27/10/2022, 23:03 Olympus DAO contest — Code 423n4

=) 4drena

Olympus DAO contest
Findings & Analysis Report

2022-10-26

TABLE OF CONTENTS

e Overview
o About C4
o Wardens
e Summary
e Scope
e Severity Criteria
e High Risk Findings (3)

o [H-01]In [Governance.sol] it might be impossible to activate a new proposal forever

after failed to execute the previous active proposal.
o [H-02] Anyone can pass any proposal alone before first are minted

o [H-03] TRSRY: front-runnable [setApprovalFor]

e Medium Risk Findings (32)

o [M-01] [Operator: :setReserveFactor] doesn’t check if bond market should be

changed

(¢]

[M-02] Solmate [safetransfer] and [safetransferfrom] does not check the

codesize of the token address, which may lead to fund loss

(¢]

[M-03] RBS may redeploy funds automatically if price stays above or below wall for

longer than [_config.regenWait]

[¢]

[M-04] [o1ympuscovernance#executeproposal |: reentrancy attack vulnerable function

[M-05] Proposals overwrite

[e]

[M-06] After endorsing a proposal, user can transfer votes to another user for
endorsing the same proposal again

[e]

o]

[M-07] Endorsed votes by a user do not decrease after the user’s votes are revoked

[¢]

[M-08] “TWAP” used is an observation-weighted-average-price, not a time-weighted
Top one

https://codedrena.com/reports/2022-08-olympus/ 1/87

https://code4rena.com/

27/10/2022, 23:03

[¢]

[e]

o

[e]

(¢]

[e]

[e]

o]

Olympus DAO contest — Code 423n4

[M-09] [activateProposal()] need time delay

[M-10] Voted votes cannot change after the user is issued new votes or the user’s old
votes are revoked during voting

[M-11] OlympusGovernance: Users can prevent their votes from being revoked
[M-12] Griefing/DOS of withdrawals by EOAs from treasury (TRSRY) possible

[M-1 3] Missing checks in [Kernel. deactivatePolicy]

[M-14] The governance system can be held hostage by a malicious user

[M-15] Heart will stop if all rewards are swept

[M-16] Inconsistant parameter requirements between [constructor ()] and

[Set() functions] in [RANGE.sol] and [Operator.sol]

[M-17] No Cap on Amount of VOTES means the can get any proposal

to pass

[M-18] Inconsistency in staleness checks between OHM and reserve token oracles

[M-1 9] TRSRY: reenter from [OlympusTreasury: :repayLoan] to [Operator: : swap]

[M-20] Operator: if WallSpread is 10000, and will revert and price

information cannot be updated anymore

[M-21] OlympusGovernance - active proposal does not expire

[M-22] Low market bonds/swaps not working after loan is taken from treasury
[M-23] Treasury module is vulnerable to cross-contract reentrancy

[M-24] [NAZ-M1] Chainlink’s [latestRoundData] Might Return Stale Results

[M-25] Moving average precision is lost

[M-26] Cushion bond markets are opened at wall price rather than current price

[M-27] Unexecutable proposals when [Actions.MigrateKernel] is not last instruction

[M-28] Activating same Policy multiple times in Kernel possible

[M-29] TRSRY susceptible to loan / withdraw confusion

[M-30] [Heart::beat ()] could be called several times in one block if no one called it

for a some time
[M-31] Protocol’s Walls / cushion bonds remain active even if heart is not beating

[M-32] Admin cannot be changed to EOA after deployment

e Low Risk and Non-Critical Issues

o

(¢}

@]

@]

(¢}

Summary
L-01 Operator: incorrect accounting for fee-on-transfer reserve token

L-02 BondCallback: incorrect accounting if quoteToken is rebase token

L-03 PRICE: unsafe cast for [numObservations]

L-04 Operator: unsafe cast for decimals

L-05 BondCallback: operator is not set

L-06 Operator: missing check for configParmas[0] (cushionFactor) in the constructor

L-07 Kernel: misplaced zero address check for | changekernel |

https://codedrena.com/reports/2022-08-olympus/ 2/87

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

o]

L-08 BondCallback, Operator: upon module’s upgrade, the token approval should be
revoked

L-09 Heart: if the issueReward fails the heart beat will revert

N-01 Kernel: missing zero address check for and

N-02 INSTR, Governance: upon module’s upgrade, all instruction data should be
carried over to the new modules

N-03 RANGE, PRICE: unused import of
N-04 PRICE: stale price

e Gas Optimizations

o

[e]

[¢]

o]

o

o Summary

G-01 Replace with (6 instances)

G-02 pointer to a structure is cheaper than copying each value of the
structure into , same for and (7 instances)

G-03 Using rather than for constants, saves gas (8 instances)
G-04 Use elementary types or a user-defined instead of a that has

only one member (1 instances)

[¢]

[¢]

(¢]

[e]

o

G-05 State variables should be cached in stack variables rather than re-reading them
from storage

o G-06 Using bools for storage incurs overhead (6 instances)

o G-07 State variables can be packed into fewer storage slots (3 instances)

o G-08 Expressions that cannot be overflowed can be unchecked (5 instances)

o G-09 Increment optimization (18 instances)

o G-10 Use named for local variables where it is possible (3 instances)

o G-11 is cheaper than (6 instances)

o G-12 Deleting a struct is cheaper than creating a new struct with null values. (1
instances)

(¢]

G-13 Don’t compare boolean expressions to boolean literals (2 instances)
G-14 operator should be in the code as early as reasonably possible (3

instances)

o]

[¢]

G-15 Duplicated require()/revert() checks should be refactored to a modifier or
function

e Disclosures

Overview

ABOUT C4

https://codedrena.com/reports/2022-08-olympus/ 3/87

27/10/2022, 23:03

Olympus DAO contest — Code 423n4

Coded4rena (C4) is an open organization consisting of security researchers, auditors, developers, and
individuals with domain expertise in smart contracts.

A C4 audit contest is an event in which community participants, referred to as Wardens, review,
audit, or analyze smart contract logic in exchange for a bounty provided by sponsoring projects.

During the audit contest outlined in this document, C4 conducted an analysis of the Olympus DAO
smart contract system written in Solidity. The audit contest took place between August 25—
September 1 2022.

WARDENS

156 Wardens contributed reports to the Olympus DAO contest:

1.

1

12.
13.
14.
15.
16.
17.

18

19.
20.
21.
22.

2
3
4
5
6.
7
8
9
0

zzzitron

. 0x52
. Trust
. rbserver

. Lambda

enckrish

. 0x1f8b

I

. reassor
. cryptphi
11.

datapunk
rvierdiiev
Bahurum
minhtrng
immeas
Czar102

bin2chen

. csanuragjain

cccz
hansfriese
Jeiwan

berndartmueller

https://codedrena.com/reports/2022-08-olympus/

4/87

https://www.linkedin.com/in/or-cyngiser/
https://twitter.com/_Czar102
https://twitter.com/bin2chen
https://twitter.com/csanuragjain
https://twitter.com/hansfriese
https://jeiwan.net/
https://twitter.com/berndartmueller

27/10/2022,

23
24
25
26
27

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

39
40

41,
42.
43,
44,
45,
46.
47.
48,
49,
50.
51.
52.
53.
54.
55.

23:03
.itsmeSTYJ

. brgltd
.d3e4

. djxploit

. V_B (Barichek and vlad_bochok)

GalloDaSballo
m9800
Aymen0909
hyh
ladboy233
carlitox477
OxNazgul
Ruhum
sorrynotsorry
pedroais
pashov

.__141345__

. Certoralnc (egjlmn1, OriDabush, ItayG, shakedwinder, and RoiEvenHaim)

tonisives

OxSky

okkothejawa
pfapostol
c3phas
yixxas
OxSmartContract
Guardian
devtooligan
OxNineDec
LeoS

Tomo
Deivitto

ReyAdmirado

https://codedrena.com/reports/2022-08-olympus/

PwnPatrol (obront and throttle)

Olympus DAO contest — Code 423n4

5/87

https://twitter.com/itsmeSTYJ
https://twitter.com/gallodasballo
https://github.com/Aymen1001
https://twitter.com/0xhyh
https://twitter.com/CAA1994
https://twitter.com/0xNazgul
https://twitter.com/0xruhum
https://twitter.com/Pedroais2/
https://twitter.com/CertoraInc
https://twitter.com/ori_dabush
https://twitter.com/zachobront
https://twitter.com/Throt7le
https://t.me/pfahard
https://twitter.com/c3ph_
https://twitter.com/0xSmartContract
https://twitter.com/GuardianAudits
https://twitter.com/devtooligan
https://tom-sol.notion.site/Who-am-I-3b4dc28e77b647eb90794735a94dd38e
https://twitter.com/Deivitto

27/10/2022,

56
57

58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
/1.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.

23:03
. Tomd

. Smdrty

gogo

Rolezn
ignacio
ret2basic
oyc_109

ajtra
OxDjango
BnkeOx0
grGred

robee
Oxkatana
fatherOfBlocks
erictee

0x040

EIKu
cRat1st0s
durianSausage
lukris02
martin
Rohan16
sikorico
tnevler
StevenL
RaymondFam
Waze
delfin454000
medikko
bobirichman
CodingNameKiki
Chandr

rokinot

https://codedrena.com/reports/2022-08-olympus/

Olympus DAO contest — Code 423n4

6/87

https://mobile.twitter.com/tomj_bb
https://twitter.com/Sm4rty_
https://www.linkedin.com/in/georgi-nikolaev-georgiev-978253219
https://twitter.com/0xheynacho
https://twitter.com/ret2basic
https://twitter.com/andyfeili
https://github.com/grGred
https://twitter.com/father0fBl0cks
https://twitter.com/ElKu_crypto
https://github.com/lyciumlee
https://github.com/martin-petrov03
https://twitter.com/ROHANJH56009256
https://twitter.com/mehmeddukov
https://www.linkedin.com/in/evgeniy-shaldin-21898712a/
https://code4rena.com/reports/2022-08-olympus/twitter.com/rokinot

27/10/2022, 23:03

89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.

0x85102
aviggiano
apostle0x01
Funen

natzuu

Olympus DAO contest — Code 423n4

The_GUILD (David_, Ephraim, LeoGold, and greatsamist)

JansenC
Diraco

neln

mics

akT
shenwilly
m_Rassska
dipp
DimSon
nxrblsrpr
BipinSah
Ch_301
prasantgupta52
wOLfrum
rajatbeladiya
ch13fd357r0y3r
PPrieditis
Chom
eierina
PaludoXO0
Picodes
p_crypt0
Margaret
8olidity
EthLedger
indijanc

CRYP70

https://codedrena.com/reports/2022-08-olympus/

7/87

https://twitter.com/agfviggiano
https://instagram.com/vanensurya
https://twitter.com/natzuu33
https://twitter.com/davidpius10
https://twitter.com/iamephraim_js
https://www.linkedin.com/in/jansen-moreira/?locale=en_US
https://twitter.com/shenwilly_
https://t.me/Road220
https://twitter.com/BipinSah745
https://twitter.com/0xch301
https://twitter.com/prasantgupta52
https://twitter.com/rajat_beladiya
https://twitter.com/ch13fd357r0y3r
https://chom.dev/
https://twitter.com/thePicodes
https://twitter.com/8olidity
https://twitter.com/krenkmet

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

122. cloudjunky
123. MasterCookie
124.JC

125. exolorkistis
126. zishansami
127. Dionysus
128. chObu

129. jag

130. Noah306
131. Saintcode_
132. chrisdior4
133. Amithuddar
134. Shishigami
135. Metatron
136. RoiEvenHaim
137. peiw

138. karanctf
139. kris

140. simon135
141. Tagir2003
142. SooYa

143. newfork01
144. Fitraldys
145. Dravee
146. Jujic

147. peachtea
This contest was judged by Oxean.

Final report assembled by liveactionllama.

Summary

https://codedrena.com/reports/2022-08-olympus/ 8/87

https://twitter.com/sm4rtcontr4ct
https://zishansami102.github.io/
https://twitter.com/fitraldys
https://twitter.com/BowTiedDravee
https://github.com/0xean
https://twitter.com/liveactionllama

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

The C4 analysis yielded an aggregated total of 35 unique vulnerabilities. Of these vulnerabilities, 3
received a risk rating in the category of HIGH severity and 32 received a risk rating in the category of
MEDIUM severity.

Additionally, C4 analysis included 114 reports detailing issues with a risk rating of LOW severity or
non-critical. There were also 91 reports recommending gas optimizations.

All of the issues presented here are linked back to their original finding.

Scope

The code under review can be found within the C4 Olympus DAO contest repository, and is
composed of 18 smart contracts written in the Solidity programming language and includes 1,944
lines of Solidity code.

Severity Criteria

C4 assesses the severity of disclosed vulnerabilities according to a methodology based on OWASP
standards.

Vulnerabilities are divided into three primary risk categories: high, medium, and low/non-critical.

High-level considerations for vulnerabilities span the following key areas when conducting
assessments:

Malicious Input Handling

Escalation of privileges

Arithmetic

Gas use

Further information regarding the severity criteria referenced throughout the submission review
process, please refer to the documentation provided on the C4 website.

