soothe2
dynamic resonance suppressor

user manual
Contents

Introduction .. 3
Quick start .. 3
Basic workflow .. 4
Parameters .. 7
 Main section .. 7
 Stereo section .. 10
 Speed section .. 11
 Quality section .. 11
 Sidechain .. 13
 Output section ... 14
Frequency and reduction graph ... 17
 Band types ... 17
 Band controls .. 18
 General features for all EQ nodes ... 20
 Editor size button .. 21
 Other features of the graph ... 22
Toolbar ... 23
 Preset menu .. 23
 Undo/redo .. 25
 Comparing settings with A/B switching .. 25
 Configuration menu .. 25
Miscellaneous ... 26
 Input trim ... 26
 Version update checks ... 27
Paths for presets and uninstallation .. 28
 MacOS .. 28
 Windows ... 28
FAQ and support ... 29
Copyright and acknowledgements .. 29
Appendix A: Diagram of the processing pipeline ... 30
Introduction

Thank you for using soothe2!

soothe2 is a dynamic resonance suppressor. It automatically detects resonances across the whole frequency range and applies reduction only to the harsh and resonant parts of the signal, where and when needed. It can find its uses on individual channels as well as on busses and in mastering. You can use it to reduce harshness from close mic'd sources, to clean up low-mid muddiness, as a transparent de-esser, or to even out poking bass build-ups.

Quick start

Start with the default preset loaded and by turn up the depth until soothe2 is doing a bit too much. Then, back off the depth setting slightly. Adjust the sharpness to suit the input material - less sharpness for more general processing and more sharpness to target more specific resonances. Use the frequency graph along with the delta monitoring to focus the processing on the problematic frequency area. Turn off delta monitoring and find a sweet spot for the depth. Use bypass to evaluate the result of the processing.
Basic workflow

soothe2 has been designed with ease-of-use in mind, and in most cases should be quick to set up, saving the time and ears for the creative work. The plug-in loads up the *factory default preset* which serves as a good starting point. Let's take a look at how to use the plug-in.

The GUI of the plug-in is divided into sections to group together similar parameters. The main section houses the most important parameters: *soft and hard mode*, *depth*, *sharpness* and *selectivity*.

The processing algorithm of **soothe2** comes in two flavours – soft for touchier adjustments and hard for more drastic measures.

In most cases we’d recommend starting out in *soft mode*, and using **soothe2** as a channel insert for tasks like *general harshness removal* and *de-essing*. It is usually faster to set up and harder to overuse. In some other situations *hard mode* might be more suitable. For example, in *hard mode* you could tame an otherwise great sounding, but a little too *boomy double bass take* or isolate an *edgy 2.5kHz peak* from the lead vocalist buried in a busy mix.

depth, *sharpness* and *selectivity* are the core settings of the plug-in. *depth* adjusts the overall amount of the reduction - more *depth* leads to deeper cuts. *sharpness* controls the width (or q) of the individual cuts. *selectivity* changes what kind of cuts to make, i.e. whether to focus more on the general shapes (less selectivity) or just the individual resonances (more selectivity).

With the *factory default preset* as the starting point, you can soften most vocals just by turning up the *depth* setting to your liking.

The EQ nodes on the *frequency graph* control the weighting curve that is used to focus the processing on specific frequency areas. Clicking on a node on the graph selects the corresponding EQ band. Dragging the node horizontally shifts the band frequency and dragging it vertically affects the band’s reduction sensitivity (higher sensitivity results in more reduction in that frequency area).
In the output section you can toggle to listen to the delta. With delta on, soothe2 will output the difference of the input and the output. This lets you hear what is being reduced from the audio.

On a stereo instance, you can change stereo settings from the stereo section below the main controls. You can toggle between left/right or mid/side stereo modes, control the stereo link of the resonance detection, and focus the processing towards either one of the channels with the stereo balance setting.

With soothe2, you can adjust the speed with which the processor reacts to resonances. The attack parameter lets you slow down the reaction time, and the release parameter slows down the speed with which the notches disappear after they are no longer needed.

Slowing down the attack can be very useful when working with material that has sharp transients, such as the drum overheads, as the snare drum attack can be let through while cleaning away the nasty resonances from the cymbals.

To gently even out energy build-ups with for example orchestral material or a lot of close-mic’d acoustical instruments with too much fundamentals, you can slow down both attack and release, and set sharpness and selectivity low.

