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Abstract. We implemented pzqd, a high precision arithmetic library
for the PEZY-SC2 that is based on Hida et al.’s QD library. PEZY-
SC2 is an MIMD (multiple instruction stream, multiple data stream)
-type many-core processor. We optimized matrix-matrix multiplication
(Rgemm) in double-double precision (DD) on the PEZY-SC2. Porting
the CPU code to PEZY-SC2 code is relatively easy because PEZY-SC2 is
a MIMD-type processor; it runs all the threads independently. As a proof
of concept, we ported pzqd with minimal modifications to the original
QD library; pzqd can treat a DD type variable in a unified way on the
host CPU and the PEZY-SC2. The performance of our implementation
of Rgemm in DD (DD-Rgemm) on the PEZY-SC2 attained 75% of the
peak performance of DD, which is 20 times faster than an Intel Xeon E5-
2618L v3, even including the communication time between the host CPU
and the PEZY-SC2. The most important technique for optimizing the
DD-Rgemm on the PEZY-SC2 is to make use of the high-speed scratch-
pad memory (local memory) installed in each core. We stored the 2x2
DD block matrices and other temporary variables in local memory by
reducing the number of threads to increase the local memory size per
thread as they occupy local memory even for this block size.

Keywords: PEZY-SC2, double-double precision, MIMD, many-core, matrix-
matrix multiplication

1 Introduction

The binary64 [1] (so-called double-precision floating-point numbers) of IEEE Std
754-2008, is a kind of floating point number commonly used for numerical simu-
lations in computational science. It has finite precision and the calculation time
and error may increase due to rounding errors when using it to solve problems
requiring higher precision than 16 decimal digits.

Various high-precision calculation methods are used to reduce the influence of
errors on floating point operations in problems in physics, chemistry, mathemat-
ics, etc. [2]. High-precision arithmetic has become relatively more straightforward
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to perform because of the dramatic increase in numbers of floating point opera-
tions per second of computers as a result of Moore’s law. Therefore, we expect
an increase in demand for high-precision arithmetic to solve numerically difficult
problems that are ill-conditioned or so huge that they require enormous num-
bers of floating-point operations. Demand will also grow for using high-precision
arithmetic for numerical verification [3] and examining numerical reproducibility
[4].

High-precision calculations using software are very costly, because they need
a lot of computations and memory, and they are not supported in general pro-
gramming languages. In any case, we should reduce the computational and im-
plementation costs.

Double-double precision (DD) arithmetic is frequently used because of its
relatively high speed and low implementation cost. DD arithmetic does not need
any special hardware and runs on general-purpose processors, which only use
double-precision operations for DD operations. DD floating point numbers are
cheap versions of the binary128 (quadruple precision floating point numbers)
of IEEE Std 754-2008 and are defined as two non-overlapping double precision
floating numbers [5].

Hida et al.’s QD library [5] significantly reduces the implementation cost of
DD, as it implements DD floating point numbers as a class of C++. This essen-
tially overcomes the first obstacle. To remove the second obstacle, we can use
accelerators such as GPUs or SIMD (single instruction multiple data) processors
[6–8].

One of the problems that currently limits the performance of computers is
power consumption. In particular, it is important to find ways how to increase
power efficiency and how to dissipate the heat generated by a computer effi-
ciently.

To solve these problems, PEZY Computing and ExaScaler have been devel-
oped from the PEZY-SC2 many-core processor [9] and ZettaScaler 2.2 series of
PEZY-SC2-based supercomputers that use a liquid immersion cooling system
[10]. In the Green 500 supercomputer energy conservation ranking [11], One of
our supercomputers “Shoubu system B’’[9] has been certified for three consec-
utive terms from 2017 to 2018. Presently, we are working on new hardware and
are conducting numerical simulations on it [12, 13].

In this paper, we describe the pzqd library, which is a port of the high-
accuracy arithmetic library QD [5] on the PEZY-SC2 processor for high-precision
BLAS. We implemented and evaluated the DD matrix-matrix product (DD-
Rgemm) on the PEZY-SC2 using the pzqd library.

We obtained about 74% of the peak performance of DD for the DD-Rgemm.
The key to attaining high execution performance in this case was to launch four
threads per processor element (the processor element is the minimal computation
unit of the PEZY-SC2) so that we could effectively use the local memory space.
The peak performance was 59 GFlops in DD, or equivalently, 1297 GFlops in
double precision.
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The rest of the paper is organized as follows. Section 2 describes related work,
and section 3 shows the architecture and programming model of the PEZY-SC2
processor. An overview of DD arithmetic is given in section 4. We describe the
pzqd library, how we optimized DD-Rgemm using it, and how we measured its
performance in section 5. Section 6 summarizes the paper.

