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Abstract

Inverse problems are by nature computationally intensive, and a key challenge in practical
applications is to reduce the computing time without sacrificing the accuracy of the solution.
When using Finite Element (FE) or Finite Difference (FD) methods, the computational bur-
den of using a fine discretization is often unrealizable in practical applications. Conversely,
coarse discretizations introduce a modeling error, which maybe become the predominant
part of the noise, particularly when the data is collected with high accuracy. In the Bayesian
framework for solving inverse problems, it is possible to attain a super-resolution in a coarse
discretization by treating the modeling error as an unknown that is estimated as part of the
inverse problem. It has been previously proposed to estimate the probability density of the
modeling error in an off-line calculation that is performed prior to solving the inverse prob-
lem. In this thesis, a dynamic method to obtain these estimates is proposed, derived from
the idea of Ensemble Kalman Filtering (EnKF). The modeling error statistics are updated
sequentially based on the current ensemble estimate of the unknown quantity, and concomi-
tantly these estimates update the likelihood function, reducing the variance of the posterior
distribution. A small ensemble size allows for rapid convergence of the estimates, and the
need for any prior calculations is eliminated. The viability of the method is demonstrated in
application to Electrical Impedance Tomography (EIT), an imaging method that measures
spatial variations in the conductivity distribution inside a body.



“Thinking is more interesting than knowing, but less interesting than looking.”
“Denken ist interessanter als Wissen, aber nicht als Anschauen.”

-Johann Wolfgang von Goethe
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Chapter 1

Introduction

The tradeoff between computational efficiency and the accuracy of the solution is a key
challenge in solving inverse problems. In practical applications, the discretization of the
inverse problem, for example using FE or FD methods, leads to a difference between the
model and the reality. Using a finer discretization decreases this discrepancy, but may
increase the computational burden beyond what is feasible. In particular, when the forward
map is non-linear, a coarse discretization is used that differs significantly from the model
used to produce the data, synthetic or experimental.

The insufficiency of a model to describe reality is referred to as model discrepancy, and
accounting for it is a topic of active study [14, 18]. The model discrepancy due to numerical
discretization error has been addressed in the literature in the context of Bayesian inverse
problems [1, 17], together with other types of model mismatches such as poorly known
geometry [21, 22], boundary clutter in the data [5], or insufficient modeling of the underlying
physics [12, 13, 27]. Particularly when experimental measurements are precise, the modeling
error may predominate the noise, and will significantly decrease the quality of the solution
if not compensated for.

This thesis addresses the problem of accounting for the discretization error in the Bayesian
framework for solving inverse problems. The error is treated as a realization of a random
variable with some unknown probability density. Since the actual value of the modeling
error depends on the unknown parameter of interest, the estimates of the error depend on
the information available about the unknown. Approximating the probability density of the
modeling error therefore becomes part of the inverse problem.

Previously, the error’s probability density has been estimated in an off-line calculation
that is performed prior to solving the inverse problem. A sample of draws from the prior
density is generated, and the modeling error is estimated by computing the model predictions
from two meshes, one representing an accurate approximation of the continuous model, the
other representing the discretized mesh used in the inverse solver. Using the same mesh to
both generate the data and solve the inverse problem is known as an “inverse crime”, and
leads to results that are overly optimistic.

In this thesis, we investigate the possibility of estimating the modeling error in a dynamic
fashion, by updating it while we iteratively improve the solution of the inverse problem. In
particular, unlike in the earlier works, this estimate is not based on draws from the prior
but rather on forward simulations using the current ensemble of estimates, analogous to the
classical estimation of the error of numerical solvers for differential equations. The proposed
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algorithm is a modification of an EnKF algorithm, with an artificial time parameter that
refers to the updating round. A similar idea of interpreting iterations as an artificial time step
in the EnKF framework for time-invariant inverse problems was proposed recently in [15].

The method is applied to the discrete ill-posed inverse problem in EIT, an imaging
method which measures spatial variations in the electric conductivity distribution inside a
body. Currents are applied through electrodes on the surface of the body, and resulting
relative voltages are measured. Benefits of the method include its non-invasive nature and
rapid measurement time, with applications ranging from biomedical imaging to industrial
process tomography. The partial differential equation model that describes the forward
model in EIT is assumed to provide a good approximation of the physical measurement
setting, while the discretization of the equation generates an approximation error.

The thesis is divided into six chapters. Following the Introduction in Chapter 1, Chapter
2 presents an introduction to solving inverse problems in the Bayesian framework, and the
connection of this method to Tikhonov regularization. The origin of the discretization error
follows and its connection to the inverse problem solution is made explicit. Chapter 3 reviews
the previously proposed off-line algorithm for estimating the modeling errors probability
density, and presents the dynamic method that is the subject of this thesis. Chapter 4 derives
the partial differential equation model that describes EIT, and discretizes the model using
the FE method. Chapter 5 presents a number of computed examples that demonstrate the
convergence and efficiency of the method in comparison to the off-line calculation. Finally,
Chapter 6 discusses the significance of the work presented in this thesis, and suggestions for
future research directions are given.



Chapter 2

Inverse Problems in the Bayesian
Framework

In this chapter, regularization methods for ill-posed inverse problems are reviewed [11],
followed by regularization in the Bayesian framework [16]. Finally, the origin of discretization
errors is discussed [1, 16, 17], arriving at a formulation of the forward model.

2.1 Tikhonov Regularization
We begin by considering the discrete inverse problem of recovering an unknown x from a
linear measurement model

b = Ax+ e, x ∈ Rn, b, e ∈ Rm, A ∈ Rm×n, (2.1)

where b is a given data vector, and the additive measurement noise e is some zero mean
Gaussian.

We consider the general case where m 6= n, and furthermore where A is not invertible. A
first approach to solve (2.1) in this case is to find the solution that minimizes the residual,

x = arg min
x′

{
‖b− Ax′‖2

2

}
, (2.2)

where ‖.‖2 denotes the two norm.
However, the solution with the minimum residual is in general not the solution that most

closely resembles the true unknown. To see this, consider the singular value decomposition
(SVD) of the matrix A,

A = UΣVᵀ, U ∈ Rm×m, Σ ∈ Rm×n, V ∈ Rn×n, (2.3)

where the matrices satisfy the following properties

UUᵀ = UᵀU = Im,
VVᵀ = VᵀV = In,
Σ = diag(σ1, σ2, ..., σr),
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where Im is the unit matrix of dimension m×m, r is the rank of A, and σ1 ≥ σ2 ≥ ... ≥
σr ≥ 0 are the singular values of A.

Using the SVD, the solution to (2.1) is

xSVD = A−1b = VΣ−1Uᵀb =
r∑
i=1

(uᵀi b)
σi

vi, (2.4)

where ui and vi are the ith columns of U and V , respectively. In practice, the noiseless
data vector b0 = b− e is not known. However, if it were, the effect of the noise on the exact
solution can be written as

xSVD =
r∑
i=1

(uᵀi (b− e))
σi

vi. (2.5)

In this form, it is apparent that despite minimizing the residual, the solution will tend
to infinity if the singular values either

1. Span several orders of magnitude, or

2. Are close to zero.

Inverse problems of this type are called linear discrete ill-posed problems. If the singu-
lar values span several orders of magnitude, the unknown error components e in the data
dominate the behavior of the solution. Even when there is no measurement error present
in the data but the singular values are close to zero, problems of this type do not admit a
numerically stable solution.

A simple modification of (2.4) to overcome this difficulty is the Truncated SVD (TSVD)
solution, in which the sum is truncated at some index 1 ≤ k ≤ r. The choice of k is deter-
mined both by the noise level in the data, and by examining the singular values specific to the
problem. While effective at estimating the general behavior of the solution, this approach
is not particularly elegant, as there is only a single parameter to adjust. The truncation
discards a portion of the information about the solution, limiting further refinement.

These challenges motivate the introduction of some additional parameters into the prob-
lem to finely control the behavior of the solution, known as regularization. Certainly the
most widespread form of regularization is Tikhonov regularization, where the minimization
problem (2.2) is replaced by

xλ,L = arg min
x

{
‖b− Ax‖2

2 + λ2 ‖Lx‖2
2

}
, (2.6)

where λ ∈ R is referred to as the regularization parameter and L ∈ Rp×n is the regular-
ization matrix.