Similar to soothe2 and spiff, soothe2 has a number of oversampling and time resolution options, referred together as quality settings. Higher quality settings make the processed output sound smoother, but use up more CPU. You can open the quality controls by clicking the labels presenting the selected quality settings.

Oversampling sets the amount of spectral oversampling, offering a better frequency resolution for the processor to distinguish resonances when increased. Using high oversampling settings is necessary for accurate handling of low frequencies.

Resolution increases the temporal resolution. With resolution on high or ultra, soothe2 will more often refresh the reduction filter it internally uses, which can be audible with material that is abundant of transients or with complex waveforms. High resolution settings results in smoother time domain response especially with fast attack and release settings.
With the offline rendering quality settings, the plug-in will switch to different quality settings when doing an offline render or bounce.

The utility toolbar sits on the top edge of the graph. From here, you can open the preset menu, access the configuration menu for global settings, do a / b switching and copying to compare plug-in settings, and undo or redo changes.
Parameters

The following section will go more in depth into the parameters and their use.

Main section

The main section gathers together the essential parameters that affect the resonance detection: **soft and hard mode, depth, sharpness and selectivity**.

Soft / hard mode

`s soothe2` defaults to **soft mode**. Of the two modes **soft mode** is more autonomous, easier to use and faster to set up. It is more transparent on most sources, preserves transients better and in general causes less artefacts, but with the trade-off of tending to avoid very drastic moves. Soft mode is also less level dependent, and often better suited for very dynamic performances.

Hard problems require hard tools, however. **Hard mode** is more active of the two, and can be argued to be more powerful and tweakable. It can be easier to overuse, and may take more time to set up.

If the problem can be solved using **soft mode**, that is generally the way to go, since it is going to be faster to set up and will cause less damage even if not optimally set up. There are cases where **soft mode** just won’t cut it, and more control over the process is needed: perhaps the material is very complex, or the amount of reduction needed is more dependent on the dynamics of the material, such as with close mic’d guitar cabs. Trying to isolate the edgy 2.5kHz peak from the lead vocalist buried in a busy mix? Being presented with a poorly recorded violin and 18dBs of excess mid range, or perhaps trying to tame that cymbal whistling from the overheads? **Hard mode** is your pal.
NOTE: Choosing the mode changes everything, as all other controls are relative to the mode i.e. a depth of 3.0 in soft mode will not behave like depth of 3.0 in hard mode.

The main controls – soft/hard mode, depth, sharpness and selection – are especially interdependent so changing any of them might require checking some of the others.

Depth

You can adjust the general level of reducing harshness with the depth setting – more depth means more reduction. You may think of it as a sensitivity or drive of the process. Depth should be adjusted according to the input level even when using a preset. In some cases it sounds better to turn the depth a little over the top and use the mix setting to blend it with the dry signal.

For convenience, the depth is shown in dB (-18 to 18). Please note that the dB value displayed is referential to make it more familiar and intuitive to use, but it does not represent the absolute amount of changes the processing does. The reduction graph shows what is being reduced so you can use that as an indication of how much the depth setting is affecting the processing.

The depth control has way more range available than what is usually needed, in order to open up possibilities for creative abuse. Cranking the depth all the way up can result in up to 60dB notches that will mangle the source beyond recognition.

Sharpness

Sharpness controls how sharp cuts the processing attempts to make i.e. more sharpness leads to deeper and narrower cuts. For example, with the sharpness cranked up all the way to 10, the cuts become very deep, narrow and specific frequency-wise.
If high sharpness in soft mode doesn’t reduce the harshness to satisfaction, try easing the sharpness and switching to hard mode for a more aggressive combination. Decreasing selectivity can further improve this approach especially when dealing with sibilants. Beware though, that overly high sharpness runs the risk of sounding distorted, as the process removes all the resonant frequencies in a very surgical manner – the distortion heard is actually noise and non-resonant residue in the sound material.

A high sharpness can be a very useful setting e.g. for drum overheads. To address energy build-ups with orchestral material, low settings for sharpness and selectivity might be useful.

Selectivity

Selectivity defines how selective soothe2 is about the frequencies suppressed, allowing you to fine tune the responsiveness together with the depth control. Higher selectivity cuts only the stronger and more prominent resonances. With selectivity all the way up to 10 applies the processing only to the most prominent resonances. If you dial the selectivity all the way down to 0, soothe2 will be less selective and more general with the reduction i.e. "everything must go". This is a great way to treat uneven material to sound more balanced.