High Risk Findings (3)

[H-01] IN covERNANCE.sOL, IT MIGHT BE IMPOSSIBLE TO ACTIVATE
A NEW PROPOSAL FOREVER AFTER FAILED TO EXECUTE THE

https://codedrena.com/reports/2022-08-olympus/ 9/87

https://github.com/code-423n4/2022-08-olympus
https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://code4rena.com/
https://github.com/code-423n4/2022-08-olympus-findings/issues/376

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

PREVIOUS ACTIVE PROPOSAL.

Submitted by hansfriese, also found by berndartmueller, csanuragjain, m9800, V_B, and zzzitron

https://github.com/code-423n4/2022-08-
olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L216-
L221

https://github.com/code-423n4/2022-08-
olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L302-
L304

Currently, if users vote for the active proposal, the are transferred to the contract so that
users can't vote or endorse other proposals while the voted proposal is active.

And the active proposal can be replaced only when the proposal is executed successfully or another

proposal is activated after | Grace_pgrzop).

But [activateProposal()] requires at least 20% endorsements here, so it might be impossible to

activate a new proposal forever if the current active proposal involves more than 80% of total votes.

Proof of Concept

The below scenario would be possible.

1. was submitted and activated successfully.

2. Let's assume 81% of the total votes voted for this proposal. [ves = 473 |, [No = 34% |

3. This proposal can’t be executed for this requirement because[47% - 34% = 13% < 33%]

4. Currently the contract contains more than 81% of total votes and users have at most 19% in
total.

5. Also users can't reclaim their votes among 81% while is active.

6. So even if a user who has 1% votes submits a new proposal, it's impossible to activate because
of this require().

7. So it's impossible to delete from an active proposal and there won't be other
active proposal forever.

Tools Used

Solidity Visual Developer of VSCode

Recommended Mitigation Steps

| think we should add one more constant like [EXECUTION EXPIRE = 2 weeks] so that voters can

reclaim their votes after this period even if the proposal is active.

https://codedrena.com/reports/2022-08-olympus/ 10/87

https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L216-L221
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L302-L304
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L216-L221
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L268-L270
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L216-L221
https://github.com/code-423n4/2022-08-olympus-findings/issues/376

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

| am not sure we can use the current [GRACE_PERIOD] for that purpose.

So [reclaimvotes() | should be modified like below.

function reclaimVotes(uint256 proposalld) external ({
uint256 userVotes = userVotesForProposal|[proposalId][msg.sender];

if (uservVotes == 0) {
revert CannotReclaimZeroVotes();

}

if (proposalld_ == activeProposal.proposalld) {
if (block.timestamp < activeProposal.activationTimestamp + EXECUTION_ EXPIRE) //-

{

revert CannotReclaimTokensForActiveVote();

}
}

if (tokenClaimsForProposal[proposalIld][msg.sender] == true) ({
revert VotingTokensAlreadyReclaimed();

}

tokenClaimsForProposal[proposalIld_][msg.sender] = true;

VOTES.transferFrom(address(this), msg.sender, userVotes);

fullyallocated (Olympus) confirmed

[H-02] ANYONE CAN PASS ANY PROPOSAL ALONE BEFORE FIRST
VOTES ARE MINTED

Submitted by Bahurum, also found by bin2chen and cryptphi

https://github.com/code-423n4/2022-08-
olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L164
https://github.com/code-423n4/2022-08-
olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L217-
L218

https://github.com/code-423n4/2022-08-
olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L268

Before any are minted anyone can activate and execute an arbitrary proposal even with 0
votes cast. So an attacker can pass any proposal (i.e. change the [executor] + [admin] of the
[xerne1), gaining access to all permissioned functions and to funds held).

https://codedrena.com/reports/2022-08-olympus/ 11/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/376
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L164
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L217-L218
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L268
https://github.com/code-423n4/2022-08-olympus-findings/issues/392

27/10/2022, 23:03

Olympus DAO contest — Code 423n4

Proof of Concept

Checks on vote numbers made in [Governance.sol] at lines L164, 217-218, 268 pass if

[voTEs. totalsupply() == 0. So, until no are minted, anyone can submit, activate and

execute a proposal. There is no need to own or cast votes. This happens if [OlympusGovernance] is

granted the role before any are minted (as in Governance.t.sol). The attacker

can anticipate/frontrun the minting and pass a proposal to change both the (xerne1 | { admin) and
. Then he/she can upgrade malicious modules, steal funds from treasury...

A PoC was obtained modifying the of Governance.t.sol by keeping only what is before the
minting of (up to L83 included). The test is as follows:

with

function test AttackerPassesProposalBeforeMinting() public {

address[] memory users = userCreator.create(l);

address attacker = users[0];

vm.prank(attacker);

MockMalicious attackerControlledContract = new MockMalicious();

Instruction[] memory instructions = new Instruction[](2);
instructions [0] = Instruction(Actions.ChangeAdmin, address(attackerControlledCc

instructions [1] = Instruction(Actions.ChangeExecutor, address(attackerControlle

vm.prank(attacker);
governance.submitProposal (instructions , "proposalName", "This is the proposal T

governance.endorseProposal(1l);

vm.prank(attacker);
governance.activateProposal(1l);

vm.warp(block.timestamp + 3 days + 1);
governance.executeProposal();

assert(kernel.executor()==address(attackerControlledContract));
assert(kernel.admin()==address(attackerControlledContract));

contract MockMalicious {}

Recommended Mitigation Steps

https://codedrena.com/reports/2022-08-olympus/

12/87

https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L164
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L217-218
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L268
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/test/policies/Governance.t.sol
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/test/policies/Governance.t.sol
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/test/policies/Governance.t.sol#L83

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

In [Governance.sol] check for a minimum VOTES totalSupply, similiar to the expected initial supply

of VOTES when they have been fairly distributed, for example at line L164.
fullyallocated (Olympus) acknowledged
Oxean (judge) commented:

Leaving as High severity as this shows a clear path to loss of funds.

[H-03] TRSRY: FRONT-RUNNABLE SETAPPROVALFOR

Submitted by zzzitron, also found by berndartmueller, csanuragjain, pashov, Ruhum, sorrynotsorry,
and Trust

https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/TRSRY.sol#L64-L72
https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/TreasuryCustodian.sol#L4
L48

An attacker may be able to withdraw more than intended

Proof of Concept

Let's say Alice had approval of 100. Now the treasury custodian reduced the approval to 50. Alice
could frontrun the [setApprovalFor] of 50, and withdraw 100 as it was before. Then withdraw 50

with the newly set approval. So the alice could withdraw 150.

// modules/TRSRY.sol

63 /// @notice Sets approval for specific withdrawer addresses
64 function setApprovalFor (

65 address withdrawer_,

66 ERC20 token_,

67 uint256 amount

68) external permissioned {

69 withdrawApproval[withdrawer][token_] = amount_;

70

71 emit ApprovedForWithdrawal (withdrawer , token , amount);
72 }

The [Treasurycustodian | simply calls the | setapprovairor | to grant Approval.

41
https://codedrena.com/reports/2022-08-olympus/ 13/87

https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L164
https://github.com/code-423n4/2022-08-olympus-findings/issues/392
https://github.com/code-423n4/2022-08-olympus-findings/issues/392#issuecomment-1249926401
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/TRSRY.sol#L64-L72
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/TreasuryCustodian.sol#L42-L48
https://github.com/code-423n4/2022-08-olympus-findings/issues/410

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

42 function grantApproval (

43 address for_,

44 ERC20 token_,

45 uint256 amount

46) external onlyRole("custodian") {

47 TRSRY.setApprovalFor(for_ , token_, amount);
48 }

Recommended Mitigation Steps

Instead of setting the given amount, one can reduce from the current approval. By doing so, it
checks whether the previous approval is spend.

ind-igo (Olympus) confirmed and commented:
Understood. Will change the logic to increase/decrease allowances.
Oxean (judge) increased severity to High and commented:

| think this vulnerability should be a high severity as it opens up the possibility of a direct
loss of funds in the amount of up to the previous approval amount. Upgrading to High.

Oxean (judge) commented:

@ind-igo - Not sure if you deleted your comment, but that context is useful. Happy to take
another look here.

ind-igo (Olympus) commented:

| did, I just thought it was unnecessary to evaluate the issue. | was just saying that the
context of the code is that it is not intended to be used to approve an EOA/multisig, but
instead used to approve governance-voted contracts to access treasury funds, in order to
deposit into yield contracts or whatever. But | don't think it's very relevant to this, as the
code is still faulty and exploitable in an extreme case. | already have made this
remediation as well, so all good.

Medium Risk Findings (32)

[M-01]) OPERATOR::SETRESERVEFACTOR DOESN’T CHECK IF BOND MARKET
SHOULD BE CHANGED

Submitted by rvierdiiev

https://codedrena.com/reports/2022-08-olympus/ 14/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/410#issuecomment-1238901986
https://github.com/code-423n4/2022-08-olympus-findings/issues/410#issuecomment-1249816020
https://github.com/code-423n4/2022-08-olympus-findings/issues/410#issuecomment-1250385243
https://github.com/code-423n4/2022-08-olympus-findings/issues/410#issuecomment-1251369022
https://github.com/code-423n4/2022-08-olympus-findings/issues/83

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

[Operator: :setReserveFactor] sets new [reserveFactor] value. This parameter is used in

[fullCapacity] function to calculate how much capacity is available by high/low side. Then

calculated capacity is used by module inside function to set the threshold of
capacity for both sides of market. Then in [Range: :updateCapacity] function this threshold is

checked to understand if the wall should be down and the bond market should be closed.

Changing this value means that the capacity of sides has changed and the sides should be
regenarated to include this changes.

Proof of Concept

https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Operator.sol#L.548
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Operator.sol#L711
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/RANGE.sol#L 133
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/RANGE.sol#L145
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/RANGE.sol#L185
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Operator.sol#L780

Recommended Mitigation Steps

Call this after the param updating.

[_regenerate(true); regenerate(false;]

Oighty (Olympus) confirmed and commented:

Forcing a regeneration when the reserveFactor is updated could cause unintended
regeneration if a wall is currently down. A better approach may be to conditionally
regenerate each side if they are active.

Oighty (Olympus) acknowledged and commented:

After discussing with the team more, we are going to leave this as-is. It is more flexible to
not regenerate the side in this function. With the current implementation, the guardian can
determine if the change should go into effect on the next regen, or if it should happen

immediately. To enable immediately, they can manually call [regenerate J.

[M-02] SOLMATE SAFETRANSFER AND SAFETRANSFERFROM DOES NOT CHECK
THE CODESIZE OF THE TOKEN ADDRESS, WHICH MAY LEAD TO FUND
LOSS

Submitted by djxploit, also found by brgltd

In| getloan() | and [replayloan()], the [safetransfer] and [safetransferfrom] doesn’t check the

existence of code at the token address. This is a known issue while using solmate’s libraries.

https://codedrena.com/reports/2022-08-olympus/ 15/87

https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Operator.sol#L548
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Operator.sol#L711
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/RANGE.sol#L133
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/RANGE.sol#L145
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/RANGE.sol#L185
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Operator.sol#L780
https://github.com/code-423n4/2022-08-olympus-findings/issues/83#issuecomment-1241054503
https://github.com/code-423n4/2022-08-olympus-findings/issues/83#issuecomment-1244128646
https://github.com/code-423n4/2022-08-olympus-findings/issues/117

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

Hence this may lead to miscalculation of funds and may lead to loss of funds, because if

[safetransfer()] and [safetransferfrom()] are called on a token address that doesn’t have

contract in it, it will always return success, bypassing the return value check. Due to this protocol will
think that funds has been transferred and successful , and records will be accordingly calculated,
but in reality funds were never transferred.

So this will lead to miscalculation and possibly loss of funds

Proof of Concept

https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/TRSRY.sol#L110
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/TRSRY.sol#L99

Recommended Mitigation Steps
Use openzeppelin's safeERC20 or implement a code existence check.
ind-igo (Olympus) confirmed and commented:

Confirmed. Will implement this. Thank you.

[M-03]) RBS MAY REDEPLOY FUNDS AUTOMATICALLY IF PRICE STAYS
ABOVE OR BELOW WALL FOR LONGER THAN _CONFIG.REGENWAIT

Submitted by 0x52

https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L195-
L268

Loss of treasury funds.