Tikhonov regularization alters the original problem statement (2.1). The minimization
problem’s equivalent augmented matrix is[

A
λL

] [
x
]

=
[
b
0

]
,
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where 0p ∈ Rp is a column vector with all zero entries. The effect of this change can be
seen by manipulating the analogous form of the normal equations AᵀAx = Aᵀb to attain

xλ,L =
(

AᵀA + λ2LᵀL
)−1

Aᵀb. (2.7)
It is worth mentioning that this Tikhonov regularized solution closely resembles the form

of Wiener Filtering. In general, it can be shown by singular value decomposition that the
Tikhonov and Wiener solutions are equivalent, given as

xTikhonov =
(

AᵀC−1A + λ2Γ−1
)−1

AᵀC−1b̃ (2.8)

xWiener = ΓAᵀ
(

AΓAᵀ + λ2C
)−1

b̃. (2.9)

From the normal equations (2.7), the effect of the regularization parameter and matrix
can be elucidated by considering the general singular value decomposition (GSVD) of the
matrices A, L, defined as

A = UCXᵀ, U ∈ Rm×m, C ∈ Rm×n, X ∈ Rn×n (2.10)
L = VSXᵀ, V ∈ Rp×p, S ∈ Rp×n, (2.11)

where the following conditions are satisfied
UᵀU = UUᵀ = Im
VᵀV = VVᵀ = In
XᵀX = XXᵀ = Ip
CᵀC + SᵀS = In

C =
(

Σ 0
0 In−p

)
S =

(
M 0

)
Σ = diag(σ1, σ2, ..., σp), 1 ≥ σp ≥ ... ≥ σ1 ≥ 0

M = diag(µ1, µ2, ..., µp), 1 ≥ µ1 ≥ ... ≥ µp ≥ 0,
where we have assumed for simplicity that p ≤ n ≤ m.
The solution to the normal equations is

xλ,L =
n∑
i=1

σ2
i

σ2
i + λ2µ2

i

(uᵀi b)
σi

xi, (2.12)

where xi is the ith column of X. The coefficients fi = σ2
i /(σ2

i + λ2µ2
i ) are known as filter

factors. For a common choice of the regularization matrix L = Ip, the singular values are
simply µi = 1.

The solution (2.12) shows that through a careful choice of the regularization parameter
and matrix, it is possible to compensate for the behavior of the singular values σi of A. This
makes it possible balance minimizing the residual and minimizing the norm of the solution.
A small regularization parameter λ recovers the previous minimization problem (2.2). A
large regularization parameter effectively minimizes the norm of the solution, ||Lx||2.

Clearly, the choice of the regularization parameters has a significant effect on the quality
of the solution. In the next section, we discuss how to choose the parameters based on a
statistical interpretation.
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2.2 Bayesian Inverse Problems
Regularization is inherently an ad hoc method for obtaining solutions to ill-posed inverse
problems - there is no single correct choice of regularization parameters for a given problem.
Likewise, there is no single method for all problems that yields the optimal regularization
parameters. Despite this, several common methods exist that can be used in practice to
obtain reasonable parameters. L-curve analysis plots in a logarithmic scale the norm of
the solution against the norm of the residual, and attempts to find a balance between the
two. However, it requires solving the inverse problem at several values of λ, and for a fixed
matrix L. A similar approach is to find a value of λ that yields a solution whose residual is
approximately equal to the noise level in the data, if this information is known.

Another interpretation of the parameters in Tikhonov regularization is found in the
Bayesian framework. A closer examination of these ideas is enlightening both in the choice
of regularization parameters and in the physical interpretation of regularization, and follows
below.

We begin by restating our intention, namely, to determine the unknown x ∈ Rn. At the
heart of the Bayesian method lies the idea that random variables are used to describe our
uncertainty about some unknown, leading to the term subjective probability. Let π(x) be
the probability density of some random variable X, of which x is a realization. We express
our prior belief that any given solution x is the true solution through the prior probability
density πpr(x).

The likelihood density is defined as the conditional probability density π(b|x) of measuring
a data sample b, given a fixed solution x. Furthermore, let the measurement noise be a
realization e of a random variable E, with probability density πnoise(e). For the measurement
model (2.1), these two densities are equal,

π(b|x) = πnoise(e) = πnoise(b− Ax). (2.13)

The desired information we wish to attain is the posterior density π(x|b), or the con-
ditional probability that x is the true solution given a fixed data sample b. Bayes formula
states that the posterior density is given by

π(x|b) = π(b|x)πpr(x)
π(b) . (2.14)

The normalization π(b) is uninteresting for determining a solution, and since b is the
measured data, it is always possible to choose a normalization such that π(b) = 1. Bayes
formula (2.14) is therefore more commonly written as

π(x|b) ∝ π(b|x)πpr(x). (2.15)

A particularly revealing example is the case where X and E are independent Gaussian
random variables

X ∼ N (0,ΓX), E ∼ N (0, σ2I), (2.16)
where ΓX is the covariance matrix of X, and σ is the standard deviation of E. In this

case, the prior density for X is given by

πpr(x) ∝ exp
(
−1

2x
ᵀΓ−1

X x
)
. (2.17)
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Since ΓX is a covariance matrix, it must be both symmetric and positive definite, and so
Γ−1
X admits a Cholesky factorization Lᵀ

XLX = Γ−1
X . The prior can therefore equivalently be

written as
πpr(x) ∝ exp

(
−1

2 ‖LXx‖
2
2

)
. (2.18)

The likelihood density (2.13) is

π(b|x) ∝ exp
(
−1

2(b− Ax)ᵀ(σ2I)−1(b− Ax)
)

= exp
(
−1

2

∥∥∥∥ 1
σ

(b− Ax)
∥∥∥∥2

2

)
. (2.19)

The posterior (2.15) in this case is given by

π(x|b) ∝ exp
{
−1

2

(∥∥∥∥ 1
σ

(b− Ax)
∥∥∥∥2

2
+ ‖LXx‖2

2

)}
. (2.20)

The posterior is a probability distribution, rather than a point estimate such as in
Tikhonov regularization. If normalized, the distribution describes at each point the prob-
ability that the solution is the true unknown. It is possible to construct point estimates
from the posterior, such as the maximum probability or maximum a posteriori (MAP) esti-
mate, denoted by xMAP . For (2.20), this estimate can be found by solving the minimization
problem

xMAP = arg min
x

{
‖b− Ax‖2

2 + σ2 ‖LXx‖2
2

}
. (2.21)

Comparing to the minimization problem in Tikhonov regularization (2.6) offers a statis-
tical interpretation for the regularization parameter and matrix. The regularization matrix
L is the Cholesky factorization of the inverse of the covariance matrix ΓX , and therefore
expresses the prior belief about the sample. The regularization parameter is related to the
measurement noise, specifically, for it is equal to the standard deviation for Gaußian white
noise.

2.3 Discretization Error
We next turn to the origin of discretization errors. In particular, we consider the effect of
discretizing a partial differential equation with some finite number of unknown coefficients.

Let the unknown be described by a parameter vector θ. For an input source term y, and
finite difference (FD) or finite elements (FE) matrix Aθ, the discretized solution x is given
by

y = Aθx. (2.22)
Here, Aθ is both square and invertible.
The linear observation model (2.1) with additive noise is

b = Bx+ e = BA−1
θ y + e = f(θ) + e, (2.23)

where f represents the non-linear mapping from the unknown θ to the noiseless data.
Assume that the measurement noise is independently distributed Gaußian with covariance

matrix C,
e ∼ N (0,C), (2.24)
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and that the prior is also Gaussian with mean θ0 and covariance Γ,

πprior(θ) = N (θ0,Γ). (2.25)

The MAP estimate (2.21) in the Bayesian framework in this case is

θMAP = arg min
θ

{
‖b− f(θ)‖2

C + ‖θ − θ0‖2
Γ

}
, (2.26)

where
‖z‖M = zᵀM−1z. (2.27)

The discretization (2.22) from the continuous model introduces a modeling error. Ideally,
the it would be possible to increase the level of discretization to obtain an arbitrarily accurate
solution. However, a fine discretization leads to an increased computation time, further
burdened by the non-linearity of the forward model f . Thus, in many practical applications,
computational efficiency limits the number of elements used in the FE or FD model when
solving the inverse problem. Since the significance of the modeling error grows with the
coarseness of the discretization, it is necessary to estimate and account for this modeling
error to attain viable solutions (2.26).