2 Related work

Some hardware implements binary128[14, 15]; however, most hardware can use
only double precision.

Recently, the GNU Compiler Collection and Intel C/C++ and Fortran Com-
piler implemented “ float128” or “ Quad” binary128 in software.

Double-double precision, sometimes referred to as double-word arithmetic,
is widely used. It is used by the IBM XL FORTRAN compiler, IBM XL C
compiler, and gcc for the Power series (RS6000), including the MacOSX until
10.6 implemented “long double” and “REAL*16” as double-double precision
[16–19]. (Note: double-double precision and binary128 are not compatible.)

Hida et al.’s QD library is available for other systems [5]. By using the QD
library, users can use dd real and qd real (octuple precision) like float or double
in C++ or Fortran 90.

A most critical application of DD would be T. Aoyama et al.’s numerical
evaluation of the electron anomalous magnetic moment from quantum electron
dynamics [20]. They used DD and even quad-double precision for calculating
certain Feynman diagrams.

There is a lot of research on accelerating DD operations. Because DD opera-
tions can only be done using double operations, we can use traditional optimiza-
tion techniques for DD, i.e., thread parallelization, distributed parallelization,
SIMD, and so forth.

Mukunoki et al.[7] reported an acceleration on an NVIDIA GPU and accel-
erated Krylov subspace methods on GPUs [21] for matrix-matrix multiplication
in double-double precision. Mukunoki et al.[22] also reported an implementation
and optimization of double-double and triple-double precision GEMM, GEMV,
and AXPY on GPUs.

Nakata et al.implemented a similar acceleration for double-double precision
to replace the CPU implementation of MPACK (multiple precision arithmetic
BLAS and LAPACK) [23] and applied it to semidefinite programming [24, 6].

In CAMPARY, M. Joldes et al.implemented double-double, triple-double and
quad-double precision [25]. They also accelerated matrix-matrix multiplication
and other routines on GPU to apply semidefinite programming solver for these
precisions [26].

For solving sparse linear equations, Kotakemori et al. implemented and accel-
erated quadruple precision for the Lis library [27]. Hishinuma et al. accelerated
sparse matrix-vector multiplication for CPUs accelerated by SIMD AVX / AVX2
[8, 28, 29] for the DD iterative solver library.
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Fig. 1. Block diagram of the PEZY-SC2 processor.

3 Architecture of the PEZY-SC2 processor

3.1 Overview

Figure 1 shows the block diagram of the PEZY-SC2 processor, and table 1
shows the specifications of the PEZY-SC2 processor. The PEZY-SC2 processor
is a MIMD (multiple instruction, multiple data) type many-core processor, and
the calculation core of the PEZY-SC2 is called the Processing Element (PE).

The PEZY-SC2 processor has in total 2048 PEs in a three-layer hierarchical
structure called “Prefecture,” “City,” and “Village.” Each Village has four PEs,
each City has four Villages, and each Prefecture has sixteen Cities. The PEZY-
SC2 has eight Prefectures.

The inside of each PE has eight register files and eight program counters for
running eight threads independently.

Figure 2 shows the thread control mechanism, and figure 3 shows the latency
hiding mechanism. The PEZY-SC2 can launch eight threads (= 4× 2) per PE.
There are four active threads, called “front threads”; the remaining four inactive
threads are called “back threads.”

These front and back threads can be switched sequentially in each cycle (i.e.,
by using fine-grained multi-threading [30]). When the original front threads stall
(e.g., when loading data from memory), we can hide some of the latency by
switching back threads to the front and front threads to the back.

Each PE has arithmetic units (an adder and a multiplier). To process an
instruction, we need four cycles to read from memory, perform operations, and
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Table 1. Specifications of the PEZY-SC2 processor.

Process 16 nm

Clock freq. 1 GHz

L1 cache 4 MB (D), 8 MB (I)

L2 cache 8 MB (D), 4 MB (I)

LLC 40 MB (X-bar connection)

Local memory 40 MB (20KB / PE)

PCIe I/F PCIe Gen4 8 Lane 4 port (64 GB/s)

DDR I/F DDR4 64 bit 3200 MHz 4 port (100 GB/s)

# of PEs (cores) 2048 MIMD cores

SIMD vector length 64 bit

Peak performance (DP) 4.1 TFlops

Peak performance (SP) 8.2 TFlops (x2 SIMD)

Peak performance (HP) 16.4 TFlops (x4 SIMD)

Power consumption 200 W (Peak)

write to registers or memory. Consequently, the processor needs at least four
threads to fully occupy the arithmetic unit in the pipeline of PE.

