Class slides

Simultaneous Equations:

72(

1 Elimination.

27.2

Solve the simultaneous equations

$$x+y=8 \xrightarrow{1} 1$$

$$x-y=4 \xrightarrow{2} 2$$

$$-x-y=4$$

$$0+2y=4$$

$$y=4$$

$$y=4$$

$$y=4$$

$$y=4$$

$$y=4$$

$$y=4$$

64.2

Use elimination to solve the simultaneous equations Step 2:

Use elimination:

Step 2:
Step 2:

$$18x - 45y = -3$$

 $-19x + 40y = 14$
 $0 - 65y = -17$
Step 3: $y = +x$
 $y = +x$
Step 3: $y = +x$
 $y = -x$

Use Substitution:

Use substitution to solve the simultaneous equations

$$2x - 5y = 4 \longrightarrow 1$$

$$x + y = -5 \longrightarrow 2$$

Step 2: Rearrange essy eq.

$$y = -5 - x \rightarrow 2$$

Step 2:

 $2x - 5y = 4$
 $2x - (-5 - x) = 4$
 $2x + 25 + 5x = 4$
 $x = 4$

Linear Simultaneous Equations - Elimination

What are simultaneous linear equations?

- When you have more than one equation in more than one unknown, then you are dealing with simultaneous equations
- . An equation is linear if none of the unknowns in it is raised to a power other than one
- Solving a pair of simultaneous equations means finding pairs of values that make both equations true at the same time
- A linear equation in two unknowns will produce a straight line if you graph it... linear = line
- . A pair of simultaneous equations will produce lines that will cross each other (if there is a solution!)

How do I use elimination to solve simultaneous linear equations?

Step 1: Multiply one (or both) of the equations by a constant (or constants) to get the numbers in front of one of the unknowns to match

Step 2: If the matching numbers have the **same** sign, then **subtract** one equation from the other. If the matching numbers have **different** signs then **add** the equations together

Step 3: Solve the new equation from Step 2 to find the value of one of the unknowns

Step 4: Substitute the value from Step 3 into one of the original equations, and solve to find the value of the other unknown

Step 5: Check your solution by substituting the values for the two unknowns into the original equation you **didn't** use in Step 4

Worked example

Solve the simultaneous equations:

$$-2x + 4y = 5$$

$$4x - 5y = -7$$

$$-2x + 4y = 5$$
 1 EQUATIONS
$$4x - 5y = -7$$
 2

STEP 1:
$$[2 \times \textcircled{0}]$$
 $-4x + 8y = 10$
 $[\textcircled{2}]$ $4x - 5y = -7$ WE ONLY HAVE TO MULTIPLY ONE OF THE EQUATIONS HERE

STEP 2:
$$-4x+8y=10$$

 $+(4x-5y=-7)$
 $3y=3$

THE SIGNS IN FRONT OF
THE 4's ARE DIFFERENT,
SO ADD

STEP 5:
$$-2(-0.5)+4(1)=5$$
 $1+4=5$
 $5=5$
 $x=-0.5$
 $y=1$

Linear Simultaneous Equations - Substitution

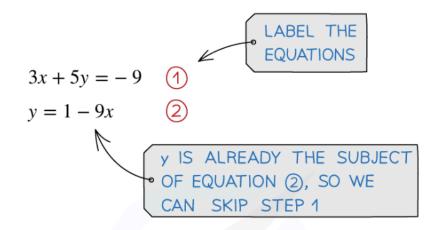
What are simultaneous linear equations?

- When you have more than one equation in more than one unknown, then you are dealing with **simultaneous equations**
- An equation is **linear** if none of the unknowns in it is raised to a power other than one
- Solving a pair of simultaneous equations means finding pairs of values that make both equations true at the same time
- A linear equation in two unknowns will produce a straight line if you graph it... linear = line
- A pair of simultaneous equations will produce lines that will cross each other (if there is a solution!)

How do I use substitution to solve simultaneous linear equations?

Step 1: Rearrange one of the equations to make one of the unknowns the subject (if one of the equations is already in this form you can skip to Step 2)

- Step 2: Substitute the expression found in Step 1 into the equation not used in Step 1
- **Step 3**: Solve the new equation from Step 2 to find the value of one of the unknowns
- **Step 4:** Substitute the value from Step 3 into the rearranged equation from Step 1 to find the value of the other unknown
- **Step 5: Check** your solution by substituting the values for the two unknowns into the original equation you **didn't** rearrange in Step 1


Worked example

Solve the simultaneous equations:

$$3x + 5y = -9$$

$$y = 1 - 9x$$

STEP 2:
$$3x+5(1-9x)=-9$$

$$3x+5-45x=-9$$

$$-42x=-14$$
SUBSTITUTE EQUATION (2)
INTO EQUATION (1)

STEP 3:
$$x = -14 \div (-42) = \frac{1}{3}$$

STEP 4:
$$y=1-9(\frac{1}{3})=1-3=-2$$
 USING EQUATION (2)

STEP 5:
$$3(\frac{1}{3}) + 5(-2) = -9$$

$$1 - 10 = -9$$

$$-9 = -9 \checkmark$$

$$x = \frac{1}{3}$$
 $y = -2$