To understand the effect of the discretization error on the data b, we consider a fine
discretization N , and a coarse discretization n,

AN
θ x = yN , An

θx = yn, (2.28)

where n < N is the number of nodes in the discretization. The corresponding noiseless
observation models are

bN = fN(θ), bn = fn(θ). (2.29)
The fine discretization in this case is used to represent the true θ, while the coarse

discretization is used in practice to solve the inverse problem. In other words, it is assumed
that the data is a product of the fine mesh, that is

b = fN(θ) + e = fn(θ) +
{
fN(θ)− fn(θ)

}
+ e. (2.30)

Evidently, the modeling error vector introduced by the discretization from the fine to the
coarse mesh can be written as

m = FN,n(θ) = fN(θ)− fn(θ). (2.31)

In the Bayesian framework, this modeling error can be approximated as a random vari-
able, with some mean and covariance. Assume that this error is Gaußian distributed

m ∼ N (m,Σ), (2.32)

where m is the mean and Σ is the covariance. The complete measurement model in the
coarse mesh may thus be written more compactly as

b = fn(θ) + E, E ∼ N (m,C + Σ). (2.33)
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The MAP solution for this error enhanced model is given by

θMAP = arg min
θ

{
‖b− f(θ)−m‖2

C+Σ + ‖θ − θ0‖2
Γ

}
. (2.34)

While the modeling error is treated as a random variable, it is not independent of the
unknown θ. If the probability density of θ is denoted as πθ, then the density of m can be
written implicitly as the push-forward density

πm = FN,n
∗ πθ, (2.35)

that is,
P{m ∈ A} =

∫
A
FN,n
∗ πθ(m)dm. (2.36)



Chapter 3

Estimation of the Modeling Error

To solve the error enhanced model (2.34), it is necessary to estimate the probability density
of the modeling error. The prior is taken to be a Gaussian distribution, and likewise the
modeling error is assumed to be approximately Gaussian distributed. A previously proposed
method to obtain the mean and covariance of the error is reviewed below, in which the prior
density is sampled in an off-line calculation that is carried out before solving the inverse
problem. The motivation for a dynamic estimation method is discussed, and an alternative
algorithm is introduced which concomitantly updates the modeling error while solving the
inverse problem.

3.1 Off-Line Modeling Error Approximation
In [16, 17], it was proposed to use the prior to estimate the modeling error probability density.
In practice, a Gaussian approximation of the modeling error distribution was proposed,
leading to Algorithm 1.
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Algorithm 1: Off-Line Modeling Error Approximation

1. Draw a sample of size K of conductivity distributions θ in the coarse mesh from the
prior πprior,

S = {θ1, θ2, . . . , θK} .

2. Compute the modeling error for each draw θl as

ml = FN,n(θl) = fN(θl)− fn(θl).

Estimate the sample mean and covariance of this sample as

m = 1
K

K∑
l=1

ml, Σ = 1
K

K∑
l=1

(ml −m)(ml −m)ᵀ

3. Compute the MAP estimate for θ from the error enhanced model (2.34).

The algorithm only needs to be run once, and the estimates for the mean and covariance
can be used for repeatedly solving the inverse problem thereafter. The practical viability
of the super-resolution attained has been demonstrated in numerous applications [1, 4, 20].
However, the algorithm above suffers from two primary drawbacks. First, for a large sample
size K, computing the forward estimates in step two is computationally expensive due to
the non-linear nature of the problem. Second, the algorithm neglects the correspondence
between the modeling error m and the unknown θ [5, 17], a question that is further explored
in this work.

3.2 Dynamic Modeling Error Approximation
The idea to dynamically update the modeling error is inspired by the observation that the
information about the modeling error increases as the information about the true unknown
increases. Before, sampling the prior density yields a preliminary estimate of the error
probability distribution. However, the true dependence of the modeling error on the unknown
is captured by the likelihood function. This motivates a scheme that iteratively samples the
posterior density as solutions are obtained and the density theoretically narrows, yielding
increasingly accurate estimates of the modeling error.

Algorithm 2, outlined below, is based on the idea of Ensemble Kalman Filtering (EnKF),
where an ensemble of conductivity distributions providing estimates of the modeling error
and the unknown. Over a series of time-steps, the likelihood function is updated at each
time-step to take the latest information about the modeling error into account, and the
subsequent solutions are used to update the estimate for the modeling error.
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The ability to have a small ensemble size in EnKF algorithms allows the approach to
be computationally efficient. In particular, the effect of varying ensemble size is explored
in detail later on. A further benefit is the ability to monitor the convergence of the mod-
eling error and solution, and to terminate the iterations prematurely while retaining these
estimates.

To sample the posterior, Algorithm 2 uses a randomized optimization scheme [23, 24],
which bears similarity to the updating steps in EnKF algorithms [10], and also to parametric
bootstrapping [8, 9].

Let m(t) denote the most recent, cumulative estimate for the mean at time-step t, and
Σ(t) the estimate for the covariance. Initially, m(0) = 0 and Σ(0) = 0, and a sample S 0

k of
size k of realizations is drawn independently from the prior πprior in the coarse mesh,

S 0
k =

{
θ0

1, θ
0
2, . . . , θ

0
k

}
. (3.1)

At every time-step t, an artificial data sample is constructed as

bl = b+ wl, wl ∼ N (0,C + Σ(t)), 1 ≤ l ≤ k. (3.2)

From this, a new estimate for each element of the ensemble is obtained as

S t+1
k =

{
θt+1

1 , θt+2
2 , . . . , θt+1

k

}
, (3.3)

where θt+1
l is given as the solution to the minimization problem

θt+1
l = arg min

θ

{∥∥∥bl − f(θ)−m(t)
∥∥∥2

C+Σ(t)
+
∥∥∥θ − θtl∥∥∥2

Γ

}
. (3.4)

The new sample S t+1
k represents a model for the posterior density, which narrows as

the time-step grows. The ensemble therefore effectively samples the posterior for t > 0, and
provides increasingly accurate estimates of the modeling error as the algorithm continues.

The modeling error of the sample at the current time-step t+ 1 is calculated as before

mt+1
l = FN,n(θt+1

l ) = fN(θt+1
l )− fn(θt+1

l ), 1 ≤ l ≤ k. (3.5)

The cumulative mean and covariance are updated as a moving average and covariance
using the recursive relations

m(t+1) = t

t+ 1m
(t) + 1

t+ 1m
t+1

Σ(t+1) = t

t+ 1Σ(t) + 1
t+ 1Σt+1 + t

(t+ 1)2 (m(t) −mt+1)(m(t) −mt+1)ᵀ.

where m(t+1),Σ(t+1) denote the new cumulative estimates, m(t),Σ(t) denote the estimates up
to time-step t, and mt+1,Σt+1 denote the estimates at time-step t+ 1.
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Algorithm 2: Dynamic Modeling Error Approximation

1. Draw an initial ensemble S 0
k of size k of conductivity distributions θ0 in the coarse

mesh from the prior πprior,
S 0
k =

{
θ0

1, θ
0
2, . . . , θ

0
k

}
.

2. Initialize the modeling error mean m = 0 and covariance Σ = 0. Set t = 0.

3. Begin iteration for time-step t:

(a) Generate an artificial data sample {bl} for all 1 ≤ l ≤ k, where

bl = b+ wl, wl ∼ N (0,C + Σ).

(b) Compute the solutions to the inverse problem using the error enhanced
model (2.34), where for each member of the ensemble the data sample is bl and
the mean is θl, that is

θt+1
l = arg min

θ

{
‖bl − f(θ)−m‖2

C+Σ +
∥∥∥θ − θtl∥∥∥2

Γ

}
,

leading to a new ensemble of conductivity distributions S t+1
k given by

S t+1
k =

{
θt+1

1 , θt+2
2 , . . . , θt+1

k

}
.

(c) Compute the modeling error for each element θt+1
l of the ensemble as

mt+1
l = FN,n(θt+1

l ) = fN(θt+1
l )− fn(θt+1

l ).

