272 27t 20 2t 2 273 272 27t 2° 2!

Time ratio (AVX CRS / non-SIMD CRS)

Fig. 3. Time ratio of BCRS4x1 compared with CRS [ms] (left: DD-SpMV, right: DD-
TSpMV). The comp. ratio compares the amount of operations in BCRS4x1 to CRS.

300%. The overheads of the non-continuous load (set instruction) are 74-630%,
and those of “REDUCTION” are 27-380%. These effects are very large.

BCRS4x1 may require at most four times the elapsed time of the calculation
kernel. However, solving this trade-off problem is easy because CRS has 300%
overheads.

As a result of DD-SpMV, BCRS4x1 is faster in 97/100 matrices than CRS.
BCRS4x1 is effective for most cases because it eliminates the performance degra-
dation factors. If the case of overhead is small and the computation ratio of
BCRS4x1 is four, BCRS4x1 may be less than 2 times slower than CRS because
it has a minimum 100% overhead in addition to the calculation kernel alone.

In the DD-TSpMV in CRS, the overheads by performance degradation fac-
tors are 180-890% compared to the calculation kernel. The overhead average is
about 370%. The overheads of the non-continuous load/store (set instruction
and “SCATTER”) are 140-640%, and those of the Initialization and summation
of work vectors are 12-150%. These effects are huge.

The maximum DD-TSpMYV overheads are smaller than those of DD-SpMV.
However, since the average is large, any large-sized matrix is affected.

As a result of DD-TSpMV, BCRS4x1 is faster in 99/100 matrices than CRS.
If the case of overhead is small and the computation ratio of BCRS4x1 is four,
BCRS4x1 may be less than 1.4 times slower than CRS because it has a minimum
180% overhead compared to the calculation kernel.

In this paper, We used row-wise access storage formats. On the other hand,
there are column-wise access storage formats, for example, compressed column
storage (CCS) and Block CCS (BCCS).

SIMD Parallel SpMV and TSpMV in DD Precision 13

In BCCS, since DD-TSpMV needs work vectors for multi-threading, the
column-wise access storage formats are better in DD-TSpMV than DD-SpMV. In
many algorithms, the frequency use of DD-SpMV exceeds DD-TSpMV. Row-wise
access storage formats have higher versatility than column-wise access storage
formats.

We conclude that the effects of eliminating the performance degradation
factors are large. In sparse matrix operation with SIMD, we must eliminate
non-continuous memory access and horizontal vector summation.

8 Conclusion

We evaluated the performance degradation factors of CRS using AVX2 and a
storage format that eliminated the performance degradation factors of CRS for
DD-SpMV and DD-TSpMV. We compared DD-SpMV and DD-TSpMYV in CRS,
BCRS1x4, and BCRS4x1 formats.

AVX2 required the memory access pattern to be changed to allow four con-
secutive 64-bit elements to be read at once. Four consecutive 64-bit elements
must be allowed with blocking.

In DD-SpMV in CRS using AVX2, three performance degradation factors
occur: non-continuous memory load from @, “FRACTION_PROCESSING,” and
the summation of the four DD variables in two SIMD registers. The overheads by
the performance degradation factors are 130-1010% compared to the calculation
kernel.

In DD-TSpMV in CRS using AVX2, three performance degradation factors
occur: non-continuous load/store for y, the summation of each variable of SIMD
register (“REDUCTION”), and “FRACTION_PROCESSING.” However, DD-
TSpMV in BCRS4x1 in multi-threading needs the number of thread work vectors
and their summation.

One of our improvements is column-wise multi-threading, but such thread-
partitioning is difficult for row-wise access storage format. Column-wise multi-
threading of BCRS4x1, which can be easily implemented, can factor out the
“REDUCTION” in the storage and summation of four work vectors.

In DD-TSpMV in CRS, the overheads by performance degradation factors
are 180-890% compared to the calculation kernel.

