

## Edexcel iGCSE Physics Equation Sheet

ALL symbols and units must be learnt – none are given in the exam.

Topic 1 – Forces and Motion

| Equations to learn       | Symbols                    | Units                          |
|--------------------------|----------------------------|--------------------------------|
| $d = s \times t$         | d = distance               | d = m (meters)                 |
|                          | s = speed                  | s = m/s (meters per second)    |
|                          | t = time                   | t = s (seconds)                |
| a = <u>v - u</u>         | a = acceleration           | $a = m/s^2$ (meters per second |
| t                        |                            | squared)                       |
|                          | v = final velocity         | v = m/s (meters per second)    |
|                          | u = initial velocity       | u = m/s (meters per second)    |
|                          | t = time                   | t = s (seconds)                |
| F = m x a                | F = force                  | F = N (newtons)                |
|                          | m = mass                   | m = kg (kilograms)             |
|                          | a = acceleration           | $a = m/s^2$ (meters per second |
|                          |                            | squared)                       |
| $W = m \times g$         | W = weight                 | W = N (newton's)               |
|                          | m = mass                   | m = kg (kilograms)             |
|                          | g = gravitational field    | g = N/kg (newtons per          |
|                          | strength                   | kilogram)                      |
| $p = m \times v$         | p = momentum               | p = kg m/s (kilograms metre    |
| Paper 2 only             | m = mass                   | per second)                    |
| Paper 2 only             | v = velocity               | m = kg (kilograms)             |
| - , -                    |                            | v = m/s (meters per second)    |
| $M = F \times d$         | M = moment                 | M = Nm (newton-meters)         |
| Paper 2 only             | F = force                  | F = N (newtons)                |
| aper 2 om,               | d = Perpendicular distance | d = m (meters)                 |
| Equations to find on the | Symbols                    | Units                          |
| formula sheet and use    |                            |                                |
| $v^2 - u^2 = 2as$        | v = final velocity         | v = m/s (meters per second)    |
|                          | u = initial velocity       | u = m/s (meters per second)    |
|                          | a = acceleration           | $a = m/s^2$ (meters per second |
|                          | s = distance               | squared)                       |
|                          |                            | s = m (meters)                 |
|                          |                            |                                |
| F = (mv - mu)            | F = force                  | F = N (newtons)                |
| Т                        | mv = final momentum        | mv = kgm/s (kilogram metre     |
| Paper 2 only             | mu = initial momentum      | per second)                    |
| . apo. 2 omy             | t = time                   | mu = kgm/s (kilogram metre     |
|                          |                            | per second)                    |
|                          |                            | t = s (seconds)                |
|                          |                            | <u> </u>                       |



## Topic 2 – Electricity

| Equations to learn        | Symbols                  | Units               |
|---------------------------|--------------------------|---------------------|
| $P = V \times I$          | P = Power                | P = W (watts)       |
|                           | V = Potential difference | V = V (volts)       |
|                           | I = Current              | I = A (amps)        |
| $V = I \times R$          | V = Potential difference | V = V (volts)       |
|                           | I = Current              | I = A (amps)        |
|                           | R = Resistance           | $R = \Omega$ (ohms) |
| $Q = I \times t$          | Q = Charge               | Q = C (coulombs)    |
|                           | I = Current              | I = A (amps)        |
|                           | t = Time                 | t = s (seconds)     |
| $E = Q \times V$          | E = Energy               | E = J (joules)      |
|                           | Q = Charge               | Q = C (coulombs)    |
|                           | V = Potential difference | V = V  (volts)      |
| Equations to find on the  | Symbols                  | Units               |
| formula sheet and use     |                          |                     |
| $E = I \times V \times t$ | E = Energy               | E = J (joules)      |
|                           | I = Current              | I = A (amps)        |
|                           | V = Potential difference | V = V (volts)       |
|                           | t = Time                 | t = s (seconds)     |