Estimate the sample mean and covariance of this sample as

mt+1 = 1
K

K∑
l=1

mt+1
l , Σt+1 = 1

K

K∑
l=1

(mt+1
l −mt+1)(mt+1

l −mt+1)ᵀ.

(d) Updated the cumulative modeling error mean m and covariance Σ with the esti-
mates at t+ 1 as a moving average and covariance,

m∗ = t

t+ 1m+ 1
t+ 1m

t+1

Σ∗ = t

t+ 1Σ + 1
t+ 1Σt+1 + t

(t+ 1)2 (m−mt+1)(m−mt+1)ᵀ.

Set m = m∗ and Σ = Σ∗.
(e) If the convergence criteria for modeling error mean and covariance are satisfied,

stop. Else, set t = t+ 1 and continue from (a) for the next iteration.



Chapter 4

Application to EIT

Electrical impedance tomography (EIT) is an imaging method which measures spatial vari-
ations in the electric admittivity distribution inside a sample. Currents are applied through
electrodes attached to the surface of the sample, and resulting relative voltages are measured.
Benefits of the method include its non-invasive nature and rapid measurement time, with
applications ranging from biomedical imaging to industrial process tomography [6].

4.1 Forward Model
To examine the forward model for EIT, consider applying currents with angular frequency
w to a body Ω through L electrodes. For typical values in medical applications, for example,
applied current frequencies are on the order of hundreds of kHz, and magnitudes on the
order of tens of mA. Define the admittivity distribution γ(x, t) of a point x inside the body
as

γ(x,w) = σ(x,w) + iwε(x,w), (4.1)

where σ(x,w) is the electric conductivity distribution and ε(x,w) is the electric permit-
tivity distribution. The conductivity is the inverse of the resistivity, and the two are often
used interchangeably.

Let the matrix I = (I1, . . . , IL)ᵀ ∈ CL×N represent a set of N current patterns applied
to the L electrodes. Specifically, each column of I represents a current pattern, with the ith
element of the column representing the magnitude of the current applied at the ith electrode.
The set of noiseless voltage measurements made at the electrodes can be written by Ohm’s
law as

U(γ) = R(γ)I, (4.2)

where U(γ) = (U1, . . . , UL)ᵀ ∈ CL×N is the noiseless resulting voltage pattern and R(γ) ∈
CL×L is the impedance matrix of the body Ω.

While the voltage patterns are a linear function of the applied current patterns, the
impedance matrix R(γ) is a non-linear function of the admittivity distribution. For the
discretized version of the EIT model, the exact form of the matrix R is derived in Section 4.2
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(a) (b)

Figure 4.1: Illustrations of EIT setup. (a) Sample 2D conductivity setup, with 8 electrodes
el applied to the surface of a body Ω. (b) Experimental EIT setup in biomedical imaging [6].

below. In general, is assumed that the body consists of linear and isotropic media, that is,
~D = ε ~E (4.3)
~B = µ ~H (4.4)
~j = σ ~E, (4.5)

where µ(x,w) is the magnetic permeability, ~E(x,w) is the electric field, ~B(x,w) is the
magnetic field, ~D(x,w) is the electric displacement, and ~H(x,w) is the magnetic induction.

These assumptions lead a specific set of equations that govern the behavior of the electro-
magnetic fields inside the body. Using Maxwell equations, it can be shown that the electric
potential u(x,w) inside the body is described by

~∇ ·
(
γ~∇u

)
= 0 for x ∈ Ω. (4.6)

The derivation of this result from the Maxwell equations is provided in Appendix A.
While the admittivity distribution is complex, in general the approximation is invoked

that the imaginary term is negligible, so that γ ≈ σ. This approximation is valid in most
industrial applications where the angular frequency w is very low, typically on the order of
kHz. The approximation also holds in medical applications, for example, in the diagnosis of
breast cancer. A primary objective is to distinguish between cancerous and normal breast
tissue, and the large difference in conductivity values between the two tissues makes EIT a
promising method for accurate diagnosis. It been shown that, depending on the frequency,
for cancerous tissue the maximum ratio is wε/σ ≈ 10−1, and for normal tissue a lower ratio
is encountered [19].
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From here on, it is assumed that γ = σ. The behavior of the electric potential inside the
body in this approximation is governed by

~∇ ·
(
σ~∇u

)
= 0 for x ∈ Ω. (4.7)

4.1.1 Boundary Conditions
The electric potential is subject to boundary conditions on the surface of the body ∂Ω,
governed by the injection of currents through a set of L discrete electrodes with area el,
1 ≤ l ≤ L. The derivation of the boundary conditions is presented below [6], leading to a
discussion of the most accurate electrode model [26, 7].

The currents injected into the electrodes must satisfy the condition corresponding to
conservation of charge,

L∑
l=1

Il = 0. (4.8)

Similarly, the ground voltage is chosen such that
L∑
l=1

Ul = 0. (4.9)

Define a unit normal vector ν̂, pointing inward at every point on the surface of the
body. It is tempting to define a current density over the surface of the body, whose normal
component j is given as

j = σ
∂u

∂ν
. (4.10)

This is known as the continuum electrode model. In reality, it is necessary to account
for two effects: first, the electrodes are discrete. The integral of the current density over the
surface of the electrode must be equal to the total current injected into the electrode, that
is, ∫

el

γ
∂u

∂ν
dS = Il. (4.11)

Between the electrodes, the current density must be zero

σ
∂u

∂ν
= 0 between electrodes. (4.12)

The second effect that needs to be accounted for is the extra conductive material added
by the electrodes themselves. In practice, this leads to a shunting effect, in which the current
utilizes the lower conductivity of the electrodes to traverse the path of minimum energy. A
first ansatz to describe the voltage measurements on the electrodes is to assume that the
potential is constant on each electrode, Ul = u on el.

It has been experimentally established that this purely shunting model fails to account
for an electrochemical effect that occurs at the area of contact, forming a region of low
conductance around the electrode. This region is characterized by the contact impedance of
each electrode zl. A simple model for estimating this effect is the lumped-z model

u+ zIl = Ul on el. (4.13)
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This model, too, is insufficient to accurately capture the change in conductivity caused
by the electrodes. The electrodes are not point objects but rather have finite area. Applying
a current at the center of the electrode from an external source leads to the well known
effect that the current density is greater at the corners than in the center of the electrode.
Accounting for this, the measured voltages Ul actually satisfy

u+ zσ
∂u

∂v
= Ul on el. (4.14)

The most accurate electrode model is the complete model, which consists of the descrip-
tion of the potential inside the body (4.7), the boundary conditions (4.11), (4.12), (4.14),
and the conservation conditions (4.8) and (4.9) [6].

In Figure 4.2, the behavior of the currents in a FEM mesh due to the discreteness,
shunting and lumping effects in the complete electrode model are illustrated.

Figure 4.3 is a copy of a previous result that demonstrates the accuracy of the various
electrode models in comparison to experimental data [26]. The characteristic resistance ρ
corresponding to a current pattern Il is defined as the eigenvalues

R(γ)Il = ρIl. (4.15)
Data is generated from an experimental phantom tank containing a homogenous saline

solution of conductivity 1/248 Sm−1 with 16 electrodes. Various current patterns Il are
applied at varying spatial frequencies, and the product of ρ and spatial frequency is plotted
as a function of spatial frequency. This procedure is repeated through simulations for the
various electrode models.

The parabolic shape of the data is a product of the shunting effect, where the number
of unstimulated electrodes, which is determined by the spatial frequency, affects the char-
acteristic resistivity measured. The results show that when the complete electrode model is
employed, the forward model described accurately reproduces the data.

4.2 Discretized Model
To attain a forward map of the form (4.2), the complete EIT model described above can be
discretized to a finite mesh using the Finite Element method [3]. Define two 2D meshes: a
fine mesh with N nodes and corresponding Ne elements, and a coarse mesh with n nodes
and corresponding ne elements. The meshes used are shown in Figure 4.4, and are chosen so
that the fine mesh is refined at the boundary near the electrodes, where the dominant effect
of the modeling error is observed. The meshes were generated in the public domain research
tool EIDORS [28] using DistMesh, a MATLAB code distributed under GNU GPL [25].