Next, let us focus on the instructions and computing unit of the PEZY-SC2.
The PEZY-SC2 can use the MAD (Multiply-Add; d = a + b × c) instruction;
MAD is addition and multiplication. Unlike the FMA (Fused-Multiply-Add)
instruction, it rounds the result of the multiplication. The PE performs the
MAD by running the adder and multiplier at the same time. If we run eight MAD
instructions on eight threads on one PE, each MAD instruction is processed in
one cycle on average.

The PEZY-SC2 processor supports 64-bit SIMD instructions. It can com-
pute one double-precision operation, two single-precision operations, or four
half-precision operations simultaneously.

One special function unit (SFU) is installed in each City to calculate divi-
sion, modulo, square root, and inverse of the square root. Thus, the PEZY-SC2
processor has 128 SFUs (= 16 (Cities) × 8 (Prefecture)) in total.

Finally, let us focus on the cache memory. Each PE has a 2 KB L1 data
cache, and each City has a 64 KB L2 data cache. Each Prefecture has a 2.5 MB
LLC (Last Level Cache), and the LCCs of each Prefecture are connected by an
X-bar.

PEZY-SC2 has 20 KB worth of small and fast scratchpad memory called
“local memory.” Figure 4 shows the address layout of the local memory. The
PEZY-SC2 processor allocates local memory as a stack, and a user can use the
remainder. The local memory can load or store data in one cycle.
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Fig. 2. Thread control mechanism of the PEZY-SC2 processor. THxF means “front
threads,” THxB means “back threads.” The front and back threads can be switched
by using I.chgthread or I.actthread instructions. Threads are controlled by fine-grained
multi-threading.

Fig. 3. Pipeline architecture of the PEZY-SC2 processor.

3.2 PEZY-SC2 programming model

The PEZY-SC2 processor supports PZCL, an OpenCL-like programming in-
terface. To run a program on the PEZY-SC2 processor, it needs two types of
program: a kernel program and a host program.

A host program runs on the host CPU. A host program is written in C/C++,
and the PZCL API compiles it by using an ordinary C compiler (e.g., GNU
C compiler). The PZCL API allocates the PEZY-SC2 memory, transfers data
between the CPU and PEZY-SC2, launches the kernel program, and so forth. In
addition, the SDK (Software Development Kit) for the kernel programs provides
mathematical function libraries and atomic operations libraries.

A kernel program runs on the PEZY-SC2 device. It is written in “PZCL C”
and compiled with LLVM, which is almost the same as OpenCL C. PZCL C
has built-in functions for the PEZY-SC2 architecture, such as thread control
using the thread ID (tid) and process ID (pid), synchronization, flushing data,
switching between front and back threads, and so forth.
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Fig. 4. PEZY-SC2 address layout of the local memory. The size of the local memory
is 20 KB. This area is shared by the stack and the userspace.

4 Implementation of pzqd library

4.1 Double-double precision arithmetic

Table 2. Flop count of double-double precision arithmetic.

Algorithm Add Mult. Sum

Two-Sum 6 0 6
Split 3 1 4

Two-Prod 10 7 17
QuadAdd-IEEE 20 0 20

QuadMul 15 9 24

ADD number is represented by two double-precision numbers as a = (ahi, alo)
(see figure 4.1). It consists of a sign part of 1 bit, an exponent part of 11 bits,
and a significant part of 104 (52 × 2) bits. For comparison, the binary128 of
IEEE Std 754-2008 is composed of a 1-bit sign part, 15-bit exponent part and
112-bit significant part; the DD number has four fewer bits in its exponent part
and eight fewer bits in its significant part.

Next, we show how we realize addition and multiplication of two DD numbers.
First, we use the fact that we can add, subtract, and multiply floating point
numbers with numerical round offs. Still, these round off errors can correctly be
evaluated [5, 31, 32].
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Fig. 5. Schematic view of a double-double precision number in comparison with IEEE
754 quadruple precision. DD has a 1-bit sign part, 11-bit exponent part, and 104-bit
significant part.

Here, let us calculate exactly the addition s = a ⊕ b and its error e = a +
b− (a⊕ b) for a floating point number a, and b, where ⊕ denotes addition as a
floating point operation.

When |a| ≥ |b|, the addition s = a ⊕ b and its error e = a + b − (a ⊕ b) can
be evaluated with the following Quick-Two-Sum (a, b) algorithm:

Quick-Two-Sum (a, b):

1. s← a⊕ b
2. e← b⊖ (s⊖ a)
3. return(s, e).

When the relation of a and b is not known, we can use the Two-sum (a, b),
although it requires more floating point number operations:

Two-Sum (a, b) :

1. s← a⊕ b
2. v ← s⊖ a
3. e← (a⊖ (s⊖ v))⊕ (b⊖ v)
4. return(s, e),

where ⊖ denotes subtraction as a floating point operation. The Two-Sum al-
gorithm requires six double-precision operations compared with the three of
QuickSum.