BCRS4x1 may require at most four times the elapsed time of the calcula-
tion kernel. However, solving this trade-off problem is easy because the CRS
overheads are large. If the overhead case is small and the computation ratio of
BCRS4x1 is four, DD-SpMV in BCRS4x1 may be less than 2.0 times slower than
CRS, and DD-TSpMYV in BCRS4x1 may be less than 1.4 times slower than CRS.
The convert cost of BCRS4x1 is about five times more than the computation
time of DD-SpMYV in BCRS4x1. This convert time is small.

BCRS4x1 is suitable for AVX2 because the block size fits the SIMD register’s
length and BCRS4x1 eliminates the performance degradation factors in CRS.
However, BCRS4x1 requires at most four times the amount of operations and

14

Toshiaki Hishinuma, Hidehiko Hasegawa, and Teruo Tanaka

data as CRS. Changing the memory access pattern and thread-partitioning for
the multi-threading are good implementation for DD-SpMV and DD-TSpMV.

In the future, we will apply our technique to other SIMD lengths and multi-

core systems. Column-wise multi-threading in the BCRS format only needs the
length of the SIMD’s register work vectors because they are expected to speed
up performance on multi-core systems.

9

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 25330144. The
authors thank the reviewers for their helpful comments.

References

1.

10.

11.

12.

13.

14.

Kouya, Tomonori: A Highly Efficient Implementation of Multiple Precision Sparse
Matrix-Vector Multiplication and Its Application to Product-type Krylov Subspace
Methods, International Journal of Numerical Methods and Applications, Vol. 7,
Issue 2, pp. 107-119 (2012).

Bailey, D, H.: High-Precision Floating-Point Arithmetic in Scientific Computation,
computing in Science and Engineering, pp. 54-61 (2005).

Intel, http://software.intel.com/en-us/articles/intel-intrinsics-guide
Hishinuma, T., Fujii, A., Tanaka, T., and Hasegawa, H.: AVX acceleration of DD
arithmetic between a sparse matrix and vector, Parallel Processing and Applied
Mathematics, LNCS 8384, Part 1, pp. 622-631 (2013).

Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks
for Tterative Methods, STAM pp. 57-65 (1994).

Hishinuma, T., Fujii, A., Tanaka, T., and Hasegawa, H.: AVX2 Acceleration of
Double Precision Sparse Matrix in BCRS Format and DD Vector Product, IPSJ
Transactions on Advanced Computing Systems, Vol. 7, No. 4, pp. 25-33 (2014) (in
a Japanese).

X., Li, et al.: Design, implementation and testing of extended and mixed precision
BLAS, ACS Transactions on Mathematical Software, Vol.28, Issue 2, pp. 152-205
(2002).

Lis: Library of Iterative Solvers for Linear Systems, http://www.ssisc.org/lis/
V., Karakasis, G., Goumas, and N., Koziris, Exploring the Effect of Block Shapes
on the Performance of Sparse Kernels, 2009 IEEE International Symposium on
Parallel & Distributed Processing, pp.1-8 (2009).

E., Im, K., Yelick, and R.., Vuduc.: SPARSITY: Optimization Framework for Sparse
Matrix Kernels, International Journal of High Performance Computing Applica-
tions, Vol.18, Issue 1, pp. 135-158 (2004).

Liu, Xing, Smelyanskiy, Mikhail, Chow, Edmond, and Dubey, Pradeep, Efficient
Sparse Matrix-vector Multiplication on x86-based Many-core Processors, 27th In-
ternational Conference on Supercomputing, pp.273-282 (2013).

Dekker, T.: A floating-point technique for extending the available precision, Nu-
merische Mathematik, Vol. 18, pp. 224-242 (1971).

Knuth, D, E.: The Art of Computer Programming: Seminumerical Algorithms,
Vol. 2, Addison-Wesley (1969).

The University of Florida Sparse Matrix Collection,
http://wuw.cise.uhl.edu/research/sparse/matrices/