To both meshes, L = 16, electrodes are applied on the boundary, where each 1D electrode
has the same size and equal spacing. The size of the electrodes is chosen such that ≈ 70% of
the total perimeter is covered by electrodes, with a slight error stemming from the number
of nodes available on the boundary to represent each electrode.

The conductivity is represented in the discretized form as a constant over each mesh
element. In the coarse mesh, this can be expressed as

σ(x) = σ0 +
ne∑
j=1

θjχ
n
j (x), (4.16)
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Figure 4.2: Illustrations of the behavior of the current in the complete electrode model for
a homogenous sample conductivity distribution. A current of magnitude I is applied at the
top electrode and of −I at the bottom electrode, and no currents are applied elsewhere. The
vector attached to each element in the FEM mesh represents the magnitude and direction of
the current in that element. The panels show: (a) the entire distribution, (b) the shunting
effect, where the current utilizes the lower conductivity of the electrodes, and (c) the lumping
effect, where the current density on an electrode is greater at the edge than at the center.

where x is a coordinate point in the mesh, χnj is the characteristic function of the jth
simplex, θj is the constant conductivity value in the jth mesh, and σ0 is the background
conductivity. The background conductivity is chosen as a constant value that is the same
for all elements in the mesh.

To project from the coarse mesh into the fine mesh, define the projection operator P :
Rn → RN , which computes the value of the conductivity in an element in the fine mesh
as the fractional overlap area with an element in the coarse mesh times the value of that
element.

Consider first the discretization of the EIT model in the coarse mesh. The complete
observation model consists of applying one frame of current patterns, and measuring the re-
sulting frame of voltage patterns. Here, a frame is defined to consist of the maximum number
of linearly independent current patterns. Recall that due to the conservation of charge con-
dition (4.8), there exist L − 1 independent current patterns [I(1), I(2), . . . , I(L−1)] ∈ RL(L−1)

in a single frame, where each I(l) is a current pattern that consists of the currents ap-
plied to the L electrodes [I(l)

1 , I
(l)
2 , . . . , I

(l)
L ]ᵀ ∈ RL. A resulting frame of voltage patterns

[U (1), U (2), . . . , U (L−1)] ∈ RL(L−1) is measured, with each voltage pattern consisting of the
measurements made on the L electrodes [U (l)

1 , U
(l)
2 , . . . , U

(l)
L ] ∈ RL. For L = 16, this corre-

sponds to 240 measurements.
To derive the discretized model, first consider applying a single current pattern I = I(l)

and measuring a single resulting voltage pattern U = U (l).
The electric potential is approximated by the values αi at each node 1 ≤ i ≤ n in the

mesh,
u(x) =

n∑
i=1

αiψi(x), (4.17)
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Figure 4.3: Characteristic resistance times spatial frequency as a function of spatial frequency
for various electrode models, compared to experimental data. The data is produced from a
phantom tank containing a homogenous saline solution of conductivity 1/248 Sm−1 with 16
electrodes [26].

where ψ(x) are the basis vectors. Also define a set of L−1 basis vectors {U1, U2, . . . , UL−1},
where U i ∈ RL, and is not to be confused with the measurements made at the electrodes Ul
which are the elements of U . For some constants βi, expand the current pattern U as

U =
L−1∑
i=1

βiU
i, (4.18)

where one degree of freedom has been eliminated due to the choice of ground (4.9).
It has been shown that for any potential and voltage combinations u, U and v, V that

satisfy the complete electrode model, the following variational form is satisfied,

B((v, V ), (u, U)) =
L∑
l=1

VlIl, (4.19)

where B((v, V ), (u, U)) is the sesquilinear form, defined as

B((v, V ), (u, U)) =
∫

Ω
dx σ~∇v · ~∇u+

L∑
l=1

1
z

∫
el

dS (v − Vl)(u− Ul). (4.20)

Expand the left side of (4.19) as

n∑
i=0

αiB((v, V ), (ψi, 0)) +
L−1∑
i=1

βiB((v, V ), (0, U i)) =
L∑
l=1

VlIl. (4.21)
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(b)

Figure 4.4: (a) The fine grid, consisting of Ne = 4579 elements, and (b) the coarse grid
(right) of ne = 1024 elements. The number of nodes are N = 2675 and n = 545, respectively.
The green arcs on the boundary represent the L = 16 electrodes. Figures were generated in
EIDORS [28] using DistMesh [25].

This can be written in the matrix equation form

An
θx = yn, (4.22)

where the superscript n makes explicit that the forms for the fine and coarse mesh are
different, and

x =
[
α
β

]
∈ Rn+L−1, y =

[
0n

[(U i)ᵀI]i=1:L−1

]
∈ Rn+L−1, (4.23)

where α = [α1, α2, . . . , αn]ᵀ ∈ Rn, β = [β1, β2, . . . , βL−1]ᵀ ∈ RL−1, [(U i)ᵀI]i=1:L−1 =
[(U1)ᵀI, (U2)ᵀI, . . . , (UL−1)ᵀI] ∈ RL−1, and 0n ∈ Rn is a column vector with all zero entries.

The matrix Anθ ∈ R(n+L−1)×(n+L−1) is given in block form as

An
θ =

[
[B((ψi, 0), (ψj, 0))]i,j=1:n [B((ψi, 0), (0, U j))]i=1:n,j=1:L−1

[B((0, U i), (ψj, 0))]i=1:L−1,j=1:n [B((0, U i), (0, U j))]i,j=1:L−1

]
. (4.24)

To derive the equations describing the full frame of measurements, generalize this dis-
cretization to any current pattern I(l) = I = [I1, I2, . . . , IL]ᵀ. Explicitly, let y(l) denote the
vector y corresponding the lth current pattern,

y =
[

0n
[(U i)ᵀI(l)]i=1:L−1

]
∈ Rn+L−1,

and write [
α(l)

β(l)

]
= (An

θ )−1y(l). (4.25)
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To each current pattern I(l), the corresponding voltage pattern measured U (l) is given
by (4.18)

U (l) = Uβ(l) = U
[
0(L−1)×nIL−1

]
(An

θ )−1y(l) = Bn(An
θ )y(l), (4.26)

where IL−1 is the identity matrix, and U is defined as

U =
[
U1, U2, . . . , UL−1

]
∈ RL×(L−1). (4.27)

The complete observation model is described by stacking the vectors I(l) into a frame of
current patterns, and likewise stacking the vectors U (l) into a frame of voltage measurements.

The discretization to a fine mesh is equivalent to procedure for a coarse mesh, with the
appropriate change of number of nodes to N , and with the conductivity σ being projected
into the fine mesh using the projection operator.

The voltage patterns in (4.26) represent the noiseless data. As before, it is assumed that
the observation model has additive Gaussian measurement noise,

V = U(θ) + e, e ∼ N (0,C), (4.28)

where Γη is the covariance matrix of the noise and U(θ) = Bn(An
θ )yn are the noiseless

measurements. It is left as implicit that this forward map refers to the full frame of mea-
surements, so that V ∈ RL(L−1).
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Computed Examples in EIT

The algorithm for dynamically estimating the modeling error is examined in the context of
EIT and compared to the performance of Algorithm 1 [3]. The computations are performed
using a 2D model with finite discretization. The circular discs are assumed to be of radius
0.2m. It has been shown that the optimal current patterns for circular conductivity distribu-
tions are trigonometric patterns, where the amplitude of the current is chosen as 10mA, and
the contact impedance is z = 3 × 10−3Ωm2. These values consistent with what is typically
encountered in biomedical applications [6, 26, 19].

5.1 Prior Density
The prior is assumed to be Gaussian distributed with mean σ0 ∈ Rne and covariance Γ ∈
Rne×ne ,

πprior ∼ N (σ0,Γ). (5.1)

Let xj denote the Cartesian coordinates of the center of the jth coarse grid element,
1 ≤ j ≤ ne. Define the covariance by the correlation matrix

Γi,j = γ exp
(
−
‖xj − xi‖2

λ

)
, (5.2)

where λ is the correlation length and γ is the prior marginal variance of each pixel,
not to be confused with the admittivity distribution referenced previously. In principle, it
is possible for the conductivity distribution to attain negative values. However, these low
probability occurrences are rejected in practice.