Next, let us evaluate the multiplication p = a⊗b and its error e = a×b−(a⊗b)
exactly; multiplication as a floating point operation is denoted by ⊗.

Using the sub-function Split (a), the double-precision number a is divided
into two double-precision numbers ahi, alo and a = ahi + alo as follows:

Split (a):

1. t← (227 + 1)⊗ a
2. ahi ← t⊖ (t⊖ a)
3. alo ← a⊖ ahi



Rgemm-dd on PEZY-SC2 9

4. return(ahi, alo)

Moreover, we use Two-Prod (a, b) to calculate p and e above, as follows:
Two-prod (a, b):

1. p← a⊗ b
2. (ahi, alo)← Split(a)
3. (bhi, blo)← Split(b)
4. e← ((ahi ⊗ bhi ⊖ p)⊕ ahi ⊗ blo ⊕ alo ⊗ bhi)⊕ alo ⊗ blo
5. return(p, e)

Finally, let us define addition (QuadAdd-IEEE) and multiplication (Quad-
Mul) for two arbitrary DD numbers a and b:

QuadAdd-IEEE (a, b):

1. (shi, ehi) = Two-Sum(ahi, bhi)
2. (slo, elo) = Two-Sum(alo, blo)
3. ehi = ehi ⊕ slo
4. (slo, elo) = Quick-Two-Sum(shi, ehi)
5. ehi = ehi ⊕ slo
6. (shi, elo) = Quick-Two-Sum(shi, ehi)
7. return(c)

and
QuadMul (a, b):

1. (phi, plo) = Two-Prod(ahi, bhi)
2. plo = plo ⊕ (ahi ⊗ blo ⊕ alo ⊗ bhi)
3. (chi, clo) = Quick-Two-Sum(phi, plo)
4. return(c)

. Table 2 shows the number of flops (FLOating-Point operationS) of the double-
precision arithmetic operations that constitute the DD arithmetic operation.
Note that it is also possible to reduce the number of calculations by lowering the
operation precision and using the FMA instruction [5, 6].

We ran a simple benchmark of calculating the dot product of a vector of
length 105. We compared the elapsed time of FORTRAN REAL*16 in the Intel
FORTRAN compiler 13.0.1 (this is software-implemented binary128) and the
DD on Intel Xeon-E5-2618L v3.

By quadruple precision calculation (REAL*16) took 3.5 [ms], while the DD
calculation took about 0.45 [ms]. The DD operations were approximately 7.7
times faster than the FORTRAN REAL*16 quadruple-precision operations.

Finally, let us point out another feature of the DD arithmetic operation; the
data request amount in bytes (Byte / Flop) for the one floating point operation
is smaller than in the double-precision operation. For example, the MAD (d =
a×b+c) operation for DD numbers requires 44 floating operations using double-
precision numbers, whereas the memory requirement is 48 = 16×3 Bytes. Thus,
Byte / Flop ratio is about 0.91. The double-precision operation requires 24 bytes
to be read from memory and performs two floating operations; its Byte / Flop
ratio is therefore 12.
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4.2 Implementation details of the pzqd library

We developed a definition of the DD type, DD mathematical functions, and DD
arithmetic operations for the kernel program by using the syntax of PZCL C++
(under development).

All of the operations in the QD library are single-threaded programs. As
mentioned above, the kernel program supports C syntax, and the program is
parallelized with tid (0 - 7) and pid (0 - 1983) as indices; each thread can be
operated independently. Therefore, we could port most of the functions without
modification. An exception was that the pzqd library does not support I/O
functions.

We implemented operator overloading of DD arithmetic operations by us-
ing PZCL C++. The kernel program can handle a DD-type variable that is
transferred from the CPU in the same way as the host program using the QD
library.

We confirmed that the pzqd library and the QD library give bit-wise the
same result for sample codes of the QD library. We deleted the I/O parts on the
PEZY-SC2 and run only one thread.

Figures 6 and 7 show examples of a host program using the QD library and
kernel program using the pzqd library.

The code of figure 6 runs the following flow:

1. It declares dd real type array a, b, and c,
2. transfers a and b to the PEZY-SC2 from the CPU,
3. calls the “pzc Add dd” function written in the kernel program, and
4. receives the answer array c from the PEZY-SC2.

The code of figure 7 runs the following flow:

1. It gets its own thread ID (tid) and PE ID (pid),
2. computes its own global thread ID by using tid and pid,
3. computes the locations of the arrays a and b corresponding to the global

thread ID, and
4. computes c[index] += a[index] × b[index].

As shown above, pzqd treats the dd real type in the PEZY-SC2 kernel pro-
gram in the same way as the CPU code using the QD library.