Proof of Concept

https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/RANGE.sol#L.133-
L139

if (capacity_ < _range.high.threshold && _range.high.active) ({
// Set wall to inactive
_range.high.active = false;
_range.high.lastActive = uint48(block.timestamp);

emit WallDown(true, block.timestamp, capacity);

https://codedrena.com/reports/2022-08-olympus/ 16/87

https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/TRSRY.sol#L110
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/TRSRY.sol#L99
https://github.com/code-423n4/2022-08-olympus-findings/issues/117#issuecomment-1240019949
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L195-L268
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/RANGE.sol#L133-L139
https://github.com/code-423n4/2022-08-olympus-findings/issues/118

27/10/2022, 23:03 Olympus DAO contest — Code 423n4
}

_range.high.lastActive and _range.low.lastActive are only updated in RANGE.sol when
_range.x.capacity < _range.x.threshold and the _range.x.active == true. After this is tripped,
_range.x.active will be set to false, meaning that _range.x.lastActive will not be updated again until
the wall is regenerated and capacity is restored.

https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L209-
L214

if (
uint48(block.timestamp) >= RANGE.lastActive(true) + uint48(config .regenWait) &¢
_status.high.count >= config .regenThreshold

) |

_regenerate(true);

}

If 1) the price were to sustain outside of the range (high volatility for volatile asset, black swan for
stable) for longer than config_.regenWait and 2) config_regenThreshold satisfies the following
equation:

config .regenThreshold <= config.regenObserve - config .regenWait / frequency

then status.high.count could be greater than config.regenThreshold. This would trigger more funds
to be deployed even though the price never came back inside the wall price.

In this scenario the wall price would be far from the true price of the asset leading to loss of treasury
funds as it buys/sell at prices well above/below market price.

Recommended Mitigation Steps

A check should be added to verify that the price is within the wall price before regenerating.
Alternatively, config_.regenTheshold could be set to satisfy the following equation:

config .regenThreshold > config.regenObserve - config .regenWait / frequency

https://codedrena.com/reports/2022-08-olympus/ 17/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L209-L214

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

This would eliminate the risk as _status.high.count >= config_.regenThreshold could never be true
for a sustained period where current price is greater than the wall price.

Oighty (Olympus) disagreed with severity and commented:

This is valid. Our intended parameterization of the system would not be subject to this
vulnerability, but it would be an issue if the system was incorrectly parameterized.
Because it is an edge case, I'm not sure it is a high risk bug though.

Another potential fix is resetting the to 0 and the (observations | array to
[new bool|[](regenObserve)] to clear out positive values from when a wall goes down.

This could be done in the [_updateCapacity ()] function by checking if the new capacity is
under the threshold.

Oxean (judge) decreased severity to Medium and commented:

Going to downgrade to Medium as the external dependency is a configuration that is not
planned to be used by the sponsor.

[M-04] OLYMPUSGOVERNANCE#EXECUTEPROPOSAL : REENTRANCY ATTACK
VULNERABLE FUNCTION

Submitted by carlitox477, also found by cryptphi and ladboy233

https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L265
https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L278-
L288

Given that the activeProposal change is done before the for loop, if this function is call through one

[kernel.executeAction(instruction,target)] we can call the same instructions (in the same order)

again and again, which may or may not affect funds (depending on the instructions).

Proof of Concept

For instance, if we install a new module, and this module has a vulnerability (even intentional), the
next steps can by trigger:

1. Call executeAction
2. This allow us to call kernel.executeAction in the for loop
3. executAction allow us to call _installModule

4. _installModule allow us to call newModule_.Init

https://codedrena.com/reports/2022-08-olympus/ 18/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/118#issuecomment-1235838436
https://github.com/code-423n4/2022-08-olympus-findings/issues/118#issuecomment-1252356234
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L265
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L278-L288
https://github.com/code-423n4/2022-08-olympus-findings/issues/132

27/10/2022,23:03 Olympus DAO contest — Code 423n4
5. By init we can call now executeProposal again (suppose that the init function interact with a
previous vulnerable proxy contract to scam voters to vote in favour of this proposal as if it was
a contract which is ok, and before calling executeProposal we change the implementation to
allow this attack),

Recommended Mitigation Steps

Use nonReentrant modifier or move the line [activeProposal = ActivatedProposal(0, 0);]before

the for loop.
fullyallocated (Olympus) confirmed and commented:

| don't know if funds are going to be threatened, but this does allow for a re-entrancy.
Warden is correct in resetting the active Proposal before the for loop based on the checks-
effects-interactions code design pattern.

[M-05] PROPOSALS OVERWRITE

Submitted by 0x1f8b

https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L167
https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L66

It is possible to overwrite proposals in certain circumstances. The method

[Governance. submitProposal] doesn't check if the | proposal1d | (stored in a different contract)

exists already as a valid proposal in [getProposalMetadata]

Proof of Concept

If the project update the kernel module [1nstr]" and reconfigure proposals and call

[INSTR.store(instructions);] the counter may return a | proposald | of an existing proposal and

overwrite an existing previous one.

This is due to the fact that the proposals are saved in a mapping of a contract that is not related to
the one that returns the counters, and furthermore, they do not check that the record already exists.

uint256 proposalld = INSTR.store(instructions_);
getProposalMetadata[proposalId] = ProposalMetadata(
title ,
msg.sender,
block.timestamp,
proposalURI_

https://codedrena.com/reports/2022-08-olympus/ 19/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/132#issuecomment-1236240839
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L167
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L66
https://github.com/code-423n4/2022-08-olympus-findings/issues/201

27/10/2022, 23:03 Olympus DAO contest — Code 423n4
)i

Recommended Mitigation Steps

« Store the proposal metadata in the same contract or ensure that the proposal doesn't

exist.

fullyallocated (Olympus) acknowledged, but disagreed with severity and commented:

Agreed with the validity of the circumstance, but it is contingent on us upgrading the
contract in an unexpected way. Is the same as saying “if you upgrade a contract
incorrectly it can break the dependencies”.

Oxean (judge) decreased severity to Medium and commented:

Going to downgrade to medium based on some external requirements needing to be in
place to be realized.

Assets not at direct risk, but the function of the protocol or its availability
could be impacted, or leak value with a hypothetical attack path with stated

assumptions, but external requirements.

Function of the protocol could be impacted and there are external requirements.

[M-06] AFTER ENDORSING A PROPOSAL, USER CAN TRANSFER VOTES
TO ANOTHER USER FOR ENDORSING THE SAME PROPOSAL AGAIN

Submitted by rbserver, also found by 0x1f8b, Bahurum, csanuragjain, and yixxas

https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/VOTES.sol#L9-L11
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Governance.sol#L180-
L201
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Governance.sol#L205-
L236

The following comment indicates that the [o1ympusvotes | contract is a stub for . Checking

the contract at

https://etherscan.io/token/0x0ab87046fBb341D058F17CBC4c1133F25a20a52f#code, the

and [transferFrom] functions are available.

https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/VOTES.sol#L9-L11

/// @notice Votes module is the ERC20 token that represents voting power in the network.

https://codedrena.com/reports/2022-08-olympus/ 20/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/201#issuecomment-1234818897
https://github.com/code-423n4/2022-08-olympus-findings/issues/201#issuecomment-1249566680
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/VOTES.sol#L9-L11
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Governance.sol#L180-L201
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Governance.sol#L205-L236
https://etherscan.io/token/0x0ab87046fBb341D058F17CBC4c1133F25a20a52f#code
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/VOTES.sol#L9-L11
https://github.com/code-423n4/2022-08-olympus-findings/issues/239

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

/// @dev This is currently a substitute module that stubs gOHM.
contract OlympusVotes is Module, ERC20 {

Moreover, the documentation states that the vote redemption mechanism “exists to deter malicious
behavior by ensuring users cannot transfer their voting tokens until after the proposal has been
resolved”, which also indicates that the voting tokens are meant to be transferrable between users.

When the voting tokens are transferrable, one user can first use her or his votes to call the following
[endorseProposal] function to endorse a proposal and then transfer these votes to another user. The

other user can use these votes to endorse the same proposal again afterwards. Because of the

double-endorsement, the

(totalEndorsementsForProposal[proposalld] * 100) < VOTES.totalSupply() *
ENDORSEMENT THRESHOLD

condition can become true so the proposal can be activated by calling the [activateProposal]

function below. However, the proposal should only be endorsed with these same votes once and

should not be able to be activated if it could not satisify

(totalEndorsementsForProposal[proposalId] * 100) < VOTES.totalSupply() *
ENDORSEMENT THRESHOLD

with these votes being used once.

https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Governance.sol#L180-
L2071

function endorseProposal(uint256 proposalIld) external ({
uint256 userVotes = VOTES.balanceOf (msg.sender);

if (proposalId_ == 0) {
revert CannotEndorseNullProposal();

Instruction[] memory instructions = INSTR.getInstructions(proposalId);
if (instructions.length == 0) {
revert CannotEndorseInvalidProposal();

// undo any previous endorsement the user made on these instructions
uint256 previousEndorsement = userEndorsementsForProposal[proposalId][msg.sende
totalEndorsementsForProposal[proposalld] -= previousEndorsement;

// reapply user endorsements with most up-to-date votes
userEndorsementsForProposal[proposalId][msg.sender] = userVotes;
totalEndorsementsForProposal[proposalld] += userVotes;

emit ProposalEndorsed(proposalId , msg.sender, userVotes);

https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Governance.sol#L205-
L236

https://codedrena.com/reports/2022-08-olympus/

21/87

https://hackmd.io/iWgqYLFwShGUDBF4zh397w#3-Vote-Redemption
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Governance.sol#L180-L201
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Governance.sol#L205-L236

27/10/2022, 23:03

Olympus DAO contest — Code 423n4

function activateProposal(uint256 proposalld) external {

ProposalMetadata memory proposal = getProposalMetadata[proposalld];

if (msg.sender != proposal.submitter) {
revert NotAuthorizedToActivateProposal();

if (block.timestamp > proposal.submissionTimestamp + ACTIVATION DEADLINE) {

revert SubmittedProposalHasExpired();

}

if (
(totalEndorsementsForProposal[proposalld] * 100) <
VOTES.totalSupply() * ENDORSEMENT THRESHOLD

) A
revert NotEnoughEndorsementsToActivateProposal();

}

if (proposalHasBeenActivated[proposalId] == true) {
revert ProposalAlreadyActivated();

}

if (block.timestamp < activeProposal.activationTimestamp + GRACE_PERIOD) {

revert ActiveProposalNotExpired();

activeProposal = ActivatedProposal(proposalIld , block.timestamp);
proposalHasBeenActivated[proposalld] = true;

emit ProposalActivated(proposalld , block.timestamp);

Proof of Concept

Please append the following test in [src\test\policies\Governance.t.sol] This test will pass to

demonstrate the described scenario.

function testScenario UserEndorsesAfterReceivingTransferredvotes() public {

__submitProposal();

vm.prank(voter2);
governance.endorseProposal(1l);

// to simulate calling gOHM's transfer function by voter2 for sending votes to +

vm.prank(address (governance)) ;
VOTES.transferFrom(voter2, voter0, 200);

// voter0 uses the votes previously owned by voter2 to endorse the proposal

vm.prank(voter0);
governance.endorseProposal(1l);

https://codedrena.com/reports/2022-08-olympus/

22/87

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

// the proposal is endorsed with 400 votes but only the 200 votes originally owr
assertEq(governance.userEndorsementsForProposal(1l, voter0), 200);
assertEqg(governance.userEndorsementsForProposal(1l, voter2), 200);
assertEq(governance.totalEndorsementsForProposal(1l), 400);

// At this moment, the proposal can be activated successfully.
// However, if it is endorsed with only 200 votes, it cannot satisfy ENDORSEMEN
vm.expectEmit (true, true, true, true);

emit ProposalActivated(l, block.timestamp);

vm.prank(voterl);
governance.activateProposal(1l);

Tools Used

VSCode

Recommended Mitigation Steps

When calling [endorseProposal] the user’s votes can be locked by transferring these votes to the

governance so the user cannot transfer these anymore to another user after the endorsement. An
additional function can be added for reclaiming the endorsed votes back to the user and reducing
the proposal’s endorsed votes accordingly before the proposal is activated. After the proposal is
activated, the endorsed votes should be counted as the voted votes.

fullyallocated (Olympus) acknowledged and commented:
Taken from another issue:

This is true, and | appreciate the throughness of the explanation—it's hard to
adjust endorsements based on the user’s balance because there's no
events/callbacks in solidity. We plan to use a staking vault where tokens are
transfer locked and there's a warmup period + cooldown period to mitigate this
issue.