In Figure 5.1, six draws from the prior distribution are shown for λ = 0.2m and γ =
0.05 S2 m2. These values are chosen ad hoc such such that the realizations approximately
resemble the true distribution. The background conductivity is chosen for all elements in
the mesh as

σ0 = 1.3 Sm−1. (5.3)

5.2 Conductivity Reconstructions
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Figure 5.1: Six random realizations of the conductivity model (4.16) with the coefficient
vector θ drawn from the prior distribution (5.1). The radius of the disc is 0.2 m, and the
correlation length in (5.2) is λ = 0.2 m. The background conductivity is σ0 = 1.3 Sm−1, and
the prior variance is γ = 0.05 S2 m2.

To ease the implementation of the proposed algorithms, the public domain EIT research
EIDORS is used [28]. In particular, a MATLAB implementation is used for mesh generation,
solving of the forward problem and the display of the images. The minimization problems
in the two algorithms require non-linear optimization, and are solved using a Gauß-Newton
algorithm with backtracking.

For testing the algorithms, a sample conductivity distribution is generated in the fine
mesh to represent the true physical conductivities, shown in the top-left panel of Figure 5.2.
Test data b is generated using this distribution, representing the noiseless voltage vector in
the measurement model.

To demonstrate the effect of the modeling error, the level of the measurement error in the
data is taken to be low in comparison, corresponding to precise measurements. The variance
η2 of the Gaussian white noise is determined as

η2 = δ
∥∥∥UN(θ)− UN(0)

∥∥∥
2
, (5.4)

where the proportionality constant is chosen as δ = 7 × 10−3. Here, UN(0) refers to
the forward calculation corresponding to a homogenous conductivity distribution at the
background value σ0.

The reconstructions produced as a result of estimating the modeling error dynamically
in Algorithm 2 are shown in Figure 5.2. For an ensemble size of k = 20, panels show the
average of the ensemble S t

k at time-steps t = 1, 2, 3, 10, and 20.
At the first time step, reconstructions are based off the initial zero values for the modeling

error mean and covariance. This leads to particularly strong artifacts at the boundary
that corrupt the quality of the image. After the first estimate of the modeling error is
obtained, the reconstructions at t = 2 have already corrected for a majority of the artifacts.
Beyond this, the images quickly converge, and the quality of the reconstructions is unaffected
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by the further updating at time-steps beyond t ≈ 10. The persistent fluctuations in the
background conductivity are due to the sample size, and may be corrected by increasing k,
with corresponding a tradeoff in computational efficiency.

5.3 Convergence and Discussion
The convergence of the modeling error is of interest as both a measure of the accuracy and
the computational efficiency of the dynamic estimation algorithm. Since the algorithm can
be terminated at any time-step, once the modeling error has converged, the estimate for its
mean and covariance can be used without further updating. A quick convergence therefore
can significantly reduce computation time in the dynamic algorithm, particularly if the error
converges to the same values as ion the prior sampling algorithm.

Figure 5.3 shows the convergence of the mean and covariance to the values attained
from Algorithm 1. The horizontal axis plots kt, corresponding to the cumulative number
of computationally expensive inverse problems that have been solved at time-step t, and is
a measure of the efficiency of the method. The vertical axes plot the relative differences∥∥∥m(T ) −m

∥∥∥
2
/ ‖m‖2 and

∥∥∥Σ− Σ(T )
∥∥∥

F
/ ‖Σ‖F, where ‖.‖F denotes the Frobenius norms of the

matrices, and m,Σ are the estimates obtained from Algorithm 1 using K = 2500.
The mean converges rapidly to the prior sampled values, stabilizing to a difference level of

≈ 5%. After the first time-step, the difference level is already less than 20% for all ensemble
sizes, suggesting that only few time steps are necessary to obtain accurate estimates. The
convergence in the number of time-steps is distinctly independent of the ensemble size k,
indicating that even a small ensemble size k = 2 may be used to estimate the mean.

The covariance matrix also shows convergent behavior, but it surprisingly does not con-
verge to Σ from the prior-sampling. In particular, the covariance is lower in the dynamic
estimation method, expressing a higher certainty about the modeling error. This is a conse-
quence of the posterior having a narrower distribution than the prior.

The effect of discretization is captured by the likelihood function in the Bayes formula,
rather than the prior. Sampling the prior in Algorithm 1 therefore cannot accurately capture
the dependency of the modeling error on the true θ. In the sequential method, the ensemble
of conductivity distributions is also initially drawn from the prior. However, at each time
step, the samples are updated as the most recent solutions to the inverse problem. After
several time steps, the ensemble is therefore effectively sampling the posterior, rather than
the prior distribution, incorporating the most recent information about θ at each time step
into the estimate for the errors mean and covariance. Since the posterior is guaranteed to
have a narrower distribution than the prior, this in turn leads to a lower variance in the
distribution for the modeling error.

To study the uncertainty in the posterior between the two methods, consider making
draws from the posterior using randomized sampling. For Algorithm 1, use the latest infor-
mation about the modeling error from step (2) to construct an artificial data sample

bl = b− wl, wl ∼ N (0,C + Σ), 1 ≤ l ≤ K∗, (5.5)
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Figure 5.2: Reconstructions of the true conductivity distribution used to generate the data,
shown in top row, left column, for k = 20 at t = 1, 2, 3, 10, 20 as indicated. The background
conductivity is σ0 = 1.3 Sm−1, and the maximum conductivity (red) and minimum conduc-
tivity (blue) are 1.6 Sm−1 and 0.9 Sm−1, respectively. The contact impedance value is fixed
and assumed to be known, with z = 3× 10−3Ωm2.
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Figure 5.3: The convergence of the relative difference between the dynamic and prior-based
modeling error (a) mean and (b) covariance for k = 2, 5 and 20. The computation of the
prior-based quantities is done with a fixed number K = 2500 of random draws from the
prior. The horizontal axis indicates the cumulative number of inverse problems solved at a
given time-step.

where K∗ = 1000 is the sample size. Using the latest estimate θ+ for the unknown from
step (3) as the mean, the solution to the inverse problem is given as

θ∗l = arg min
θ∗

{
‖bl − f(θ∗)−m‖2

C+Σ +
∥∥∥θ∗ − θ+

∥∥∥2

Γ

}
. (5.6)

Define the covariance matrix Ξ of the sample as

Ξ = 1
K∗

K∗∑
l=1

(θ∗l − θ)(θ∗l − θ)ᵀ, (5.7)

then a measure of the standard deviation in each element in the mesh is given by the
square root of the diagonal of Ξ.

For Algorithm 2, the procedure is similar, with the estimates for m,Σ being replaced
by the estimates at the latest time-step m(T ),Σ(T ), and the mean θ+ being replaced by the
average of the ensemble STk .

Figure 5.4 shows the standard deviation in each element for both algorithms. The devia-
tion in posterior of Algorithm 1 is larger than in Algorithm 2 by about a factor of ten, with
the minimum ≈ 0.1 Sm−1 being almost twice the maximum of Algorithm 2 ≈ 0.06 Sm−1.
The plots also agree with the expectation that the uncertainty is larger in the center of the
domain than near the boundary. The ratio of the deviation at the boundary to the center
is smaller for Algorithm 2, indicating that the posterior is more relatively certain about the
boundary than in Algorithm 1.

The curious plateau in the shape of the convergence curves for the covariance in Figure 5.3
is a product of the initialization of the mean and covariance to zero in the dynamic estimation
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Figure 5.4: Standard deviation in each pixel in the posterior distributions from (a) Algorithm
1 and (b) Algorithm 2. A sample size of K∗ = 1000 draws was made from the prior by
randomized sampling using the estimatesm,Σ for Algorithm 1 andm(20),Σ(20) for Algorithm
2. The plots are of the square root of the diagonal entries of the covariance matrices of θ for
the two samples.

method. The solutions at the first time-step t = 1 are obtained using m = 0 and Σ =
0, and consequently the ensemble S 1

k consists of conductivity distributions that have no
information about the modeling error. These almost identical solutions are dominated by
a strong modeling error artifact, as illustrated in Figure 5.2, and thus Σ − Σ(1) ≈ Σ. In
Figure 5.3, this is reflected by a relative error that is close to 100% regardless of the sample
size k.