5 Experimental results

We conducted two experiments. The first evaluated DD elementary functions in
pzqd; the second evaluated an implementation of matrix-matrix multiplication
in DD using pzqd.

We used a PEZY-SC2 system that operated 1984 PEs at 700 MHz and used
an Intel Xeon D-1571 as the host CPU (with DDR4 at 2400 MHz, 64GB of
memory and a memory bandwidth of 76 GB/s). Initially, four Cities were dis-
abled to improve the yield. The peak performance of the PEZY-SC2 in double
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#include ”qd . h”
. . .
int main ( ) {
dd r ea l ∗a , ∗b , ∗c ;
. . .
s i z e = s izeof ( dd r ea l ) ∗ N;
cl mem mem a = c lCrea t eBu f f e r ( . . . , N) ;
cl mem mem b = c lCrea t eBu f f e r ( . . . , N) ;
cl mem mem c = c lCrea t eBu f f e r ( . . . , N) ;
. . .
enqueueWriteBuffer (mem a , true , 0 , s i z e , a ) ;
enqueueWriteBuffer (mem b , true , 0 , s i z e , b ) ;
. . .
Add dd . setArg (0 , mem a) ;
Add dd . setArg (1 , mem b) ;
Add dd . setArg (2 , mem c) ;
Add dd . setArg (3 , N) ;
. . .
enqueueNDRangeKernel (Add dd , ThreadsNum , . . . ) ;
enqueueReadBuffer (mem C, true , 0 , s i z e , C) ;

Fig. 6. Example of host program using QD library written in C++ with PZCL API

precision was 2777 GFlops (≈ 0.7 [GHz] × 1984 [cores] × 2 [MAD operations]).
The operating system was CentOS 7.2, the host program compiler was gcc 4.8.5,
and the kernel program compiler was pzSDK 4.1 + LLVM 3.6.2. We verified that
the LLVM compiler issued the MAD instructions for the kernel program at the
assembly level.

For comparison, we used an Intel Xeon E5-2618L v3@2.3 GHz with eight
cores and 64 GB of memory. In this experiment, we did not explicitly use the
FMA or the SIMD AVX2 instructions, i.e., the SIMD extension instruction set of
the Xeon CPU. Without the SIMD AVX2 instructions, the theoretical peak per-
formance in double precision is 73.6 GFlop for Intel Xeon E5-2618L v3@2.3 GHz
eight cores. Note that when we used the SIMD AVX2 instructions, it reached
294.4 GFlops. The Turbo Boost feature was disabled. While we did not write
SIMD or FMA instructions, we did not suppress FMA instructions generated by
the compiler.

5.1 Performance of elementary operations in one thread on the
PEZY-SC2

We roughly estimated the ratio of the speeds of the CPU and the PEZY-SC2
in one thread. For the PEZY-SC2 processor, the peak performance dropped to
1 / 4 when only one thread was running, because the PEZY-SC2 operates one
thread every four clocks.
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#include ” pzqd rea l . h”
void pzc Add dd ( dd r ea l ∗ a , dd r ea l ∗ b , dd r ea l ∗ c , int N)
{
int t i d = g e t t i d ( ) ;
int pid = ge t p id ( ) ;
int index = pid ∗ get maxpid ( ) + t i d ;
int maxid = get maxpid ∗ get maxt id ( ) ;

for ( ; index < N ; index += maxid )
{

a [ index ] = ”3.14159265358979323846264338327950288 ” ;
b [ index ] = ”2.249775724709369995957 ” ;
c [ index ] += a ∗ b ;

}
f l u s h ( ) ;
}

Fig. 7. Example of kernel program using pzqd library written in PZCL C

Usually, we fill up the pipeline of the PEZY-SC2 processor by executing every
four threads sequentially in the PE to hide latency. Therefore, the performance
ratio of the PEZY-SC2 processor between Intel Xeon E5-2618 v3@2.3 GHz at
peak performance in one thread is 13.1 = (2.3 [GHz] / (0.7 [GHz] / 4 )). Thus,
we estimate that the PEZY-SC2 is least 13.1 times slower than Xeon E5-2618
when we operate both with only one thread.

The implementations of the elementary functions of pzqd are similar to those
of the QD library; we used a Taylor expansion to obtain them. We verified that
our implementation gave the same bit-wise results as the QD library by inputting
random DD values. Consequently, we found that we can run the same math
functions of the QD library on the host machine and on the PEZY-SC2.

Table 3 shows the results of benchmarking the elementary functions by using
one thread of the Xeon E5-2618Lv3 CPU and one thread of the PEZY-SC2 106

times. In these cases, we fixed the input to 0.5 in order to obtain more systematic
results because some functions vary in performance depending on their input.