[M-07] ENDORSED VOTES BY A USER DO NOT DECREASE AFTER THE
USER’S VOTES ARE REVOKED

Submitted by rbserver

https://github.com/code-423n4/2022-08-
olympus/blob/main/src/policies/VoterRegistration.sol#L53-L56
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Governance.sol#L180-
L2071

https://codedrena.com/reports/2022-08-olympus/ 23/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/239#issuecomment-1235877496
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/VoterRegistration.sol#L53-L56
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Governance.sol#L180-L201
https://github.com/code-423n4/2022-08-olympus-findings/issues/257

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

The voter admin can call the following [revokeVotesFrom] function to revoke a user’s votes, which

also decreases the total supply of the votes, after the user endorses a proposal through calling the
| endorseproposal | function below. Because | endorseproposal | can be called multiple times, the

user has the incentive to call it for endorsing the proposal again with the new votes minted by the

[issueVotesTo] function. However, after the user’s votes are revoked, the user has no incentive to

call [endorseProposal] again. Hence, the endorsed votes by the user for the proposal does not

decrease after the user’s votes are revoked. When determining whether the proposal can be
activated or not, its old endorsed votes, which is not decreased, are compared against the new total
supply of the votes, which is decreased because of the [revokeVotesFrom] call. As a result, the

proposal is unreliably more likely to satisfy the condition for being activated.

https://github.com/code-423n4/2022-08-
olympus/blob/main/src/policies/VoterRegistration.sol#L53-L56

function revokeVotesFrom(address wallet , uint256 amount_) external onlyRole("voter_
// Revoke the votes in the VOTES module
VOTES.burnFrom(wallet_, amount_);

https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Governance.sol#L180-
L2071

function endorseProposal(uint256 proposalId) external ({
uint256 userVotes = VOTES.balanceOf(msg.sender);

if (proposalld == 0) {
revert CannotEndorseNullProposal();

Instruction[] memory instructions = INSTR.getInstructions(proposalld);
if (instructions.length == 0) {
revert CannotEndorseInvalidProposal();

// undo any previous endorsement the user made on these instructions
uint256 previousEndorsement = userEndorsementsForProposal|[proposalld][msg.sende
totalEndorsementsForProposal[proposalId] -= previousEndorsement;

// reapply user endorsements with most up-to-date votes
userEndorsementsForProposal[proposalld_][msg.sender] = userVotes;

totalEndorsementsForProposal[proposalld] += userVotes;

emit ProposalEndorsed(proposalld , msg.sender, userVotes);

https://codedrena.com/reports/2022-08-olympus/ 24/87

https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/VoterRegistration.sol#L45-L48
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/VoterRegistration.sol#L53-L56
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Governance.sol#L180-L201

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

Proof of Concept

Please append the following test in [src\test\policies\Governance.t.sol]. This test will pass to

demonstrate the described scenario.

function testScenario EndorsedVotesDoNotDecreaseAfterVotesAreRevoked() public {
_submitProposal();

// voter3 endorse the proposal
vm.prank(voter3);

governance.endorseProposal(1l);

assertEq(governance.userEndorsementsForProposal(l, voter3), 300);
assertEqg(governance.totalEndorsementsForProposal(1l), 300);

// to simulate calling VoterRegistration.revokeVotesFrom that burns voter3's vot
vm.prank (godmode) ;

VOTES.burnFrom(voter3, 300);

// at this moment, voter3 has 0 votes
assertEq(VOTES.balanceOf (voter3), 0);

// however, the proposal is still endorsed with voter3's previous votes
assertEqg(governance.userEndorsementsForProposal(l, voter3), 300);
assertEqg(governance.totalEndorsementsForProposal(1l), 300);

Tools Used

VSCode

Recommended Mitigation Steps

When [revokeVotesFrom] is called during the time for endorsement, the corresponding votes that are

previously endorsed for a proposal and are now revoked should be removed from the proposal’s
endorsed votes for the user. This ensures that the endorsed votes and the votes’ total supply after
the revocation are in sync for the proposal.

fullyallocated (Olympus) acknowledged and commented:

This is true, and | appreciate the throughness of the explanation—it's hard to adjust
endorsements based on the user’s balance because there's no events/callbacks in solidity.
We plan to use a staking vault where tokens are transfer locked and there’'s a warmup
period + cooldown period to mitigate this issue.

https://codedrena.com/reports/2022-08-olympus/

25/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/257#issuecomment-1235877095

27/10/2022, 23:03 Olympus DAO contest — Code 423n4
[M-08] “TWAP” USED IS AN OBSERVATION-WEIGHTED-AVERAGE-
PRICE, NOT A TIME-WEIGHTED ONE

Submitted by Il

While users are incentivized to call the heartbeat, the incentive may be removed later, or it may be
more profitable to use old prices, so users may not call the heartbeat during unfavorable prices,
leading to the TWAP price being incorrect, and users getting the wrong price for their assets.

A similar case of an incomplete TWAP algorithm was found to be of Medium risk.

Proof of Concept

A TWAP is a Time-Weighted average price, but the algorithm below does not take into account the
time between observations:

File: /src/modules/PRICE.sol #1

134 // Calculate new moving average

135 if (currentPrice > earliestPrice) {

136 _movingAverage += (currentPrice - earliestPrice) / numObs;
137 } else {

138 _movingAverage -= (earliestPrice - currentPrice) / numObs;
139 }

140

141 // Push new observation into storage and store timestamp taken at
142 observations[nextObsIndex] = currentPrice;

143 lastObservationTime = uint48(block.timestamp);

144: nextObsIndex = (nextObsIndex + 1) % numObs;

https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/PRICE.sol#L134-L144

While the policy enforces an upper bound on how frequently updates are added to the
average, there is no guarantee that users call in a timely manner:

File: /src/policies/Heart.sol #2

92 function beat() external nonReentrant {
93 if (lactive) revert Heart BeatStopped();
94: if (block.timestamp < lastBeat + frequency()) revert Heart OutOfCycle();

https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Heart.sol#L92-L94

https://codedrena.com/reports/2022-08-olympus/ 26/87

https://github.com/code-423n4/2022-06-nibbl-findings/issues/191
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/PRICE.sol#L134-L144
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Heart.sol#L92-L94
https://github.com/code-423n4/2022-08-olympus-findings/issues/267

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

The incentive may be set to too low an amount:

File: /src/policies/Heart.sol #3

140 function setRewardTokenAndAmount (ERC20 token , uint256 reward)
141 external

142 onlyRole("heart admin")

143 {

144 rewardToken = token_;

145 reward = reward ;

146 emit RewardUpdated(token , reward);

147: }

https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Heart.sol#L140-L147

Or users may find it more profitable to skip a particular update, or front-run an unfavorable update,
with a transaction that trades assets at the old price

Recommended Mitigation Steps

Always call an internal version of that doesn't revert, in functions that swap user assets.
The code should also track the timestamps of when each is called, and include the amount
of time that has passed since the last beat, in the TWAP calculation

Oighty (Olympus) disagreed with severity and commented:

The referenced issue is a bit different than our use case since we will be using a much
longer duration moving average. The goal is to get an approximate moving average over a
certain period of time (e.g. 120 days) vs. an exact number since, as you say, the time of
each observation cannot be guaranteed to be at a specific time. We believe that using a
long duration with a sufficient number of observations will make this value close enough
to the true value it is approximating, and prevents actors from manipulating the value by
waiting to provide a specific value (1 out of ~360 obs doesn’t move the needle). The use
of the “TWAP"” term may be semantically inaccurate.

As for not guaranteeing that the update will be called or issues with several observations
close to each other, see comments on #405 and #79.

The mitigations suggested do not seem to provide a solution that improves the system.
Calling on user actions would not have the observations roughly evenly spaced.

Tracking timestamps is possible, but | don’t see how it improves the data.
Oxean (judge) commented:

@Oighty - | think the warden is suggesting that the call to beat() in the user actions would
do more to ensure that the “TWAP” stays up to date. If the call isn't past the correct period,

https://codedrena.com/reports/2022-08-olympus/ 27/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Heart.sol#L140-L147
https://github.com/code-423n4/2022-08-olympus-findings/issues/267#issuecomment-1241043919
https://github.com/code-423n4/2022-08-olympus-findings/issues/405
https://github.com/code-423n4/2022-08-olympus-findings/issues/79
https://github.com/code-423n4/2022-08-olympus-findings/issues/267#issuecomment-1251044977

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

it would just return and make no change (costing some amount of gas, ofc).

| do think it may be worth considering, that way no user action can take place without the
TWAP being as up to date as possible and no additional calls to the contract may be
necessary if users are interacting with the contract frequently enough.

While this is related to #79 - | think the points raised here and the mitigation is sufficiently
different to warrant this issue to stand alone.

Oighty (Olympus) commented:

That's a fair point. One issue with calling on user actions, e.g. (operator.swap), is

that it would update the wall price that the user is swapping at. Therefore, the call could
fail due to the slippage check. This could be confusing behavior and may have unintended
consequences of DOS'ing the system. Additionally, the gas cost of is highly
variable (sometimes up to 600k gas when opening a bond market) and would cause some
users to unexpectedly pay a lot more gas for a swap.

I'll discuss with the team, but | don't think the pros exceed the cons.

[M-09] AcTIVATEPROPOSAL() NEED TIME DELAY

Submitted by __141345__, also found by 0x1f8b, Trust, V_B, and zzzitron

https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L205-
L262

There is no time lock or delay when activating a proposal, the previous one could be replaced

immediately. In call, a user might want to vote for the previous proposal, but if the

call and the [activateProposal ()] is very close or even in the same block, it is quite possible that

the user actually voted for another proposal without much knowledge of. A worse case is some
malicious user watching the mempool, and front run a big vote favor/against the [activeProposal]

effectively influence the voting result.

These situations are not what the governance intends to deliver, and might also affect the results of
2 proposals.

Proof of Concept

[activateproposal() | can take effect right away, replacing the [activeproposal |. And

does not specify which to vote for, but the [‘activerroposal | could be different from
last second.

src/policies/Governance.sol

https://codedrena.com/reports/2022-08-olympus/ 28/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/79
https://github.com/code-423n4/2022-08-olympus-findings/issues/267#issuecomment-1255235303
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L205-L262
https://github.com/code-423n4/2022-08-olympus-findings/issues/273

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

function activateProposal(uint256 proposalIld) external {
ProposalMetadata memory proposal = getProposalMetadata[proposalld];

if (msg.sender != proposal.submitter) {

revert NotAuthorizedToActivateProposal();

if (block.timestamp > proposal.submissionTimestamp + ACTIVATION DEADLINE) {
revert SubmittedProposalHasExpired();

}

if (
(totalEndorsementsForProposal[proposalId_] * 100) <
VOTES.totalSupply() * ENDORSEMENT THRESHOLD

) o
revert NotEnoughEndorsementsToActivateProposal();

}

if (proposalHasBeenActivated[proposalId] == true) {
revert ProposalAlreadyActivated();

}

if (block.timestamp < activeProposal.activationTimestamp + GRACE PERIOD) {
revert ActiveProposalNotExpired();

activeProposal = ActivatedProposal(proposalld , block.timestamp);

proposalHasBeenActivated[proposalld] = true;

emit ProposalActivated(proposalIld , block.timestamp);

function vote(bool for) external {
uint256 userVotes = VOTES.balanceOf(msg.sender);
if (activeProposal.proposalId == 0) {

revert NoActiveProposalDetected();

if (userVotesForProposal[activeProposal.proposalId][msg.sender] > 0) {
revert UserAlreadyVoted();

}
if (for_) {
yesVotesForProposal[activeProposal.proposalId] += userVotes;
} else {
novVotesForProposal[activeProposal.proposalId] += userVotes;
}
userVotesForProposal[activeProposal.proposalId][msg.sender] = userVotes;

VOTES.transferFrom(msg.sender, address(this), userVotes);

emit WalletVoted(activeProposal.proposalld, msg.sender, for , userVotes);

https://codedrena.com/reports/2022-08-olympus/ 29/87

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

Recommended Mitigation Steps

Add time delay when activating a proposal, so that users can be aware of that and vote for the
current one within the time window.

fullyallocated (Olympus) disputed and commented:
This is a pretty unique edge case, | can acknowledge as QA.
Oxean (judge) commented:

| actually don't think its that unique in the case of on chain voting. Imagine a scenario
where a user submits a vote with low gas amounts and it is not mined for days later and
then the active proposal has changed. | am not sure why the function wouldn't take

in the intended proposal ID.

| am going to leave as medium severity as | do think this impacts the intended
functionality of the protocol, but am willing to hear more from the sponsor on why they
disagree.