For de-essing, the optimal value of selectivity varies depending on the sibilance. For noisy, more broadband esses, a lower selectivity is recommended. If the esses are more of the whistling or lisping type, a higher selectivity may cut it better.
Stereo section

The stereo section is only enabled when running **soothe2** as a stereo instance. It will be greyed out in mono instances.

Stereo mode

Stereo mode toggles between mid/side and left/right and all related stereo controls will follow this setting.

Left/right mode, combined with a low link setting, usually works well on source material with hard-panned elements. Mid/side mode with the link set to 100% is a good starting point for any complex stereo material. When lowering the link setting on mid/side mode, the stereo image typically gets wider.

Stereo link

With stereo link on 100% **soothe2** will sum the channels for analysis and apply the same correction to both channels. When stereo link is set to 0%, **soothe2** will act as dual mono.

Stereo balance

By adjusting the balance you can set **soothe2** to react more to either channel depending on the selection of the mode setting. When you want to focus the processing to the left channel, you can turn the balance rotary to the left, and the text box below shows 100% for the left side and less for the right side – and vice versa. This works equally for the mid/side stereo mode.

Note: For more thorough background information concerning the different balance settings, see the diagram for the processing pipeline.
Speed section

Attack

The **attack** setting determines how quickly the notches reach their full extent – lower values result in a faster response and higher values in a slower response. The **attack** settings’ value is displayed as a referential constant, although actual response times are frequency-dependent. This is why specific time values such as milliseconds don’t make sense here. The **attack** speed is always relatively faster on high frequencies.

Release

Release control determines how quickly the notches disappear after the corresponding resonances have been disappeared. Like the **attack** control, the **release** value is displayed as a constant, but is frequency-dependent and similarly, low values result in a fast **release** and high values in a slow **release**.

The **release** speed can be used to further reduce the artefacts of the processing, as fast-moving adapting filters can create audible phase distortion if doing drastic cuts.

Quality section

When you need more precision than the default configuration, you can increase spectral **oversampling** and time **resolution**. The interaction of the quality section differs from the other sections in that it shows the currently selected values and hides the actual controls. The left hand side value refers to the selected **real-time oversample** value and the right hand side value to the selected **real-time resolution** value. An asterisk indicates that the offline settings differ from the real-time settings. You can open the quality controls by clicking the labels presenting the selected quality settings.
Oversample

Oversampling sets the amount of spectral oversampling. Higher values offer better frequency resolution for the processor to distinguish resonances. This can be imperative especially when working with low frequencies. **Oversample** calculates the reduction filter in higher frequency resolution. A higher **oversample** setting gives you smoother results when using high sharpness values. However, this is at the expense of higher CPU usage.

Resolution

Resolution adjusts the refresh rate of the resonance detection and filter updates. This results in smoother time domain response. Higher settings can be especially useful with complex material, such as on a bus, and/or when processing material with lots of transients, such as drums.

With **resolution** on high or ultra, soothe2 will more often refresh the reduction filter it internally uses. This can be easily audible with material that has lots of transients or very complex waveforms such as harpsichord, or even a grand piano. With **resolution** on eco, soothe2 uses the least amount of CPU. This roughly halves the CPU power needed, but may start to introduce more artefacts if the frequency content of the source varies a lot over the time.

Offline rendering quality settings

On the right hand side column of the quality controls popup menu, you can override the real-time settings with their offline counterparts. These settings are used when the plug-in host reports that it is doing an offline render. The functionality should be supported by all major DAWs. You can first adjust soothe2 with higher quality settings, and when you’re happy with the results, you can drop the quality of the real-time rendering to save CPU, while still doing the bounce at the desired higher quality.
In the dropdown menu of the **offline** settings, a small indicator shows which option is selected. In addition to the options available for **real-time** quality settings, the **offline** settings include “same as real-time” (default) and “copy to all plug-in instances”. The first of these refers to using the **real-time** setting for offline rendering. With the latter option you can set all of the project’s **soothe2** instances to use the same **offline** settings as the current instance.

Note that **offline** rendering settings go together with the preset and because of that loading a preset might change the instance’s offline rendering settings.

Sidechain

You can route a secondary input into **soothe2** and by toggling on the **sidechain** it can be used as the input for the resonance detection. The little headphones icon can be toggled to listen to the sidechain input. **Sidechain** is only in use when the on/off icon is lit. The details of how to route a sidechain key signal for a plug-in depends on the DAW you are using.