The estimates for the modeling error mean obtained from S 1
k already have a relative

error of less than 20%. At the second step then, the algorithm has started to learn about
the modeling error, leading to a covariance more similar Σ. As the iterations proceed, the
samples S t

k sample the posterior, which is of decreasing variance as more information about
the modeling error incorporated into the likelihood function. Consequently the covariance Σ
converges to a smaller value than in Algorithm 2, leading to a tendency in the relative error
away toward 1.

This behavior is further illustrated in Figure 5.5. For sample size k = 20 and time-steps
t = 1, 2, 3, 10, 20, and 50, the standard deviation in each pixel is shown, calculated from the
current ensemble Stk. At t = 1, the similarity of the solutions due to the lack of information
about the modeling error is reflected in a low variance in the ensemble. Similarly at t = 2,
the solutions were obtained using a the low estimate Σ(1) ≈ 0, and thus have a similarly
low variance. Only for t ≥ 3 does the method incorporate reasonable estimates for both the
mean and covariance of the modeling error. As expected, the uncertainty is greater in the
center than at the boundary. Eventually, the posterior converges, decreasing the variance in
the ensemble and leading to a gradual decrease in the uncertainty from t = 20 to t = 50.

In summary, the iterative updating of the modeling error estimate produces qualitatively
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Figure 5.5: The standard deviation in each pixel, based on the ensemble of size k = 20 in
Algorithm 2, at various time-steps as indicated. The plots are of the square root of the
diagonal entries of the covariance matrices of θ for the ensemble S t

k at each time-step.

similar results as the off-line algorithm based on random draws from the prior. However,
the modeling error variance with dynamic updating is significantly smaller, which leads to
a posterior for the parameter θ that is smaller by about a factor of ten. This variance is
reflected in the evolution of the variance in the ensemble, which smoothes gradually after the
first several time-steps as the algorithm progresses. Convergence of the modeling error mean
can be achieved with extremely small sample sizes (k = 2, k = 5), and can be terminated
when convergence criteria are satisfied. Thereafter, Algorithm 2 can make use of the estimate
of the modeling error mean and covariance for all further inverse problem solutions, similar
to Algorithm 2. This leads to a fast algorithm with no need of off-line computations.

The very small sample size, however, may result in noisier sample mean estimates. In
Figure 5.6, the sample means after T = 20 iterations with different sample sizes are shown,
together with the MAP estimate calculated by Algorithm 1 using the off-line modeling error
statistics estimate withK = 2500 random draws from the prior. As expected, small ensemble
sizes k = 2, 5 lead to a mean which is less smooth than for large sample sizes k = 20, 50.
The background the solution from Algorithm 2 is less noisy than in Algorithm 1 - however,
the inclusions are slightly more diffuse. These observations are consistent with the larger
variance in the posterior of Algorithm 1, shown in Figure 5.4.
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Figure 5.6: Final sample mean estimates from Algorithm 2 after T = 20 iteration rounds
with different sample sizes, k = 2, 5, 10, 20 and 50. For comparison, the conductivity estimate
at the bottom of the right column is computed from the modeling error estimates from
Algorithm 1, where K = 2500.



Chapter 6

Conclusions

This thesis describes a novel sampling-based algorithm for inverse problems with discretization-
based model discrepancies, based on the idea of dynamically updating in an alternating
fashion the parameter sample and the modeling error statistics. The viability of this algo-
rithm is demonstrated with an application to the inverse problem of electrical impedance
tomography.

Unlike the previous approach of prior-sampling, discretization error estimates from the
dynamic algorithm do not require off-line computations, yielding immediate solutions. Fur-
thermore, the adequacy of the sample size can be assessed as the iterations proceed, as well as
the convergence of the estimates and solutions. The speed of the algorithm can be adjusted
by controlling the sample size, although there exists a corresponding tradeoff in the noise in
the posterior. Computed examples demonstrate that even with extremely low sample size,
the estimates of the modeling error probability are of reasonably good quality, and the asso-
ciated computational efficiency makes the method ideal for time sensitive applications. The
algorithm can be adapted to time-varying inverse problems such as real time imaging, where
the forward model needs not be stationary, thus extending the error estimate methodology
to genuinely dynamic models.
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Appendix A

Derivations of EIT Equation from
Maxwells Equations

The derivation of the EIT equations governing the behavior of electromagnetic fields inside
the body is reproduced following [6]. We start with a general approach from Maxwell’s
equations from electrodynamics in the time domain, that is,

~∇× ~E(x, t) = −∂
~B(x, t)
∂t

(A.1)

~∇× ~B(x, t) = εµ
∂ ~E(x, t)
∂t

+ µ~j(x, t), (A.2)

where x is a point in the domain Ω, µ(x, t) is the magnetic permeability, ε(x, t) is the
electric permittivity, and ~j(x, t) is the current density.

Using the inverse Fourier transform for ~E,

~E(x, t) = 1
2π

∫ ∞
−∞

dw ~E(x,w) exp(iwt), (A.3)

and similarly for ~B, we can derive the fixed frequency versions of the Maxwell equations,
where w is the angular frequency of the applied current. From (A.1), we have

1
2π

∫ ∞
−∞

dw
(
~∇× ~E(x,w)

)
exp(iwt) = 1

2π

∫ ∞
−∞

dw (− ~B(x,w)) ∂
∂t

exp(iwt) (A.4)

= 1
2π

∫ ∞
−∞

dw
(
−iw ~B(x,w)

)
exp(−iwt) (A.5)

∴ ~∇× ~E(x,w) = −iw ~B(x,w), (A.6)

and from (A.2),
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1
2π

∫ ∞
−∞

dw
(
~∇× ~B(x,w)

)
exp(iwt) = 1

2π

∫ ∞
−∞

dw

(
εµ ~E(x,w) ∂

∂t
exp(iwt) + µ~j(x,w) exp(iwt)

)
(A.7)

= 1
2π

∫ ∞
−∞

dw
(
iwεµ~E(x,w) + µ~j(x,w)

)
exp(−iwt)

(A.8)
∴ ~∇× ~B(x,w) = iwεµ~E(x,w) + σµ~E(x,w). (A.9)

Here, in the last line, we used the approximation that the current density in the body Ω
is proportional to the electric field

~j(x,w) ≈ σ(x,w) ~E(x,w), (A.10)
where σ(x,w) is the electric conductivity. From here on, we implicitly work in the

frequency domain.
We make the ansatz from electrostatics that ~E can be written as the gradient of the

electric potential

~E = −~∇u, (A.11)
where u(x,w) is the electric potential. Using this and taking the divergence of (A.9), we

can obtain the desired result

~∇ · ~∇× ~B = ~∇ · (−σµ~∇u− iwεµ~∇u) (A.12)
0 = ~∇ ·

(
(σ + iwε)~∇u

)
(A.13)

∴~∇ ·
(
γ~∇u

)
= 0 (A.14)

where γ(x,w) = σ(x,w) + iwε(x,w) is the electric admittivity.
To verify this ansatz (A.11), consider writing (A.6) in terms of unit-less vectors, that is,

let ~E = [E]Ẽ, ~B = [B]B̃, and ~x = [x]x̃, where [x] is the unit of distance. Here, tilde denotes
a vector without dimensions, and the quantity in brackets is a scalar with dimensions as
appropriate. (A.6) therefore reads

[x]−1[E]∇̃ × Ẽ = −iw[B]B̃, (A.15)

where we have written the nabla operator in terms of a unit-less vector, ~∇ = [x]−1∇̃, as
before. Next, we make a convenience choice for our units for ~E and ~B such that

σ = [B]
[E][x] . (A.16)

Therefore, (A.15) can be written as

∇̃ × Ẽ = −iwσ[x]2B̃. (A.17)
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Figure A.1: Integration pillbox Ωδ of width δ on the boundary ∂Ω. ν̂ is the unit normal
vector pointing out of the body.

The general application of EIT is to medical imaging, where wσ[x]2 is negligible. For
example, applied currents typically operate on the order of 10 kHz, conductivities are less
than 1 Ω−1m−1, and distances are less than 1m. The curl of the electric field is therefore
approximately zero, which by Stoke’s theorem is equivalent to (A.11), and so (A.14) holds
true as the desired result inside the body Ω.