[M-10] VOTED VOTES CANNOT CHANGE AFTER THE USER IS ISSUED
NEW VOTES OR THE USER’S OLD VOTES ARE REVOKED DURING
VOTING

Submitted by rbserver, also found by __141345__, cccz, csanuragjain, GalloDaSballo, Guardian,
Lambda, m9800, and zzzitron

https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Governance.sol#L240-
L262

https://github.com/code-423n4/2022-08-
olympus/blob/main/src/policies/VoterRegistration.sol#L45-L48
https://github.com/code-423n4/2022-08-
olympus/blob/main/src/policies/VoterRegistration.sol#L53-L56

A user can call the following function to vote for a proposal. During voting, the voter admin
can still call the [issuevotesto | and [revokevotesrrom | functions below to issue new votes or

revoke old votes for the user, which also changes the votes’ total supply during the overall voting.
Because each user can only call once for a proposal due to the

[userVotesForProposal[activeProposal.proposalId][msg.sender] > 0] conditional check, the old
voted votes, resulted from the call by the user, will be used to compare against the new total
supply of the votes, resulted from the | issuevotesto | and | revokevotesrrom | calls during the overall

voting, when determining whether the proposal can be executed or not. Because of this
inconsistency, the result on whether the proposal can be executed might not be reliable.

https://codedrena.com/reports/2022-08-olympus/ 30/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/273#issuecomment-1234872386
https://github.com/code-423n4/2022-08-olympus-findings/issues/273#issuecomment-1249571276
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Governance.sol#L240-L262
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/VoterRegistration.sol#L45-L48
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/VoterRegistration.sol#L53-L56
https://github.com/code-423n4/2022-08-olympus-findings/issues/275

27/10/2022, 23:03 Olympus DAO contest — Code 423n4
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Governance.sol#L240-
L262

function vote(bool for) external {
uint256 userVotes = VOTES.balanceOf (msg.sender);

if (activeProposal.proposalld == 0) {
revert NoActiveProposalDetected();

if (userVotesForProposal[activeProposal.proposalId][msg.sender] > 0) {
revert UserAlreadyVoted();

if (for) {

yesVotesForProposal[activeProposal.proposalId] += userVotes;
} else {

noVotesForProposal[activeProposal.proposalId] += userVotes;

userVotesForProposal[activeProposal.proposalId][msg.sender] = userVotes;

VOTES.transferFrom(msg.sender, address(this), userVotes);

emit WalletVoted(activeProposal.proposalld, msg.sender, for , userVotes);

https://github.com/code-423n4/2022-08-
olympus/blob/main/src/policies/VoterRegistration.sol#L45-L.48

function issueVotesTo(address wallet , uint256 amount_) external onlyRole('"voter adr
// Issue the votes in the VOTES module
VOTES.mintTo(wallet , amount);

https://github.com/code-423n4/2022-08-
olympus/blob/main/src/policies/VoterRegistration.sol#L53-L56

function revokeVotesFrom(address wallet , uint256 amount_) external onlyRole("voter_
// Revoke the votes in the VOTES module
VOTES.burnFrom(wallet_, amount_);

Proof of Concept

https://codedrena.com/reports/2022-08-olympus/ 31/87

https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Governance.sol#L240-L262
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/VoterRegistration.sol#L45-L48
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/VoterRegistration.sol#L53-L56

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

Please add the following code in | src\test\policies\Governance.t.sol |

First, please add the following code for [stdError).

import {Test, stdError} from "forge-std/Test.sol"; // @audit import stdError for test

Then, please append the following tests. These tests will pass to demonstrate the described
scenarios.

function testScenario UserCannotVoteAgainWithNewlyMintedVotes() public {
_createActiveProposal();

// voter3 votes for the proposal
vm.prank(voter3);
governance.vote(true);

assertEqg(governance.yesVotesForProposal(1l), 300);
assertEqg(governance.noVotesForProposal(l), 0);

assertEqg(governance.userVotesForProposal(l, voter3), 300);
assertEq(VOTES.balanceOf (voter3), 0);
assertEq(VOTES.balanceOf (address(governance)), 300);

// to simulate calling VoterRegistration.issueVotesTo that mints votes to voter:
vm.prank (godmode) ;

VOTES.mintTo(voter3, 500);

assertEq(VOTES.balanceOf (voter3), 500);

// calling vote function again by voter3 reverts, which means that voter3 cannot
vm.expectRevert (UserAlreadyVoted.selector);

vm.prank(voter3);

governance.vote(true);

function testScenario RevokeVotesAfterUserFinishsOwnVoting() public {
_createActiveProposal();

// voter3 votes for the proposal
vm.prank(voter3);
governance.vote(true);

assertEqg(governance.yesVotesForProposal(1l), 300);
assertEq(governance.noVotesForProposal(l), 0);

assertEqg(governance.userVotesForProposal(l, voter3), 300);

assertEq(VOTES.balanceOf (voter3), 0);
assertEq(VOTES.balanceOf (address(governance)), 300);

https://codedrena.com/reports/2022-08-olympus/ 32/87

27/10/2022, 23:03 Olympus DAO contest — Code 423n4
// To simulate calling VoterRegistration.revokeVotesFrom that burns voter3's vot
// However, calling VOTES.burnFrom will revert due to arithmetic underflow.
vm.prank (godmode) ;
vm.expectRevert (stdError.arithmeticError);
VOTES.burnFrom(voter3, 300);

// the proposal is still voted with voter3's previous votes afterwards
assertEqg(governance.userVotesForProposal(l, voter3), 300);
assertEq(VOTES.balanceOf (voter3), 0);

assertEq(VOTES.balanceOf (address(governance)), 300);

Tools Used

VSCode

Recommended Mitigation Steps

When [issuevotesto | and | revokevotesrrom] are called during voting, the corresponding votes need

to be added to or removed from the proposal’s voted votes for the user. Alternatively, [issueVotesTo]

and [revokeVotesFrom] can be disabled when an active proposal exists.

fullyallocated (Olympus) confirmed and commented:
This is the best written answer.

Originally votes were locked so that users cannot constantly change their vote to
manipulate the outcome but the warden makes a good point about how the quorum
thresholds can be changed and the affects on how consensus is calculated.

[M-11] OLYMPUSGOVERNANCE: USERS CAN PREVENT THEIR VOTES
FROM BEING REVOKED

Submitted by cccz, also found by zzzitron

In the VoterRegistration contract, voter_admin can call the revokeVotesFrom function to revoke the
user's votes.

function revokeVotesFrom(address wallet , uint256 amount) external onlyRole("voter_
// Revoke the votes in the VOTES module
VOTES.burnFrom(wallet , amount);

https://codedrena.com/reports/2022-08-olympus/ 33/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/275#issuecomment-1236238446
https://github.com/code-423n4/2022-08-olympus-findings/issues/308

27/10/2022,23:03 Olympus DAO contest — Code 423n4
But there is a way for users to prevent their votes from being revoked by voteradmin.
In the OlympusGovernance contract, the user can call the vote function to vote for the
activeProposal, and then call the reclaimVotes function to reclaim his votes.
When the vote function is called, VOTES are sent to the OlympusGovernance contract and recorded
using the userVotesForProposal variable. When the reclaimVotes function is called, the VOTES
recorded in the userVotesForProposal variable are sent back to the user.
This means that the user can store his VOTES tokens in userVotesForProposal.
The revokeVotesFrom function cannot revoke the VOTES tokens recorded in userVotesForProposal
and the reclaimVotes function can only be called by the user himself.
If the user calls the reclaimVotes function and vote function in one transaction, then his VOTES
token balance will always be 0 (thus avoiding revocation of votes by voteradmin) and he will be able
to vote.

Proof of Concept

https://github.com/code-423n4/2022-08-
olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L240-
L262

https://github.com/code-423n4/2022-08-
olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L295-
L313

https://github.com/code-423n4/2022-08-
olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/VoterRegistration.sol#L53-
L56

Recommended Mitigation Steps

Consider allowing to call the reclaimVotes function to reclaim any user’s vote, thus avoiding the user
storing his VOTES tokens in userVotesForProposal

function reclaimVotes(uint256 proposalIld , address user) external {
uint256 userVotes = userVotesForProposal[proposalId][user_];

if (uservVotes == 0) {
revert CannotReclaimZeroVotes();

}

if (proposalld_ == activeProposal.proposalld) {
revert CannotReclaimTokensForActiveVote();

}

if (tokenClaimsForProposal[proposalIld_][user_] == true) {
revert VotingTokensAlreadyReclaimed();

}
tokenClaimsForProposal[proposalIld][user] = true;

VOTES.transferFrom(address(this), user , userVotes);
}
https://codedrena.com/reports/2022-08-olympus/ 34/87

https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L240-L262
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L295-L313
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/VoterRegistration.sol#L53-L56

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

fullyallocated (Olympus) acknowledged and commented:

This is true, we don't expect to use the voter admin in production, just to issue votes
during internal testing period.

Oxean (judge) decreased severity to Medium and commented:

Downgrading to M severity as this does not lead to direct loss of user funds, but does
highlight an issue with current contracts.

cccz (warden) commented:

Consider the following scenarios. There are currently three users, A, B and C, in the
system.
1. voter_admin minted 100 VOTEs for each of these three users

2. After a period of time, due to system upgrade or other reasons, the VOTEs of the
users need to be revoked.

3. voter_admin revokes the VOTEs of users A and B respectively, but user C uses this
vulnerability to prevent his VOTE from being revoked.

4. At this time, user C has all the VOTEs, and he can execute any proposal.
Oxean (judge) commented:

Okay, at this point | still believe a Medium issue, voter_admin as a mitigation could reissue
votes to User A and B. Additionally User C will eventually have to reclaim these votes in
order to vote on the next proposal. | am going to stick with Medium on this one.
Appreciate the additional clarity.

cccz (warden) commented:

@O0xean - You are right, thanks for your attention.

[M-12] GRIEFING/DOS OF WITHDRAWALS BY EOAS FROM TREASURY
(TRSRY) POSSIBLE

Submitted by minhtrng

https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/TreasuryCustodian.sol#L5

L67

Any withdrawals from the treasury by an approved EOA can be denied by a malicious actor that

watches the mempool.

https://codedrena.com/reports/2022-08-olympus/ 35/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/308#issuecomment-1234876428
https://github.com/code-423n4/2022-08-olympus-findings/issues/308#issuecomment-1252360367
https://github.com/code-423n4/2022-08-olympus-findings/issues/308#issuecomment-1255045809
https://github.com/code-423n4/2022-08-olympus-findings/issues/308#issuecomment-1255056253
https://github.com/code-423n4/2022-08-olympus-findings/issues/308#issuecomment-1255062224
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/TreasuryCustodian.sol#L53-L67
https://github.com/code-423n4/2022-08-olympus-findings/issues/317

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

Proof of Concept

The function TreasuryCustodian.revokePolicyApprovals() doesnt provide sufficient checks for its
intended purpose of “revoking a deactivated policy’s approvals”. As can be seen by the TODO labels,
the issue has already been acknowledged by the team (regardless it is still an issue present in an in-
scope contract). The only check performed is trying to call the isActive()-function on an address and
interpret the returned value as boolean. Attempting to call this function on an EOA will not fail and
return 0 (=false). Hence the condition to revert is not fulfilled and the amounts approved to withdraw
will be set to 0.

Tools Used

IDE (Remix, VSCode)

Recommended Mitigation Steps

A partial but insufficient fix would be to check if the address passed to the function contains code
and hence is not an EOA. A better approach might be to add a mapping(address => bool) of all
addresses that have been active policies some time in the past to the kernel, something like this:

As a public variable in Kernel.sol [mapping(address => bool) public isRegisteredPolicy;]

in KerneLaCﬂvateponcyOZ[isRegisteredPolicy[address(policy_)]) = true;]

and finally in TreasuryCustodian.revokePolicyApprovals():

[if(!kernel.isRegisteredPolicy(policy_) revert NotARegisteredPolicy]

ind-igo (Olympus) confirmed and commented:

TODOs are outdated, | forgot to clear them ;(. But the points are taken. Code will be
adjusted, but probably not the way from the recommendation. Instead will gate the
function behind custodian role.

[M-13] MISSING CHECKS IN KERNEL._DEACTIVATEPOLICY

Submitted by enckrish

There are no checks to ascertain that the policy being removed is registered in the [kerne1]. Trying
to remove a non-registered results in the policy registered at Oth index of [activePolicies] being

removed.

Proof of Concept

https://github.com/code-423n4/2022-08-olympus/blob/main/src/Kernel.sol#L325

https://codedrena.com/reports/2022-08-olympus/ 36/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/317#issuecomment-1241262776
https://github.com/code-423n4/2022-08-olympus/blob/main/src/Kernel.sol#L325
https://github.com/code-423n4/2022-08-olympus-findings/issues/368

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

Recommended Mitigation Steps

Adding [require(activePolicies[idx] == policy , "Unregistered policy");]VV”|preventﬂﬂS,

vvhere[idx = getPolicyIndex[policy] }

NOTE: The issue is less likely to happen as this is handled solely by the executor, but having
safeguards in the contract is always better than relying on an external factor.

ind-igo (Olympus) confirmed, but disagreed with severity and commented:
Confirmed. Should be lower risk or a QA issue.
Oxean (judge) commented:

@ind-igo - can you comment on why you think it should be QA vs Medium?

— Med: Assets not at direct risk, but the function of the protocol or its
availability could be impacted, or leak value with a hypothetical attack path

with stated assumptions, but external requirements.

| would expect this to impact the functionality of the protocol.
Oighty (Olympus) commented:

This one seems on the fence to me. While accidentally unregistering a policy likely would
affect the functionality of the protocol, it requires the executor to make a mistake. If the
mistake is made, it's easily remedied by re-registering the policy.

Oxean (judge) commented:

That makes sense, but there would be some amount of down time when this occurred. |
think Medium is correct for this issue.

[M-14] THE GOVERNANCE SYSTEM CAN BE HELD HOSTAGE BY A
MALICIOUS USER

Submitted by d3e4, also found by Aymen0909 and pedroais

With only [ENDORSEMENT THRESHOLD]% (currently 20%) voting power, a malicious user can prevent any

other proposal from being activated. While [ENDORSEMENT THRESHOLD] is currently fairly high, it seems

not higher than that it might not be used to hold the system hostage to extract far more funds.