## Topic 3 – Waves

|                            |                                                          | A - A                                                           |
|----------------------------|----------------------------------------------------------|-----------------------------------------------------------------|
| Equations to learn         | Symbols                                                  | Units                                                           |
| SURPRISE                   | v = velocity<br>f = frequency<br>λ = wavelength (lambda) | v = m/s (meters per second)<br>f = Hz (hertz)<br>λ = m (meters) |
| n = <u>sin i</u>           | n = refractive index                                     | n = (there is no unit for this,                                 |
| sin r                      | i = angle of incidence                                   | but the number should be                                        |
|                            | r = angle of refraction                                  | somewhere around a decimal                                      |
|                            |                                                          | point of 1 or 2)                                                |
|                            |                                                          | i = ° (degrees)                                                 |
|                            |                                                          | r = ° (degrees)                                                 |
| $\sin c = \underline{1}$   | c = critical angle                                       | c = ° (degrees)                                                 |
| n                          | n = refractive index                                     | n = (there is no unit for this,                                 |
|                            |                                                          | but the number should be                                        |
|                            |                                                          | somewhere around a decimal                                      |
|                            |                                                          | point of 1 or 2)                                                |
| Equations to find on the   | Symbols                                                  | Units                                                           |
| formula sheet and use      |                                                          |                                                                 |
| Frequency = $\frac{1}{}$ . | <b>-</b>                                                 | Frequency = Hz (hertz)                                          |
| Time period                | T = time period                                          | Period = s (seconds)                                            |



Topic 4 – Energy Resources and Energy Transfer

| <b>Equations to learn</b>                                                           | Symbols                          | Units                 |
|-------------------------------------------------------------------------------------|----------------------------------|-----------------------|
| Efficiency = <u>useful energy out</u>                                               | x 100                            |                       |
| total energy in                                                                     |                                  |                       |
| $W = F \times d$                                                                    | W = work done                    | W = J (joules)        |
|                                                                                     | F = force                        | F = N (newtons)       |
|                                                                                     | d = distance                     | d = m (meters)        |
| $GPE = m \times g \times h$                                                         | GPE = gravitational potential    | GPE = J (joules)      |
|                                                                                     | energy                           | m = kg (kilograms)    |
|                                                                                     | m = mass                         | g = N/kg (newtons per |
|                                                                                     | g = gravitational field strength | kilogram)             |
|                                                                                     | h = height                       | h = m (meters)        |
| $KE = \frac{1}{2} \text{ mv}^2$                                                     | KE = kinetic energy              | KE = J (joules)       |
|                                                                                     | m = mass                         | m = kg (kilograms)    |
|                                                                                     | v = speed                        | v = m/s (meters per   |
|                                                                                     |                                  | second)               |
| Remember: Energy transferred = work done = kinetic energy = gravitational potential |                                  |                       |
| energy                                                                              |                                  |                       |
| In the same system                                                                  |                                  |                       |
| <b>Equations to find on the</b>                                                     | Symbols                          | Units                 |
| formula sheet and use                                                               |                                  |                       |
| $P = \underline{W}$                                                                 | P = power                        | P = W (watts)         |
| Et I                                                                                | W = work done                    | E = J (joules)        |
|                                                                                     | t = time taken                   | t = s (seconds)       |

Topic 5 – Solids, liquids and gases

| Equations to learn                      | Symbols                         | Units A S                               |
|-----------------------------------------|---------------------------------|-----------------------------------------|
| ρ = <u>m</u>                            | ρ = density                     | $\rho = kg/m^3$ (kilograms per meter    |
| V                                       | m = mass                        | cubed                                   |
|                                         | V = volume                      | m = kg (kilograms)                      |
|                                         |                                 | $V = m^3$ (meters cubed)                |
| $P = \underline{F}$                     | P = pressure                    | P = Pa (pascals)                        |
| Α                                       | F = force                       | F = N (newtons)                         |
|                                         | A = area                        | $A = m^2$ (meters squared)              |
| $p = h \times \rho \times g$            | p = pressure                    | p = Pa (pascals)                        |
|                                         | h = height                      | h = m (meters)                          |
|                                         | $\rho$ = density                | $\rho = kg/m^3$ (kilograms per meter    |
|                                         | g = gravitational field         | cubed                                   |
|                                         | strength                        | g = N/kg (newtons per kilogram)         |
| Equations to find on                    | Symbols                         | Units                                   |
| the formula sheet and                   |                                 |                                         |
| use                                     |                                 |                                         |
| $\Delta Q = m \times c \times \Delta T$ | $\Delta Q$ = change in thermal  | $\Delta Q = J$ (joules)                 |
| Paper 2 only                            | energy                          | m = kg (kilograms)                      |
| raper 2 only                            | m = mass                        | c = J/kg°C (joules per kilogram         |
|                                         | c = specific heat capacity      | degree Celsius)                         |
|                                         | $\Delta T$ = temperature change | $\Delta T = ^{\circ}C$ (degree Celsius) |