Next, we derive the equation for the potential at points y on the surface ∂Ω of the body.
It is necessary to account for the applied currents ~jappl(y, w) on the surface by replacing the
approximation (A.10) with

~j(y, w) ≈ σ(y, w) ~E(y, w) +~jappl(y, w). (A.18)

For the fixed frequency Maxwell equation (A.9), this leads to

~∇× ~B(y, w) = iwεµ~E(y, w) + σµ~E(y, w) + µ~jappl(y, w). (A.19)

Taking the divergence of both sides and using (A.11), we have

~∇ ·
(
γ~∇u

)
= ~∇ ·~jappl. (A.20)

We now integrate both sides over a pillbox of thickness δ on the boundary ∂Ω, as shown
in Figure A.1. Using the divergence theorem, we have

∫∫∫
Ωδ
~∇ ·

(
γ~∇u

)
=
∫∫∫

Ωδ
~∇ ·~jappl (A.21)∫∫

∂Ωδ
γ~∇u · ν̂ =

∫∫
∂Ωδ

~jappl · ν̂, (A.22)

where ν̂ is the unit normal vector pointing out of the body Ω.
In the limit where δ → 0, only the outside (of Ω) and inside ends of the pillbox contribute,

and we have

γout∂νu− γin∂νu = ~japplout · ν̂ −~japplin · ν̂. (A.23)
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Here, ∂ν denotes a partial derivative along ν̂, and out and in demote the respective values
on the outside and inside of Ω. Since we are assuming that currents are applied only to the
outside of the body, we have ~japplin = 0. Furthermore, in most imaging applications, γ outside
of the body is negligible, so that we may approximate γout ≈ 0 and write γ = γin. We are
left with the desired result,

γ
∂u

∂ν
= ~j, (A.24)

where we have defined ~j ≡ −~japplout · ν̂ as the current entering the body.



Appendix B

Gauß-Newton Algorithm

The minimization problem is given as

arg min
θ

{
‖b− f(θ)‖2

C+Σ + λ2 ‖θ − θ0‖2
Γ

}
(B.1)

= arg min
θ

{
(b− f(θ))T (C + Σ)−1(b− f(θ)) + λ2(θ − θ0)TΓ−1(θ − θ0)

}
, (B.2)

where λ is a regularization parameter.
Using the Cholesky factorizations:

(C + Σ)−1 = RTR (B.3)
Γ−1 = MTM, (B.4)

we can rewrite the problem as

arg min
θ

{
‖R(b− f(θ))‖2

2 + λ2 ‖M(θ − θ0)‖2
2

}
(B.5)

= arg min
θ


∥∥∥∥∥
[
Rf(θ)
λMθ

]
−
[
Rb

λMθ0

]∥∥∥∥∥
2

2

 (B.6)

Define the following quantities:

F (θ) =
[
Rf(θ)
λMθ

]
(B.7)

r =
[
Rb

λMθ0

]
(B.8)

g(θ) = ‖F (θ)− r‖2
2 , (B.9)

and so the minimization problem is given by arg minθ {g(θ)}.
Linearize F (θ) = F (θc + ϑ) ≈ F (θc) + ∂F (θc)ϑ, where θ = θc + ϑ. Then

g(θ) ≈ ‖F (θc) + ∂F (θc)ϑ− r‖2
2 = ‖Jϑ− y‖2

2 (B.10)
where we have defined y = r − F (θc) and J = ∂F (θc). Expanding the 2-norm, we have:
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g(θ) ≈ (Jϑ− y)T (Jϑ− y) (B.11)
= (ϑTJT − yT )(Jϑ− y) (B.12)
= ϑTJTJϑ− ϑTJTy − yTJϑ+ ‖y‖2

2 (B.13)

Since y and ϑ are column vectors and J is a matrix, then yTJϑ = (yTJϑ)T = ϑTJTy and
so:

g(θ) ≈ ϑTJTJϑ− 2ϑTJTy + ‖y‖2
2 (B.14)

To minimize this function, differentia with respect to ϑ and set to zero:

∇ϑg(θ) = 0 (B.15)
⇒ ∇ϑ

(
ϑTJTJϑ− 2ϑTJTy + ‖y‖2

)
= 0 (B.16)

⇒ JTJϑ+ ϑTJTJ − 2JTy = 0 (B.17)
⇒ JTJϑ− JTy = 0 (B.18)
∴ ϑ = (JTJ)−1JTy (B.19)

where we used the fact that JTJϑ = (JTJϑ)T = ϑTJTJ .
To evaluate these components, recall that J = ∂F (θc), and so we can write:

J =
[
∂(Rf(θc))
∂(λMθc)

]
=
[
R∂f(θc)
λM

]
(B.20)

JTJ =
[
∂f(θc)TRT λMT

] [R∂f(θc)
λM

]
(B.21)

= ∂f(θc)TRTR∂f(θc) + λ2MTM (B.22)
= ∂f(θc)T (C + Σ)−1∂f(θc) + λ2Γ−1 (B.23)

This leads to the complete solution at the next step

θ = θc + ϑ. (B.24)

For computational efficiency, it is desirable to ensure that every iteration of the algorithm
contributes to the minimization of g, that is, g(θ) < g(θc). To ensure that the step ϑ does not
overstep the minimum, a technique known as backtracking may be employed, where (B.24)
is replaced by

θ = θc + sϑ, (B.25)

where s ∈ (0, 1] is chosen by interpolation such that g(θ) < g(θc). This ensures that the
next step in the iteration is guaranteed to be lower than the previous, and so the algorithm
always works to minimize g.
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B.1 Wiener Filtering
Tikhonov regularization is closely related to Wiener filtering, and it may be useful in terms
of computational efficiency for some applications to reformulate the solution in this way.

Starting by expanding the solution (B.24) without backtracking:

θ = θc + ϑ (B.26)

= θc +
(
∂f(θc)T (C + Σ)−1∂f(θc) + λ2Γ−1

)−1 [
∂f(θc)TRT λMT

] [ Rb−Rf(θc)
λMθ0 − λMθc

]
(B.27)

= θc +
(
∂f(θc)T (C + Σ)−1∂f(θc) + λ2Γ−1

)−1
∂f(θc)T (C + Σ)−1(b− f(θc)) (B.28)

+
(
∂f(θc)T (C + Σ)−1∂f(θc) + λ2Γ−1

)−1
λ2Γ−1(θ0 − θc)

= θc +
(
J T (C + Σ)−1J + λ2Γ−1

)−1
J T (C + Σ)−1(b− f(θc)) (B.29)

+
(
J T (C + Σ)−1J + λ2Γ−1

)−1
λ2Γ−1(θ0 − θc)

where we defined J = ∂f(θc).
The first term in (B.29) can be rewritten in the form(

ATC−1A+ λ2Γ−1
)−1

ATC−1z = ΓAT (AΓAT + λ2C)−1z, (B.30)

where the left side is referred to as the Tikhonov regularized solution and the term on
the right is referred to as the Wiener filtered solution.

It is straightforward although involved to prove this identity using the singular value
decomposition [2], and that the equivalent form of the solution follows

θ = θc + ΓJ T
(
J ΓJ T + λ2(C + Σ)

)−1
(b− f(θc − θ0)). (B.31)



Appendix C

Implementation details in EIDORS

EIDORS simplifies the construction of meshes, and the calculation of the Jacobians. In
this work, its MATLAB implementation is primarily used to solve the forward problem, and
produce the figures shown. Nonetheless, EIDORS introduces several points of difficulty. In
particular, forward calculations are performed based on units that are assumed to be scaled
to the unit disk. By assuming that the given values correspond to a circular distribution
of radius r = 0.2m, it is necessary to scale the values appropriately in the calculation. For
clarity, this procedure is outlined here.

Define a scaling parameter s = 5, such that scaling to the unit disk of radius r′ = 1 is
defined as

r → r′ = sr = 1.

In solving the forward problem, the appropriate quantities are scaled as follows

θ → θ′ = θ/s

σ0 → σ′0 = σ0/s

z → z′ = s2z.

All other parameters remain unscaled. After the algorithms have run to completion, the
results are scaled back appropriately to the r = 0.2m disk for analysis.
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