Proof of Concept

Submit a dummy proposal, endorse it and then activate it. Now, no other proposal can be activated
fora [GRACE_PERIOD] When this time period is over, this procedure may be repeated, either

immediately or just before any other proposal activation by front-running.

https://codedrena.com/reports/2022-08-olympus/ 37/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/368#issuecomment-1241160679
https://github.com/code-423n4/2022-08-olympus-findings/issues/368#issuecomment-1251627251
https://github.com/code-423n4/2022-08-olympus-findings/issues/368#issuecomment-1255251454
https://github.com/code-423n4/2022-08-olympus-findings/issues/368#issuecomment-1255293207
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L130
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L159
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L180
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L205
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L127
https://github.com/code-423n4/2022-08-olympus-findings/issues/375

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

Recommended Mitigation Steps

Making sure [ENDORSEMENT THRESHOLD] is at least 50% seems discouraging enough. Other more

creative solutions should be possible. One might be to let the most endorsed proposal be activated,
or restricting who can activate a proposal; anything that at least temporarily liberates the
governance system so that the attacker is dissuaded from investing in this attack method.

fullyallocated (Olympus) acknowledged

[M-15] HEART WILL STOP IF ALL REWARDS ARE SWEPT

Submitted by GalloDaSballo, also found by cccz, itsmeSTYJ, and PwnPatrol

Rewards for Heart are sent via [_issuereward |

https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Heart.sol#L110-L115

function issueReward(address to) internal ({
rewardToken.safeTransfer(to_, reward);
emit RewardIssued(to , reward);

The function doesn’t check for available tokens e.g.

[min(reward, rewardToken.balanceof(address(this)));]

In case of caIIing [withdrawUnspentRewards]

https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Heart.sol#L149-L152

/// @inheritdoc IHeart
function withdrawUnspentRewards(ERC20 token_) external onlyRole("heart_admin") {
token .safeTransfer(msg.sender, token .balanceOf(address(this)));

}

Because the function withdraws the entire amount, the heart will stop until a caller incentive is
deposited again.

While a profitable searches will stop calling the Heart without an incentive, allowing the heart to beat
when no rewards are available is preferable to having it self-DOS until a DAO aligned caller donates

https://codedrena.com/reports/2022-08-olympus/ 38/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/375
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Heart.sol#L110-L115
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Heart.sol#L149-L152
https://github.com/code-423n4/2022-08-olympus-findings/issues/378

27/10/2022, 23:03

Olympus DAO contest — Code 423n4

or the DAO deals with the lack of tokens.

Recommended Mitigation Steps

Add a check for available tokens [min(reward, rewardToken.balanceOf (address(this)));]

Oighty (Olympus) confirmed and commented:

Agree based on the anti-DOS characteristics of using a min operation.

[M-16] INCONSISTANT PARAMETER REQUIREMENTS BETWEEN
CONSTRUCTOR() AND SeT() FuncTIONS IN RANGE.soL AND OPERATOR.SOL.

Submitted by hansfriese, also found by datapunk and itsmeSTYJ

Inconsistant parameter requirements between [constructor | and [set() functions |in(rance.so1 |

and [Operator.sol]

The contracts might work unexpectedly when the params are set improperly using [constructor ()]

Proof of Concept

o InRancE.sol }, setSpreads() and setThresholdFactor() has some requirements but

constructor() doesn’t check at all.

File: 2022-08-olympus\src\modules\RANGE.sol

242: function setSpreads(uint256 cushionSpread , uint256 wallSpread) external ¢
243: // Confirm spreads are within allowed values

244: if

245: wallSpread > 10000 ||

246: wallSpread < 100 ||

247: cushionSpread_ > 10000 ||

248: cushionSpread < 100 ||

249: cushionSpread > wallSpread

250:) revert RANGE InvalidParams();

251:

252: // Set spreads

253: _range.wall.spread = wallSpread ;

254: _range.cushion.spread = cushionSpread_;

255:

256: emit SpreadsChanged(wallSpread , cushionSpread);
257: }

https://codedrena.com/reports/2022-08-olympus/

39/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/378#issuecomment-1239855093
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/RANGE.sol#L244-L250
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/RANGE.sol#L264
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/RANGE.sol#L80
https://github.com/code-423n4/2022-08-olympus-findings/issues/379

27/10/2022, 23:03 Olympus DAO contest — Code 423n4
File: 2022-08-olympus\src\modules\RANGE.sol

263: function setThresholdFactor(uint256 thresholdFactor) external permissionec
264: if (thresholdFactor > 10000 || thresholdFactor < 100) revert RANGE_Ir
265: thresholdFactor = thresholdFactor_;

266:

267: emit ThresholdFactorChanged(thresholdFactor);

268: }

269:

e In [Operator.sol] setCushionFactor() checks the requirement but constructor() doesn't check

it.
File: 2022-08-olympus\src\policies\Operator.sol
516: function setCushionFactor(uint32 cushionFactor) external onlyRole("operatc
517: /// Confirm factor is within allowed values
518: if (cushionFactor > 10000 || cushionFactor < 100) revert Operator Ins
519:
520: /// Set factor
521: _config.cushionFactor = cushionFactor_;
522:
523: emit CushionFactorChanged(cushionFactor);
524: }
525:
Tools Used

Solidity Visual Developer of VSCode

Recommended Mitigation Steps

Recommend adding same validation for the parameters between [constructor() | and

functions.
Oighty (Olympus) disagreed with severity and commented:

Agree that the constructor should validate these parameters, but it is only an issue if
configured improperly.

Oxean (judge) commented:

While | am typically weary of marking input validations as medium severity, | do think in
this case it's warranted as it directly leads to malfunctions at the protocol level and it
seems that the sponsors thought it important enough to add the checks elsewhere. Hard
call, but will award it at medium severity.

https://codedrena.com/reports/2022-08-olympus/ 40/87

https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Operator.sol#L518
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Operator.sol#L134
https://github.com/code-423n4/2022-08-olympus-findings/issues/379#issuecomment-1238786025
https://github.com/code-423n4/2022-08-olympus-findings/issues/379#issuecomment-1251087775

27/10/2022, 23:03 Olympus DAO contest — Code 423n4
[M-17] NO CAP ON AMOUNT OF VOTES MEANS THE VOTER_ADMIN CAN
GET ANY PROPOSAL TO PASS

Submitted by GalloDaSballo, also found by OxNazgul, lllllll, and rbserver

Because can be minted by (voter_admin }, and there is no cap on totalSupply, the
has the privileged ability to mint as many as they want in order to get any

proposal to pass or veto it.

Proof of Concept - Veto

e Mint XYZ tokens

« totalSupply is now higher so any proposal can be vetoed per this line

Proof of Concept - Approve

B (vorer_sanir)

Mint XYZ tokens, where XYZ allows the
[netVotes * 100 < VOTES.totalSupply() * EXECUTION THRESHOLD] check to pass

Mint to self

Vote

Proposal has passed

Recommended Mitigation Steps

Add a total supply cap to vores J.

fullyallocated (Olympus) disputed and commented:

This is possible but will not happen in a production environment because we're using this
for internal testing.

Oxean (judge) commented:

Given the scope of the contracts the wardens were asked to review, | think this issue is

valid. While | understand that the is trusted, | don’t think users expect the

admin to be able to bypass any votes results in this manner.

https://codedrena.com/reports/2022-08-olympus/ 41/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L268-L269
https://github.com/code-423n4/2022-08-olympus-findings/issues/380#issuecomment-1236240959
https://github.com/code-423n4/2022-08-olympus-findings/issues/380#issuecomment-1251636550
https://github.com/code-423n4/2022-08-olympus-findings/issues/380

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

[M-18] INCONSISTENCY IN STALENESS CHECKS BETWEEN OHM AND
RESERVE TOKEN ORACLES

Submitted by okkothejawa, also found by datapunk, reassor, and Trust
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/PRICE.sol#L165-L171

Price oracle may fail and revert due to the inconsistency in the staleness checks.

Proof of Concept

In the (getcurrentprice() | of [prIcE.so1], Chainlink oracles are used to get the price of OHM

against a reserve token, and a staleness check is used to make sure the price oracles are reporting
fresh data. Yet the freshness requirements are inconsistent, for OHM, should be lower
than current timestamp minus three times the observation frequency, while for the reserve price, it is
required that should be lower than current timestamp minus the observation frequency.
Our understanding is that that frequency is multiplied by 3 so that there can be some meaningful
room where price data is accepted, as the time frame of only observation frequency (multiplied by 1)
may not be enough for the oracle to realistically update its data. (In other words, the frequency of
new price information might be lower than the observation frequency, which is probably the case as
third multiple is used for the OHM price). If this is the case, this inconsistency may lead to the

[getCurrentPrice()] reverting as while third multiple of the observation frequency might give

enough space for the first oracle, second oracle’s first multiple of frequency time frame might not be
enough and it couldn't pass the staleness check due to unrealistic expectation of freshness.

Tools Used

Manual review, talking with devs

Recommended Mitigation Steps

Change the line 171 to

if (updatedAt < block.timestamp - 3 * uint256(observationFrequency))

like line 165.
Oighty (Olympus) confirmed and commented:

This should indeed be the same. We will update to fix.

https://codedrena.com/reports/2022-08-olympus/ 42/87

https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/PRICE.sol#L165-L171
https://github.com/code-423n4/2022-08-olympus-findings/issues/391#issuecomment-1238515996
https://github.com/code-423n4/2022-08-olympus-findings/issues/391

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

[M-19] TRSRY: REENTER FROM OLYMPUSTREASURY::REPAYLOAN TO
OPERATOR: : SWAP

Submitted by zzzitron

One can repay loan to the treasury with the value from the [Operator: : swap]

Condition:

« the reserve token in Operator has hook for sender (like ERC777)

e the debt is the same token as reserve

Proof of Concept

The below code snippet shows a part of proof of concept for reentrancy attack, which is based on
[src/test/policies/Operator.t.sol] The full test code can be found here, and git diff from the

[Operator.t.sol].

Let's say that the reserve token implements ERC777 with the hook for the sender (see weird erc20).
If the attacker can take debt of the reserve currency for the attack contract [reenterer), the contract
can call [OlympusTreasury: : repayLoan] and in the middle of repay call [Operator: : swap] function.
The function will modify the reserve token balance of treasury and the amount the attacker

swapped will be also be used for the .

In the below example, the attacker has debt of 1e18, and repays 1e17. But since the function

is called in the , the debt is reduced 1e17 more then it should. And the swap happened
as expected so the attack has the corresponding ohm token.

/// Mock to simulate the senders hook
/// for simplicity omitted the certain aspects like ERC1820 registry and etc.
contract MockERC777 is MockERC20 {

constructor () MockERC20("ERC777", "777", 18) {}

function transferFrom(address from, address to, uint256 amount) public override rett
_callTokenToSend(from, to, amount);
return super.transferFrom(from, to, amount);
// _callTokenReceived(from, to, amount);

// simplified implementation for ERC777
function _callTokenToSend(address from, address to, uint256 amount) private {
if (from != address(0)) {
IERC777Sender (from) .tokensToSend(from, to, amount);

interface IERC777Sender {
function tokensToSend(address from, address to, uint256 amount) external;

https://codedrena.com/reports/2022-08-olympus/ 43/87

https://gist.github.com/zzzitron/651e1451ac1ff21be8a72b502b26f7cb
https://gist.github.com/zzzitron/5b8ebe635ed1939f18a100c7940b4f11
https://github.com/d-xo/weird-erc20#reentrant-calls
https://github.com/code-423n4/2022-08-olympus-findings/issues/403

27/10/2022, 23:03 Olympus DAO contest — Code 423n4
}

/// Concept for an attack contract
contract Reenterer is IERC777Sender {
ERC20 public token;
Operator public operator;
bool public entered;

constructor(address token , Operator op) {
token = ERC20(token_);
operator = op_;

function tokensToSend(address from, address to, uint256 amount) external override {
if (l!entered) {
// call swap from reenter
// which will manipulate the balance of treasury
entered = true;
operator.swap(token, lel7, 0);

function attack(OlympusTreasury treasury) public {
// approve to the treasury
token.approve(address(treasury), 1lel8);
token.approve(address(operator), 100* 1lel8);

// repayDebt of lel7
treasury.repayLoan(token, lel7);

/// the test
function test poc_ reenter() public {
vm.prank(guardian);
operator.initialize();

reserve.mint (address(reenterer), 1lel8);
assertEqg(treasury.reserveDebt (reserve, address(reenterer)), lel8);
// start repayLoan

reenterer.attack(treasury);

// it should be 9 * lel7 but it is 8 * lel7
assertEq(treasury.reserveDebt (reserve, address(reenterer)), 8*lel7);

Cause

The , in the line 110 below, calls the (safeTransterFrom |. The balance before and after
are compared to determine how much of debt is paid. So, if the [safeTranferFrom] can modify the

balance, the attacker can profit from it.

https://codedrena.com/reports/2022-08-olympus/ 44/87

27/10/2022, 23:03

112
113
114
115
116
117
118
119
120

Olympus DAO contest — Code 423n4

// OlympusTreasury::repayLoan

105
106
107
108
109
110
111
112

function repayLoan(ERC20 token , uint256 amount) external nonReentrant {

if (reserveDebt[token][msg.sender] == 0) revert TRSRY NoDebtOutstanding

// Deposit from caller first (to handle nonstandard token transfers)
uint256 prevBalance = token_.balanceOf(address(this));
token_ .safeTransferFrom(msg.sender, address(this), amount);

uint256 received = token_ .balanceOf (address(this)) - prevBalance;

In the function, if the amount in token is reserve, the payment token to buy ohm will be paid
to the treasury. It gives to an opportunity to modify the balance.