You can for example use a hi-hat channel as the sidechain input to a snare track to control hi-hat bleed to the snare channel. You could also set your session up with the lead vocals going to a separate bus than the rest of the material, and essentially carve out space for the vocals by using them as the sidechain key to the rest of the material before summing these two up. This could also be adjusted to settle the vocals in the stereo image by combining the sidechain settings with the **mid/side stereo mode** and experimenting with the **balance**.

When a sidechain key signal is routed to **soothe2** and with sidechain enabled, **soothe2** will always visualise the reduction based on the sidechained signal.
Delay compensation of the sidechain input

In order to work as intended, soothe2 requires the main and sidechain inputs to arrive in sync, properly delay compensated if necessary. The delay compensation of bus routings is handled by the DAW.

You can find up-to-date information about per-DAW delay compensation from our website https://oeksound.com/support/daw-delay-compensation

Output section

Mix

You can moderate the wet-dry ratio with the mix setting. With wet on 100%, only the processed signal comes through the output, and with 0% you’ll only hear the dry signal.

You could for example apply heavy processing with soothe2 and then mix some dry signal back in for more natural results.

Note that the reduction graph visualises the processed output so that changing mix will show shallower notches in the graph. To clarify this process, a tooltip will show the maximum reduction when changing or hovering over the mix control.

Sometimes it sounds nicer to drive the processing a little hot and mix the dry in the output a little bit. You might want to experiment with different levels of depth in relation to the mix setting to find an optimal balance between depth and mix for the occasion.

Trim

Trim regains volume. Use it for the output gain compensation for example to do A/B comparison and to compensate for the gain reduction caused by the processing. Trim only adjusts the wet audio as shown in the diagram.
Delta

Toggling **delta** on will allow you to hear the difference between the wet and dry signals. This is useful for listening to the part of the audio that **soothe2** removes. With this you can get an insight into which frequencies are affected with the current settings, and adjust accordingly – much the same way as you might boost a frequency with EQ to know what to cut.

In the band solo listen mode you can listen to the **delta** of an individual band. This feature is explained in the frequency and reduction graph section.

In some special cases you can use the **delta** mode as an effect by leaving it on.

While toggling **delta** the blue graph switches sides in relation to the horizontal line – that is, on top of the middle line or under it – to further indicate whether **delta** is on or off. When **delta** is on, the blue graph shows what is being reduced from the audio.
Bypass

The bypass toggle is a soft bypass for quick A/B comparison without glitches that some DAWs might introduce when bypassing the signal from the host. Please note that soothe2 continues to compute the output, so bypassing from this control won't save you any processing power. To disable the plug-in you should always deactivate it from the host.
Frequency and reduction graph

Using the coloured EQ nodes, you can shape the EQ-like curve – shown in white in the figure – to adjust the frequency areas to be processed. 'Boosting' specific frequency areas, or a band, reduces resonances more in this area. So think of the curve as an inverse EQ, or a side-chain EQ. The process won't exactly follow the curve, but rather, it is more sensitive to the frequency areas that are 'boosted', and less sensitive to the frequency areas that are 'cut'.

Band types

The EQ has low and high cut bands along with four general purpose bands. The low and high cut bands offer different steepness slopes from which to choose, and the general purpose bands can be switched from peaking type to several different band types: low/high/band shelf, band reject, or tilt.

soothe2 has a real time reduction graph — in blue in the picture above — showing the parts of the signal that are being reduced.

You can click and drag the nodes and also use the mouse wheel or scrolling gestures to adjust the nodes and knobs. In conjunction with modifier keys, different adjustment options are available. A thorough run through these can be found later on.
Band controls

When selecting a node, a band specific control area slides from the bottom of the graph. This panel can also be permanently hidden by clicking the button to the left of the panel. For power users, all of the settings in the panel can be controlled either from the right click context menu for each node, or by using different keyboard modifier combinations together with mouse drag or wheel.

Hide band controls button

You can disable the band controls from showing by toggling the square icon at the bottom left corner of the frequency graph.

Band on/off

Toggles the node on or off. When on, the node will show as a solid, filled circle and this band will affect the white curve. When off, it will be shown as a hollow circle and the band will not have an effect on the processing.

Band listen

By toggling the headphones icon located at the bottom left corner of the band controls area you can switch on the band solo listen mode playing the delta of the specific band.

Freq

freq setting controls which frequency is affected by the band. The frequency is shown in the textbox in Hertz with a custom 3 character format, where k signifies 1000s and the subsequent number 100s i.e. 6k3 = 6300.
Sens

sens controls the weight of processing of the band. The scale shows an estimated dB for convenience, but does not convey an accurate reduction value as the resulting processing is largely interdependent with the depth and mix settings.