The elapsed time of the PEZY-SC2 was about 15 to 25 times longer than
that of the CPU. Addition and multiplication were 14.7 and 14.5 times slower,
respectively; these values are very reasonable. However, the results for other
functions (sin, cos, acos, and asin) were much slower. We suspect this was due
to the differences in the special function unit and compiler between the CPU
and PEZY-SC2. Nevertheless, the performance losses were not too serious.
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Table 3. Elapsed times of executing elementary functions 106 times in one thread
[second] (ratio) on E5-2618L v3 and the PEZY-SC2.

Xeon E5-2618L v3 PEZY-SC2

add 0.007 (1.00) 0.11 (14.7)

mult 0.010 (1.00) 0.15 (14.5)

div 0.422 (1.00) 6.96 (16.4)

sin 0.394 (1.00) 8.44 (21.3)

cos 0.411 (1.00) 8.51 (20.7)

pow(x,2) 0.038 (1.00) 0.73 (18.7)

sqr 0.022 (1.00) 0.37 (16.6)

sqrt 0.005 (1.00) 0.09 (15.3)

asin 0.588 (1.00) 14.3 (24.2)

acos 0.583 (1.00) 14.5 (24.8)

sinh 0.444 (1.00) 7.45 (16.8)

cosh 0.466 (1.00) 7.32 (15.7)

log 0.425 (1.00) 5.91 (13.9)

exp 0.433 (1.00) 6.98 (16.1)

5.2 DD-Rgemm in PEZY-SC2

Here, we explain the details of the matrix-matrix multiplication in DD (DD-
Rgemm). The DD-Rgemm routine calculates

C = αAB + βC,

where A, B, and C are DD square dense matrices of size N ×N , and α and β
are scalar values in DD. This routine is a straightforward extension of DD to the
BLAS Level 3 gemm.

The core operation of the DD-Rgemm is the DD multiply-add operation. This
operation consists of 35 double-precision additions and nine multiplications. We
defined the peak performance of DD as 1745 GFlops = 2777 / 35 × 22, where
2777 is the peak performance of the PEZY-SC2.

We defined the peak performance of DD because the numbers of additions
and multiplications are not uniform for double-precision arithmetic; the DD
multiply-add operation cannot be processed in (35 + 9) / 2 = 22 cycles on
the MAD unit. It takes 35 cycles even if we use the MAD instruction for all
double operations; however, the numbers of additions and multiplications of DD
multiply-add are not equal. Therefore, the peak performance of DD-Rgemm on
the PEZY-SC2 should be 1745 GFlops.

The peak performance of the Intel Xeon E5-2618L v3 is 73.6 GFlops, when
we issue the FMA instructions. Therefore, the peak performance of the DD
calculation is 73.6 / 35 × 22 = 46 GFlops, if we consider the unequal numbers
of additions and multiplications in DD arithmetic.

To speed up DD-Rgemm, we made 2 × 2 blockings [33]. The block size can
be small, and we set the block size to 2 × 2 since the amount of data requested
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Fig. 8. Performance of DD-Rgemm on the PEZY-SC2 (right: includes the communica-
tion overhead between the CPU and the PEZY-SC2, left: pure kernel execution time;
i.e., the communication overhead is not included). The horizontal axis is the matrix size
N , and the vertical axis is performance, which is equal to the floating point operations
per second divided by 44 × N3.

to be sent to memory per operation is small in DD arithmetic. In this way, we
can store all the blocking matrix and temporary variables of DD arithmetic in
the local memory. Also, the DD addition and multiplication operations are inline
expanded to eliminate the overhead of function calls.

As the matrix size increases, the data size increases and exceeds the capacity
of the local memory space. We reduced the number of threads and in turn the
usage of the stack area, so that all the data fit in the local memory.

5.3 Performance of DD-Rgemm in the PEZY-SC2

Figure 8 shows the results of DD-Rgemm of several implementations, with vari-
ous matrix sizes and with / without communications between the CPU and the
PEZY-SC2. The matrices used in the experiment were dense square matrices,
and we filled them with random numbers. The horizontal axis is the matrix size
N , and the vertical axis is performance, which is equal to the floating point op-
erations per second divided by 44 × N3. We performed the calculation six times
for each size N . We discarded the first result and averaged the remaining five.
We verified the resultant matrices against the QD library; the pzqd library was
equal bit-wise to the QD library.
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The results for the cases including communications included (i) the time to
allocate memory to the matrices A, B, and C on the PEZY-SC2, (ii) the time
to transfer the data of each of the matrixes from the CPU to the PEZY-SC2,
(iii) the time to compute DD-Rgemm, and (iv) the time to transfer the resultant
matrix C from the PEZY-SC2.