330
331
332

// Operator::swap

329
330

/// Transfer reserves to treasury
reserve.safeTransferFrom(msg.sender, address(TRSRY), amountIn);

/chougrlboth Of[Operator::swap] and [OlympusTreasury::repayLoan]have[nonReentrant]

modifier, it does not prevent as they are two different contracts.

Tools Used

Foundry

Recommended Mitigation Steps

The deposit logic in the [OlympusTreasury: : repayLoan] was trying to handle nonstandard tokens,

such as fee-on-transfer. But by doing so introduced an attack vector for tokens with ERC777. If the

reserve token should be decided in the governance, it should be clarified, which token standards can
be used safely.

ind-igo (Olympus) confirmed and commented:

Good report, although very low risk as the preconditions are extremely unlikely. Will take

into account the suggestion by adding a comment to the function. Thank you.

Oxean (judge) commented:

| would probably downgrade to QA, but the warden does a good job of proving the point
out with examples. Will leave as Medium.

https://codedrena.com/reports/2022-08-olympus/

45/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/403#issuecomment-1241204868
https://github.com/code-423n4/2022-08-olympus-findings/issues/403#issuecomment-1251655815

27/10/2022,23:03 Olympus DAO contest — Code 423n4
[M-20] OPERATOR: IF WALLSPREAD IS 10000, OPERATE AND BEAT
WILL REVERT AND PRICE INFORMATION CANNOT BE UPDATED
ANYMORE

Submitted by zzzitron
The cannot be called anymore and price information will not be updated
Condition:

 the wallspread is set to 10000 (100%)
 lower wall is active (range.low.active==true)

e the price falls into the lower cushion (currentPrice < range.cushion.low.price && currentPrice >
range.wall.low.price), therefore activates the lower bond market

Proof of Concept

The below proof of concept demonstrates that the will revert with 100% wallspread. The
full test code can be found here as well as the diff from [Operator.t.sol]

In the test, the wallspread was set to 10000, which is 100% (line 51). The price was set so that the
lower market should be deployed (line 59). In the market deployment logic ([operator::_activate)

will revert due to division by zero, and will fail.

Once this condition is met, the cannot be called and cannot be called as
well, since the is calling [operator: :opearate | under the hood. As the result the price

can never be updated. But other codes who uses the price information will not know that the price
information is stale. If the upper wall is active and still have the capacity, one can swap from the
upper wall using the stale information, which might cause some loss of funds.

function test poc_ lowCushionDeployWithWallspreadl0000Reverts() public {
/// Initialize operator
vm.prank(guardian);
operator.initialize();

/// if the wallspread is 10000 the operate might revert
vm.prank(policy);
operator.setSpreads (7000, 10000);

/// Confirm that the cushion is not deployed
assertTrue(!auctioneer.isLive(range.market(true)));

/// Set price on mock oracle into the lower cushion

/// given the lower wallspread is 10000

/// when the lower market should be deployed the operate reverts
price.setLastPrice(20 * 1lel8);

/// Trigger the operate function manually

https://codedrena.com/reports/2022-08-olympus/ 46/87

https://gist.github.com/zzzitron/74dfbc0249151a682061cd6532628d87
https://gist.github.com/zzzitron/216d67cc0c7def5450b921f9c7f9ae91
https://github.com/code-423n4/2022-08-olympus-findings/issues/404

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

/// The operate will revert Error with "Division or modulo by 0"
/// But I could not figure out to catch with ~expectRevert”

/// so just commenting out the assert

// vm.prank(guardian);

// /// vm.expectRevert (bytes("Division or module by 0")); // this cannot catctl
// operator.operate();
}
Cause
The main cause is that the | RaNGE: : setspreads | function fails to check for | wallspread == 10000 |.

If the setter does not allow the wallSpread to be 100%, the price of the lower wall will not go to zero.

// modules/RANGE.sol

242 function setSpreads(uint256 cushionSpread , uint256 wallSpread_) external pe
243 // Confirm spreads are within allowed values

244 if

245 wallSpread > 10000 ||

246 wallSpread < 100 ||

247 cushionSpread > 10000 ||

248 cushionSpread < 100 ||

249 cushionSpread > wallSpread

250) revert RANGE InvalidParams();

In the RaNGE: :updateprices |, the price of lower wall will be zero if the wallSpread is 100%. If the

price of lower wall is zero, the [Operator:: activate] will fail for the lower cushion.

// policies/Operator.sol:: activate(bool high)
// when high_ is false
421 uint256 invWallPrice = 10**(oracleDecimals * 2) / range.wall.low.price;

// modules/RANGE.sol::updatePrices
164 _range.wall.low.price = (movingAverage * (FACTOR SCALE - wallSpread)) / FA(

Tools Used

Foundry

Recommended Mitigation Steps

https://codedrena.com/reports/2022-08-olympus/ 47/87

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

Mitigation suggestion: line 245. Forbid wallSpread to be 100%.

// modules/RANGE.sol

250

251

252 242 function setSpreads(uint256 cushionSpread , uint256 wallSpread_) external pe
253 243 // Confirm spreads are within allowed values
254 244 if |

255 =245 wallSpread_ > 10000 ||

256 + wallSpread >= 10000 ||

257 246 wallSpread < 100 ||

258 247 cushionSpread_ > 10000 ||

259 248 cushionSpread < 100 ||

260 249 cushionSpread > wallSpread_

261 250) revert RANGE InvalidParams();

Oighty (Olympus) disagreed with severity and commented:

This is indeed an edge case and we will update the value checks for the spread values to
exclude . However, from a practical perspective, this is very unlikely to happen. If

the goal is to set the lower wall to 0, then the system would just be disabled.
Oxean (judge) commented:

Given the warden does fully demonstrate the issue, | am going to award as Medium with
the understanding that this is an extreme edge case.

[M-21] OLYMPUSGOVERNANCE - ACTIVE PROPOSAL DOES NOT EXPIRE

Submitted by reassor

Contract [OlympusGovernance] allows controlling protocol through on-chain governing. The issue is

that once proposal is active it does not expire, which means that until the new proposal will be
selected, anyone can vote on existing one and potentially execute it when it might cause harm to the
protocol.

Scenario:

1. New proposal has been submited, endorsed and activated.
2. Users vote, but the quroum is not being achieved.
3. The proposal is active until new one is getting submitted.

4. 6 months elapses and the current active proposal might cause serious harm to the protocol
(since it was created long time ago).

5. Malicious actor votes and executes proposal causing harm to the protocol.

https://codedrena.com/reports/2022-08-olympus/ 48/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/404#issuecomment-1238554404
https://github.com/code-423n4/2022-08-olympus-findings/issues/404#issuecomment-1251657272
https://github.com/code-423n4/2022-08-olympus-findings/issues/100

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

Proof of Concept

[Governance.sol]l

¢ https://github.com/code-423n4/2022-08-
olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L26¢
L289

Tools Used

Manual Review / VSCode

Recommended Mitigation Steps

It is recommended to add expiration for the active proposal for example 2 weeks. After that time it
should be possible to reject proposal and users should be able to reclaim VOTES tokens.

fullyallocated (Olympus) disputed
Oxean (judge) commented:

| believe the warden is simply stating that an active proposal stays active if not replaced.
There is not expiration of a proposal once it becomes active, so theoretically if the
governance process is inactive a very stale proposal could get executed.

[M-22] LOW MARKET BONDS/SWAPS NOT WORKING AFTER LOAN IS
TAKEN FROM TREASURY

Submitted by immeas
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/TRSRY.sol#L60

| am bordering between this being medium and low, but since this is, granted under very unlikely
circumstances, hindering intended transfers to work | am submitting it as medium. That said, | don't
think this scenario is very likely since it requires a trusted contract not part of initial release(? no
contract in repo used a loan) to take a large loan from TRSRY.

Proof of Concept

This will cause test to fail on [TRANSFER_FAILED] due to TRSRY not having the tokens to transfer but

[getReserveBalance] says it has, since capacity is determined based on non-existing tokens.

diff --git a/src/test/policies/Operator.t.sol b/src/test/policies/Operator.t.sol

https://codedrena.com/reports/2022-08-olympus/ 49/87

https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L265-L289
https://github.com/code-423n4/2022-08-olympus-findings/issues/100
https://github.com/code-423n4/2022-08-olympus-findings/issues/100#issuecomment-1251712619
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/TRSRY.sol#L60
https://github.com/code-423n4/2022-08-olympus-findings/issues/422

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

index e09aecl..5cle95f 100644

--- a/src/test/policies/Operator.t.sol

+++ b/src/test/policies/Operator.t.sol

@@ -26,6 +26,8 @@ import {OlympusMinter, OHM} from "modules/MINTR.sol";
import {Operator} from "policies/Operator.sol";
import {BondCallback} from "policies/BondCallback.sol";

+import {ModuleTestFixtureGenerator} from "test/lib/ModuleTestFixtureGenerator.sol";
+
contract MockOhm is ERC20 {

constructor (

string memory _name,

@@ -45,6 +47,7 @@ contract MockOhm is ERC20 {
// solhint-disable-next-line max-states-count
contract OperatorTest is Test {

using FullMath for uint256;
+ using ModuleTestFixtureGenerator for OlympusTreasury;

UserFactory public userCreator;
address internal alice;
@@ -53,6 +56,9 @@ contract OperatorTest is Test {
address internal policy;
address internal heart;

+ address public debtor;
+ address public godmode;
+

RolesAuthority internal auth;
BondAggregator internal aggregator;
BondFixedTermTeller internal teller;

@@ -187,6 +193,18 @@ contract OperatorTest is Test {

reserve.mint (address(treasury), testReserve * 100);

debtor = treasury.generateFunctionFixture(treasury.getLoan.selector);
godmode = treasury.generateGodmodeFixture (type(OlympusTreasury).name);

kernel.executeAction(Actions.ActivatePolicy, godmode);
kernel.executeAction(Actions.ActivatePolicy, debtor);

vm.prank (godmode) ;
treasury.setApprovalFor (debtor, reserve, testReserve * 100);

vm.prank(debtor);
treasury.getLoan(reserve,testReserve*100);

+ o+ + + + o+ o+ o+ o+

// Approve the operator and bond teller for the tokens to swap
vm.prank(alice);
ohm.approve(address (operator), testOhm * 20);

Same is applicable for low market bonds since they are created based on the same capacity.

Tools Used

vs code + tests

https://codedrena.com/reports/2022-08-olympus/ 50/87

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

Recommended Mitigation Steps
Determine capacity from actual tokens held by treasury.
ind-igo (Olympus) confirmed and commented:

Acknowledged. Will add a reserve requirement check inside the TRSRY’s debt functions,
which we can expand with a policy to rebalance if out of balance on a heartbeat.

[M-23] TREASURY MODULE IS VULNERABLE TO CROSS-CONTRACT
REENTRANCY

Submitted by Czar102
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/TRSRY.sol#L108-L112

An attacker can pay back their loan to the treasury module with protocol-owned tokens. This will
cause their loan to decrease despite the protocol won't be given funds for it.

Proof of Concept

The code first measures the number of tokens in the treasury, then transfers an amount to the
contract and checks the change it caused. This is put behind a nonReentrant modifier so that one
can't use the same balance change to pay back multiple parts of (potentially) multiple loans.

The problem arises when the treasury doesn’t only claim tokens from paying back loans, but also
claims protocol revenue. Since, an attacker can gain execution in the moment the funds are pulled to
the treasury to trigger any function that grants treasury this type of tokens (collects protocol
revenue). The contract will count these tokens as paying back one’s loan since this happened
between balance measurements.

Recommended Mitigation Steps

Add a function used to pull a token to the contract and mark it nonReentrant. Any transfer of tokens
to the treasury should be done through that function.

ind-igo (Olympus) commented:
I am confused by this submission. Need more information.
ind-igo (Olympus) confirmed and commented:

Spoke with Czar, solution for minimal change is adding

[received = min(received, amount);] Confirming issue.

https://codedrena.com/reports/2022-08-olympus/ 51/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/422#issuecomment-1238768525
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/TRSRY.sol#L108-L112
https://github.com/code-423n4/2022-08-olympus-findings/issues/426#issuecomment-1240219578
https://github.com/code-423n4/2022-08-olympus-findings/issues/426#issuecomment-1244569278
https://github.com/code-423n4/2022-08-olympus-findings/issues/426

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

[M-24] [NAZ-ML1] CHAINLINK’®S LATESTROUNDDATA MIGHT RETURN
STALE RESULTS

Submitted by 0xNazgul, also found by __141345__, 0x1f8b, ak1, brgltd, cccz, csanuragjain, Dravee,
Guardian, hyh, Illllll, itsmeSTYJ, Jujic, Lambda, pashov, peachtea, rbserver, reassor, Sm4rty, TomJ,
and zzzitron

https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/PRICE.sol#L161
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/PRICE.sol#L170

Across these contracts, you are using Chainlink’s [latestRoundData] API, but there is only a check
on . This could lead to stale prices according to the Chainlink documentation:

e Historical Price data

e Checking Your returned answers

The result of[latestRoundData]API will be used across various functions, therefore, a stale price

from Chainlink can lead to loss of funds to end-users.