Q

You can set the q value or the bandwidth of the band.

Balance

The band specific stereo balance control lets you specify the balance of a specific band according to the main stereo mode. If the plug-in is in mid/side mode, the per-band adjustments will be made in mid/side mode as well. This allows you to rebalance the emphasis of the process for a specific frequency range.

When the bands balance setting is offset from the even position, a second curve much like the white curve appears and with it a legend indicating the corresponding colour of the curve for each channel. This visualises the difference between the resulting EQ curves for each channel.

For a more thorough background information concerning the different balance settings, see the diagram for the processing pipeline.

Curve types

You can select a different curve type for the band depending on the type of band you’re adjusting. These can also be found from the node’s context menu.

Hovering the mouse on the type’s icon will show you the name of the type or steepness of the cutoff.
General features for all EQ nodes

Selection

You can select a node by clicking on it. Unselecting nodes works by clicking anywhere on the graph area other than on a node.

Dragging by starting from anywhere in the graph area apart from nodes draws a selection rectangle – a lasso selection – allowing you to select a group of nodes at once. The group remains unchanged when clicking nodes included in the group. This way you can select the primary band within the group and move them around by dragging from any one of the selected nodes without having to press any modifiers. The latter feature allows easier access to the modifier presented next while having a group of nodes selected. Shift-click also adds or removes nodes from the multi selection group.

Enabling and disabling a node

Double clicking a node toggles the band between disabled and enabled. When disabled the band that the node controls is bypassed and changes to it will not affect anything unless enabled again.

Disabling all nodes – flat EQ for reduction

You can disable multiple nodes by selecting all of them and opening the context menu by right-clicking any of the nodes and toggling the option from the menu. The context menu enable-disable item applies to all selected nodes. This is a quick way to create a flat frequency graph starting point for settings.
Modifiers

For power users there are shift, ctrl, command and option modifier keys for macOS and shift, ctrl, alt for Windows. Ctrl-click on macOS opens a context menu, which is also available with the right mouse click.

The shift modifier is an all around fine adjustment modifier slowing down the speed of the change. This also works for the rotaries, both for mouse drag and wheel scroll motions.

Command on macOS or ctrl on Windows changes mouse drag changes the Q-value and wheel scroll changes the band specific stereo balance.

Alt-click or dragging and pressing alt sets the band solo listen mode on playing the delta of the specific band. Alt-click and drag motion allows you to stay in the listen mode if you release the alt key after activating the listen mode.

Band specific curve

Selecting a band shows a guiding curve of the node’s colour to indicate what the band’s individual frequency range looks like. When all of the individual band specific curves are summed up, they form the curve shown in white.

Editor size button

You can select a different size for the GUI from the dropdown menu that opens by clicking the double ended arrow icon at the bottom-right corner.
Other features of the graph

Frequency display

A frequency display follows the mouse cursor at the top of the frequency graph. It snaps to a node when it's dragged to indicate what the band's middle point is.

Context menu

Right-clicking on a node opens a context menu, in which you can select some of the choices presented in the band specific controls area. Only the enable/disable option applies to all nodes in a selection.
Toolbar

Preset menu

soothe2 comes with a selection of presets. By clicking the name of the preset, a menu opens with an additional container for your own presets. Clicking or otherwise selecting a preset instantly loads it, but you can return to your previously selected settings by pressing “Cancel” at the top of the menu. The preset menu can also be navigated with the keyboard arrow keys.

Please note, that for compatibility reasons soothe2 doesn’t reveal its presets to the host’s native preset menu in some DAWs.

Set your default starting point

If you want to use a custom preset for when you open a new instance of soothe2 instead of the factory default preset, the preset menu’s “save as default” will do just this. Please note that the option to load a user default preset is not present before it’s saved for the first time.

Searching presets

You can search for presets either by name or by tags. The provided factory presets have tags added to them to describe use cases that the presets could apply to.

Loading presets

Presets can be changed from the preset menu (on the right) by either clicking a preset or by navigating with the arrow keys. Clicking outside the menu closes it. While the preset menu is open, you can reset the parameters to the initial state that
you had before opening the menu i.e. to discard the loaded preset by clicking **Cancel**.

Saving presets and adding tags

You can save presets that are useful to you by opening the **preset menu** and clicking “Save”. This will let you choose a location and a name for the preset to save. Use the **default location** for the plug-in to find your presets!