We tested the following implementations:

PEZY-SC2 (2 threads / PE) Launch total 3968 threads (= 1984 ×2), two
threads per PE. 2 × 2 blocking, and temporary variables stored in local
memory.

PEZY-SC2 (4 threads / PE) Launch total 7936 threads (= 1984 ×4), four
threads per PE. 2 × 2 blocking, and temporary variables stored in local
memory.

PEZY-SC2 (8 threads / PE, no localmem.) Launch total 15872 threads
(= 1984 ×8), eight threads per PE. 2 × 2 blocking, all variables stored in
global memory because the stack overflowed local memory.

Intel Xeon E5-2618L v3 16 threads in total launched using OpenMP on the
Intel Xeon. 2 × 2 blocking, the same program except for the PEZY-SC2-
specific stuff.

We could not perform 4 × 4 blocking because the stack size overflowed the local
memory for any number of threads, and we could not obtain correct results.

Using four threads per PE, the performance reached 1111 GFlops counting
communications and 1297 GFlops not counting communications when all data
were stored in local memory. These values represent 40 % and 47 % of peak
performance in double precision (2777 GFLOPS) and 64 % and 74 % of peak
performance in DD (1745 GFLOPS).

Using two threads per PE, performance reached 656 GFlops counting com-
munications and 674 GFlops not counting communications when all data were
stored in local memory. The performance of four threads without counting com-
munications was 1.97 times faster than that of two threads, i.e., almost two times
faster. Since the PEZY-SC2 fills up the pipeline with four threads per PE (as
shown in figure 3), when we use only two threads per PE, the performance is
halved, and there are no operations for the remaining two clocks.

The memory bandwidth is not a bottleneck because the performance of four
threads is twice that of two threads. The amount of data required for the calcu-
lation is small enough for the DD arithmetic to fill up the instruction pipeline.

Using eight threads per PE, the performance reached 167 GFlops counting
communications and 168 GFlops not counting communications when all data
were stored in global memory. These values are about 10% of peak performance
in DD. It seems that overflow of the local memory caused a performance degra-
dation. The blocking matrices and temporary data of DD arithmetic were too
large.

From the above results, it turns out that the most effective implementation is
one with four threads per PE. Even including communications, its performance
was the highest.
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We obtained 43 GFlops at maximum on the CPU, which was about 93%
of peak performance in DD. The PEZY-SC2 runs were 4.3 (13.8) times faster
than the CPU with (without) communication for a matrix size of 100, and 19.5
(22.5) times faster for a matrix size of 2000. When the matrix is small, the
kernel startup overhead time and data communication overhead are large on the
PEZY-SC2; in this case, it was only four times faster than the CPU.

Next, let us focus on the overhead of the kernel startup time and evaluate the
performance when the matrix is small. We measured the time for kernel launch.
It was 30 [ms] on average and 50 [ms] at maximum.

The elapsed time when for a matrix size of 100 was 220 [ms] without commu-
nications and 740 [ms] with communications. The communication time, kernel
startup time, and calculation time were 520, 50, and 170 [ms], respectively. As
the kernel startup time amounted to about 30% of the calculation time, includ-
ing communications caused the PEZY-SC2 to be only about four times faster
than the CPU.

On the other hand, when the matrix size was 200, the total calculation took
650 [ms] without communications and 1350 [ms] with communications. The com-
munication time, kernel activation time, and calculation time were 700, 50, and
600 [ms] in this case, so the speedup when including communications was 11
times relative to the times of the CPU.

Even if the kernel startup time is assumed to be the maximum, it occupies
10% or less of the total elapsed time. Thus, the kernel startup time is not a big
problem; we can expect a performance speedup even when the matrix is small.

Looking at the case of even smaller matrixes, the performance for a matrix
size of 60 was 50.9 GFlops without communications and 13.6 GFlops with com-
munications, whereas the CPU ran at 14.2 GFLOPS. Consequently, the PEZY-
SC2 performs DD-Rgemm faster than the CPU when the matrix size is larger
than 60.

From these results, the performance reached 168 GFlops when we did not
use the local memory, and it reached a ceiling of 1297 GFlops, or 74% of peak
performance in DD, when we used the local memory. This value is equivalent
to 59 GFlops by DD. All of the results were faster than those of the CPU for a
matrix size of 60 or more.

5.4 Efficiency of thread parallelization of DD-Rgemm on the
PEZY-SC2

We analyzed the causes of the performance degradation of DD-Rgemm on the
PEZY-SC2. To analyze the parallelization efficiency, we increased the number
of Cities and evaluated PEZY-SC 2’s three-layer hierarchical cache structure.