| PV = constant This is what will be written on the formula sheet. What you need to learn is this: P1 x V1 = P2 x V2                     | p = pressure<br>V = volume      | p = Pa (pascals)<br>V = m³ (meters cubed)   |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------|
| $PT = constant$ This is what will be written on the formula sheet. What you need to learn is this: $\frac{P_1}{T_1} = \frac{P_2}{T_1}$ | P = pressure<br>T = temperature | P = Pa (pascals)<br>T = ° (degrees Celcius) |

Topic 6 – Magnetism and electromagnetism

| Equations to learn                      | Symbols                                 | Units                                                   |
|-----------------------------------------|-----------------------------------------|---------------------------------------------------------|
| $\underline{V}_{p} = \underline{n}_{p}$ | $V_p$ = potential difference            | $V_p = V \text{ (volts)}$                               |
| $V_s$ $n_s$                             | across the primary coil                 | $V_s = V$ (volts)                                       |
| Daniel and                              | $V_s$ = potential difference            | n <sub>p and</sub> n <sub>s have</sub> no units as they |
| Paper 2 only                            | across the secondary coil               | are just numbers                                        |
|                                         | $n_p = number of turns on the$          |                                                         |
|                                         | primary coil                            |                                                         |
|                                         | n <sub>s =</sub> number of turns on the | COM                                                     |
|                                         | secondary coil                          | 70011                                                   |
| $V_p I_p = V_s I_s$                     | $V_p$ = potential difference            | $V_p = V \text{ (volts)}$                               |
| Paper 2 only                            | across the primary coil                 | $V_s = V \text{ (volts)}$                               |
| Paper 2 only                            | V <sub>s</sub> = potential difference   | $I_p = A$ (Amps or Amperes)                             |
|                                         | across the secondary coil               | $I_s = A$ (Amps or Amperes)                             |
|                                         | $I_p$ = current in the primary          |                                                         |
|                                         | coil                                    |                                                         |
|                                         | $I_s$ = current in the secondary        |                                                         |
|                                         | coil                                    |                                                         |
|                                         | $V_p I_p = power input$                 |                                                         |
|                                         | $V_s I_s = power output$                |                                                         |



ATOMIC NUMBER STAYS THE SAME



Topic 8 – Astrophysics

| Equations to find on the formula sheet and use                                                                                                              | Symbols                                                                                                                   | Units                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| v = <u>2 x π x r</u><br>Τ                                                                                                                                   | <ul><li>v = orbital speed</li><li>r = orbital radius</li><li>T = time period</li></ul>                                    | <pre>v = km/s or m/s (kilometres per second or meters per second) r = km or m (kilometres or meters) T = s (seconds)</pre>                                    |
| $\frac{\lambda - \lambda_0}{\lambda_0} = \frac{\Delta \lambda}{\lambda_0} = \frac{v}{c}$ $\frac{\lambda - \lambda_0}{\lambda_0} = \frac{v}{c}$ Paper 2 only | $\Delta\lambda$ = change in wavelength $\lambda_0$ = reference wavelength $v$ = velocity of a galaxy $c$ = speed of light | $\Delta\lambda$ = km or m (kilometres or meters) $\lambda_0$ = km or m (kilometres or meters) $\nu$ = m/s (meters per second) $\nu$ = m/s (meters per second) |