You can add tags to your saved presets by clicking with the right mouse button on the preset name and using the context menu that opens. Write the tag to be included in the user preset on where it says “add keyword” and click on **add**.

Deleting presets

Presets can be deleted via the context menu, which can be opened by right-clicking on your saved preset. Alternatively you can use a file explorer and navigate to the plug-in **default location** and remove the files.

Importing presets

The presets are saved as .preset files in the default location for the application (See the **miscellaneous section for paths**). All **soothe2** presets work on both mac and windows and can be shared between users by putting the files into the aforementioned default location.

Grouping user presets

You can group your own presets by navigating to the **default location** with a file explorer and grouping the preset files into folders. These are parsed into the preset menu when the menu is opened.
Undo/redo

Undo has a predetermined amount of maximum steps which are exclusive to both a and b states.

Comparing settings with A/B switching

On the toolbar, in the right corner, there are three buttons as shown on the right. These buttons are from left to right:

A/B Switch, A/B Copy and Configurations.

You can compare two different sets of settings by clicking the A/B switch button. All changes in the settings are set for the highlighted and underscored state (a or b).

You can copy the settings in the currently open state to the other by clicking the A->B copy button.

Configuration menu

At the right end of the toolbar you can open a global configuration menu from the cog wheel icon. From this menu you can disable some of the features such as the OpenGL hardware accelerated drawing mode, tooltip and update checks.

At the bottom of the menu you can find an about page and links to this manual online as well as our website.

NOTE: OpenGL graphics mode is the fastest and prettiest option for most computer setups. Disabling it is intended as a fallback feature for only an unfortunate few that might have issues with the graphics rendering. For example, those that run soothe2 on specific older hardware with Windows 7 and their unrepaired driver issues.
Display range of the reduction graph

soothe2 offers three options to choose from for the reduction graph’s (in blue) range of display. This changes the range of visualising the effective reduction between precise and large. Changing this setting sets the blue dB labels accordingly - shown in the figure on the right.

Miscellaneous

Input trim

soothe2 includes a hidden analysis input trim parameter intended for some special cases such as voice over mixing when the processing can’t be driven hot enough and it’s more convenient to trim the input directly in the effect before processing.

While it is a requested feature, we prefer not to use this by default as the soft-hard mode, depth and selectivity settings should suffice. This parameter is thus hidden from the UI and can be discovered through your DAW. For example, you can select automation parameters for soothe2, select input trim and then amplify that in the automation view. In some DAWs you can disable the UI opting for a parameters only view of the plug-in, in which the input trim will also be present. After tweaking the parameter, you can return to the plug-in UI and the parameter value will stay set in the background. This parameter gets saved with presets.
Version update checks

We feel that ubiquitous update checks popping up in the middle of the screen are to be avoided. That said, the updates are done usually for good reasons such as bug fixes and we ensure presets are backward compatible for all soothe2 versions to come. We take great care to procure that things don’t break between updates.

For convenience, soothe2 offers an automatic update option by default, but any dismissal of the update dialog is registered as skipping all update dialogs until the next version.

In the update dialog, you can click the download button to be directed to the latest installer. Regardless of whether you download the update, install it or not, the update check has been dismissed for this version and will reappear only after the next version is available.

In the configuration menu it’s possible to disable the automatic update check altogether. Likewise, if you enable it again from the same configuration menu, it will re-enable the update check, but it will only happen when opening the session anew. On some DAWs the whole DAW needs to be restarted.
Paths for presets and uninstallation

MacOS

user presets

/Users/<username>/Documents/oeksound/soothe2/Presets

configuration file

/Library/Application Support/oeksound/soothe2/config.xml

uninstaller comes within the downloaded .dmg file

Windows

user presets

C:\Users\<username>\Documents\oeksound\spiff\Presets

configuration file

C:\ProgramData\oeksound\soothe2\config.xml

uninstaller

C:\ProgramData\oeksound\soothe2\unins000.exe
FAQ and support

You can find our FAQ section on our website:
oeksound.com/support

If our FAQ doesn't answer your question, or if you find a bug, don't hesitate to email us at:
support@oeksound.com

Copyright and acknowledgements

Copyright oeksound Ltd 2018. All rights reserved.
VST is a trademark and software of Steinberg Media Technologies GmbH.
VST Plugin Technology by Steinberg Media Technologies
Appendix A: Diagram of the processing pipeline