Table 4 shows the efficiency of thread parallelization for a matrix size of 2000
in four threads per PE and increasing the number of PEs to be activated. The
total size of the DD matrices A, B, and C comes to 192 MB, too big to fit in
the LLC (40 MB).

We obtained the highest performance for 64 threads (128 PE, 1 City), i.e.,
95% of peak performance. The efficiency of thread parallelization was more than



Rgemm-dd on PEZY-SC2 17

Table 4. Efficiency of thread parallelization (matrix size N = M = K = 2, 000, no
communication, four threads per PE). Performance means 44 × N3 / time.

# of threads (PE) time [sec.] perf. (ratio) peak of DD ratio

64 (16, 1 City) 25.4 13.4 (1.0) 95%

128 (32, 2 Cities) 13.0 26.7 (2.0) 95%

256 (64, 4 Cities) 6.8 52.7 (3.9) 94%

512 (128, 8 Cities) 3.5 102.2 (7.6) 91%

1024 (256, 1 Prefecture) 1.9 194.3 (14.5) 86%

2048 (512, 2 Prefectures) 1.0 356.1 (26.6) 79%

4096 (1024, 4 Prefectures) 0.5 712.9 (53.2) 79%

7936 (1984, 8 Prefectures) 0.3 1234.0 (92.1) 71%

90% of the theoretical value, even when we increased the number of threads to
1024 (256 PE, 1 Prefecture), and performance increased linearly as we increased
the number of threads.

For a matrix size of 2000, the CPU performed at about 41.3 GFlops. The
PEZY-SC2 exceeded the performance of the CPU when we used 64 PEs and 256
or more threads. The peak performance ratio of the CPU and the PEZY-SC2
was about 24 times. The PEZY-SC2 needed to use 83 or more PEs (=1984/24)
to beat the CPU. However, 95% of peak performance was high enough to exceed
the performance of the CPU with 64 PEs or more.

Although the efficiency of thread parallelization was less than 90% when
the number of threads was 2048 or more (512 PE or more, 2 Prefecture or
more), the efficiency of thread parallelization was still very high (75 %) even
with 7986 threads (i.e., when we used all of the PEs); this amounts to 71% of
peak performance.

The performance loss when we used a large number of threads (especially
when we used more than 1024 threads) may be due to LLC misses. One Prefec-
ture is up to 1024 threads, and it completely occupies the LLC. If we had used
more than one Prefecture, thrashing of the LLC may have occurred.

When we look at the performance counter, the cache hit rate of the LLC
at 1024 threads is about 95%, whereas for 7936 threads it drops to about 88%.
For 1024 threads, one Prefecture exclusively occupies the LLC, and when the
number of threads is 2048 or more, accesses across the LLCs start to occur; thus,
LLC thrashing may occur. We expect that the LLC thrashing would resulted in
a substantial loss in performance.

6 Summary

We developed the pzqd library; a double-double precision arithmetic library
based on Hida et al.’s QD library for the PEZY-SC2 processor. The features
of PEZY-SC2 are: (i) 2048 processor elements (PEs) in total, (ii) a three-layer
hierarchical cache structure consisting of Village, City, and Prefecture, and (iii)
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fast local memory (20 KB per PE). It can load or store in one cycle; it has (iv)
an efficient threading mechanism with eight threads using fine-grained multi-
threading, and (v) a MIMD-type processor, making it easy to port conventionally
threaded CPU codes. We also implemented DD matrix-matrix multiplication
(DD-Rgemm) using pzqd and evaluated its performance.

To make use of these features, we reduced the number of threads from eight to
four to increase the remaining area of local memory. This allowed us to store the
intermediate variables for DD arithmetic and the small blocking matrix in local
memory, so that it became possible to calculate matrix-matrix multiplications
of any size.

Our optimized Rgemm routine attained 74% of peak performance at maxi-
mum, not counting the communication time between the CPU and the PEZY-
SC2. This level of performance is equivalent to 59G Flops in DD operations, or
1297 GFlops in double-precision operations. Moreover, it is faster by 23 times
than the Intel Xeon CPU. Even when we included the communication time be-
tween the CPU and the PEZY-SC2, the PEZY-SC2 outperformed the CPU when
the matrix size was 60 or more. Thus, we also demonstrated the usefulness of
the PEZY-SC2 even in comparatively small problems.

The execution efficiency of our implementation for the PEZY-SC2 was 91%
of peak performance when running in 256 PEs, i.e., one Prefecture. This value
is quite good; it is 14.5 times faster than that of running 16 PEs. Using all 1984
PEs was 92 times faster than using 16 PEs.

Our future tasks will be (i) to improve the parallelization efficiency by opti-
mizing the data management in the cache memory and (ii) to implement quad-
double precision and BLAS functions other than matrix-matrix multiplication.
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