Recommended Mitigation Steps
Consider adding the missing checks for stale data.

For example:

(uint80 roundID ,answer,, uint256 timestamp, uint80 answeredInRound) = AggregatorV3Intei
require(answer > 0, "Chainlink price <= 0");

require(answeredInRound >= roundID, "Stale price");
require(timestamp != 0, "Round not complete");

Oighty (Olympus) confirmed and commented:

Agree. We'll add the additional checks.

[M-25] MOVING AVERAGE PRECISION IS LOST

Submitted by hyh, also found by Certoralnc, d3e4, and rbserver

Now the precision is lost in moving average calculations as the difference is calculated separately
and added each time, while it typically can be small enough to lose precision in the division involved.

https://codedrena.com/reports/2022-08-olympus/ 52/87

https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/PRICE.sol#L161
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/PRICE.sol#L170
https://docs.chain.link/docs/historical-price-data/#historical-rounds
https://docs.chain.link/docs/faq/#how-can-i-check-if-the-answer-to-a-round-is-being-carried-over-from-a-previous-round
https://github.com/code-423n4/2022-08-olympus-findings/issues/441#issuecomment-1238528515
https://github.com/code-423n4/2022-08-olympus-findings/issues/441
https://github.com/code-423n4/2022-08-olympus-findings/issues/483

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

For example, [10000] moves of [990 | size, [nunobservations = 1000 |. This will yield @ on each
update, while must yield increase in the moving average.

Proof of Concept
Moving average is calculated with the addition of the difference:

https://github.com/code-423n4/2022-08-
olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/PRICE.sol#L134-L139

// Calculate new moving average
if (currentPrice > earliestPrice) {

_movingAverage += (currentPrice - earliestPrice) / numObs;
} else {

_movingAverage -= (earliestPrice - currentPrice) / numObs;

}

can lose precision as [currentprice - earliestprice | is usually small.

It is returned on request as is:

https://github.com/code-423n4/2022-08-
olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/PRICE.sol#L189-L193

/// @notice Get the moving average of OHM in the Reserve asset over the defined winc
function getMovingAverage() external view returns (uint256) {

if (!initialized) revert Price NotInitialized();

return movingAverage;

Recommended Mitigation Steps

Consider storing the cumulative , while returning [sum / numobs | on request:

https://github.com/code-423n4/2022-08-
olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/PRICE.sol#L189-L193

/// @notice Get the moving average of OHM in the Reserve asset over the defined winc
function getMovingAverage() external view returns (uint256) {
if (!initialized) revert Price NotInitialized();
- return movingAverage;
return movingAverage / numObservations;

}

https://codedrena.com/reports/2022-08-olympus/ 53/87

https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/PRICE.sol#L134-L139
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/PRICE.sol#L189-L193
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/PRICE.sol#L189-L193

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

Oighty (Olympus) disagreed with severity and commented:

Keeping track of the observations as a sum and then dividing is a good suggestion. The
price values have 18 decimals and the max discrepancy introduced is very small (10**-15)
with expected parameter ranges. The potential risk to the protocol seems low though.

hyh (warden) commented:

Please notice that discrepancy here is unbounded, i.e. the logic itself does not have any
max discrepancy, the divergence between fact and recorded value can pile up over time
without a limit.

If you do imply that markets should behave in some way that minuses be matched with
pluses, then | must say that they really shouldn't.

Oighty (Olympus) confirmed
Oxean (judge) commented:

Debating between QA and Medium on this one. | am going to award it as medium because
there is a potential to leak some value due to this imprecision compounding over time.

[M-26] CUSHION BOND MARKETS ARE OPENED AT WALL PRICE
RATHER THAN CURRENT PRICE

Submitted by 0x52

https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L.363-
L469

Incorrect initial bond market price.

Proof of Concept

uint256 initialPrice = range.wall.high.price.mulDiv(bondScale, oracleScale);

uint256 initialPrice invWallPrice.mulDiv(bondScale, oracleScale);

In the above lines the initial prices are set to the wall price rather than the current price as indicated
in documentation.

https://codedrena.com/reports/2022-08-olympus/ 54/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/483#issuecomment-1238433469
https://github.com/code-423n4/2022-08-olympus-findings/issues/483#issuecomment-1240994248
https://github.com/code-423n4/2022-08-olympus-findings/issues/483
https://github.com/code-423n4/2022-08-olympus-findings/issues/483#issuecomment-1249930031
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L363-L469
https://github.com/code-423n4/2022-08-olympus-findings/issues/485

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

Recommended Mitigation Steps
Initial price should be updated to open bond market at current price rather than wall price.
Oighty (Olympus) disagreed with severity and commented:

This is more of a design decision than a bug. However, we did make this change in the
code prior to the audit (it didn’t get reflected in the repo). @ind-igo not sure how you want
to handle.

Oxean (judge) commented:
Going to award as Medium assuming no additional input from sponsor on the topic.
Oighty (Olympus) commented:

It does deviate from the spec so | guess that’s appropriate. The system actually would
work as-is, but would be less responsive to price movements into the cushions since the
bond market would have to decay (which requires waiting) to reach the current market
price vs. instantly providing a buy/sell at the current price.

[M-27] UNEXECUTABLE PROPOSALS WHEN ACTIONS.MIGRATEKERNEL IS
NOT LAST INSTRUCTION

Submitted by Lambda

https://github.com/code-423n4/2022-08-
olympus/blob/549b96bcf8b97807738572605f6b1e26b33ef411/src/modules/INSTR.sol#L61

In (1nsTR.s01), it is correctly checked that a [changeExecutor] instruction only occurs at the last
position to avoid situations where the other instructions are deemed as invalid.

However, the same problem can occur for [MigrateKernel] For instance, let's say we have a

[MigrateKernel] followed by a [DeactivatePolicy] action. The[MigrateKernel] action will change

the value of within the policy. The [peactivatepolicy | action tries to call

| setactivestatus | on the policy. However, this has a modifier and the call will

therefore fail when it is done after the value of was changed.

Recommended Mitigation Steps

Perform the same check for [MigrateKernel]

fullyallocated (Olympus) confirmed and commented:

Thank you; good catch

https://codedrena.com/reports/2022-08-olympus/ 55/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/485#issuecomment-1235667143
https://github.com/code-423n4/2022-08-olympus-findings/issues/485#issuecomment-1251683341
https://github.com/code-423n4/2022-08-olympus-findings/issues/485#issuecomment-1252616779
https://github.com/code-423n4/2022-08-olympus/blob/549b96bcf8b97807738572605f6b1e26b33ef411/src/modules/INSTR.sol#L61
https://github.com/code-423n4/2022-08-olympus-findings/issues/51#issuecomment-1236245145
https://github.com/code-423n4/2022-08-olympus-findings/issues/51

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

[M-28] ACTIVATING SAME POLICY MULTIPLE TIMES IN KERNEL
POSSIBLE

Submitted by Lambda, also found by enckrish

https://github.com/code-423n4/2022-08-
olympus/blob/549b96bcf8b97807738572605f6b1e26b33ef411/src/Kernel.sol#L296

To check that an already active policy is not added a second time, is called on the

policy. However, could be a malicious contract that always returns for
[isactive()] In such a scenario, it would be possible to activate the policy multiple times for the
same Kernel. This would break uniqueness invariants such that [_deactivatePolicy()] no longer

works. However, it could also be used for a DoS attack: As [_reconfigurePolicies] and

[_migrateKernel] iterate over those lists that now contain duplicates, they could run out of gas if a

policy is activated enough times.

Recommended Mitigation Steps

Check [getPolicyIndex[policy] != 0] instead of relying on a value of an untrusted contract.

OxLienid (Olympus) commented:

@ind-igo a few other submissions also mention problems with over-reliance on
policy.isActive (i.e. #368). Might be worth mitigating with the suggested step here or the
check on activePolicies[index] like 368 mentions.

ind-igo (Olympus) commented:
Dupe of #368
Oxean (judge) commented:

| think this is separate from #368 which is about a policy deactivating that isn’t already
active.

| am a bit skeptical at the impact statement currently, but it does seem like protocol
functionality does end up in a bad state with the typical policy lifecycle here. Will award as
Medium unless Sponsor wants to provide some additional reasoning as to a downgrade.

ind-igo (Olympus) commented:

While the issue is slightly different from #368, the solution is the exact same. The
remediation has the new checks to prevent both of these issues.

[M-29] TRSRY SUSCEPTIBLE TO LOAN / WITHDRAW CONFUSION

https://codedrena.com/reports/2022-08-olympus/ 56/87

https://github.com/code-423n4/2022-08-olympus/blob/549b96bcf8b97807738572605f6b1e26b33ef411/src/Kernel.sol#L296
https://github.com/code-423n4/2022-08-olympus-findings/issues/52#issuecomment-1238281166
https://github.com/code-423n4/2022-08-olympus-findings/issues/368
https://github.com/code-423n4/2022-08-olympus-findings/issues/52#issuecomment-1241161485
https://github.com/code-423n4/2022-08-olympus-findings/issues/52#issuecomment-1251630127
https://github.com/code-423n4/2022-08-olympus-findings/issues/52#issuecomment-1271829178
https://github.com/code-423n4/2022-08-olympus-findings/issues/52
https://github.com/code-423n4/2022-08-olympus-findings/issues/75

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

Submitted by Trust, also found by 0xSky, datapunk, and tonisives
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/TRSRY.sol#L64-L102

Treasury allocates approvals in the withdrawApproval mapping which is set via setApprovalFor(). In
both withdrawReserves() and in getLoan(), _checkApproval() is used to verify user has enough
approval and subtracts the withdraw / loan amount. Therefore, there is no differentiation in
validation between loan approval and withdraw approval. Policies which will use getLoan() (currently
none) can simply withdraw the tokens without bookkeeping it as a loan.

Proof of Concept

1. Policy P has getLoan permission
2. setApprovalFor(policy, token, amount) was called to grant P permission to loan amount

3. P calls withdrawReserves(address, token, amount) and directly withdraws the funds without
registering as loan

Recommended Mitigation Steps

A separate mapping called loanApproval should be implemented, and setLoanApprovalFor() will set
it, getLoan() will reduce loanApproval balance.

ind-igo (Olympus) confirmed, but disagreed with severity and commented:
Confirmed. Good suggestion. Would put as low risk though.
Oxean (judge) commented:
Currently thinking Medium is appropriate for this issue, but will circle back on it.
Oxean (judge) commented:

See #293 for a possible vector in which this could lead to loss of funds. Going to leave as
Medium.

[M-30] HEART::BEAT() COULD BE CALLED SEVERAL TIMES IN ONE
BLOCK IF NO ONE CALLED IT FOR A SOME TIME

Submitted by rvierdiiev, also found by datapunk, devtooligan, itsmeSTYJ, Jeiwan, Lambda, Trust, and
zzzitron

function is allowed to be called by anyone once in period. The purpose of it

is to update the prices and do another operations related to bond market. User who ran it are
rewarded. There is no need to run this function more then 1 time in period. However if

https://codedrena.com/reports/2022-08-olympus/ 57/87

https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/TRSRY.sol#L64-L102
https://github.com/code-423n4/2022-08-olympus-findings/issues/75#issuecomment-1239657706
https://github.com/code-423n4/2022-08-olympus-findings/issues/75#issuecomment-1250396074
https://github.com/code-423n4/2022-08-olympus-findings/issues/75#issuecomment-1251404052
https://github.com/code-423n4/2022-08-olympus-findings/issues/293
https://github.com/code-423n4/2022-08-olympus-findings/issues/79

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

was last time called more then [frequency() |time ago then user can execute

function [(block.timestamp - lastBeat)/frequency()]times in a row in same block and get

rewards.

Proof of Concept

https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Heart.sol#L92
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Heart.sol#L103

Recommended Mitigation Steps

https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Heart.sol#L103
(Ihangetfnslineto[lastBeat = block.timestamp - (block.timestamp - lastBeat) % frequency();]

So no matter how much time the was not called, it is possible to call it only once per

frequency() |

Oighty (Olympus) confirmed and commented:

See comment on #405. This approach actually solves both of our issues though.
Oxean (judge) commented:

Going to use this issue as the primary since the solution is elegant and solves the
problem.

[M-31] PROTOCOL'S WALLS / CUSHION BONDS REMAIN ACTIVE EVEN
IF HEART IS NOT BEATING

Submitted by Trust

https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L.188-
L191
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Operator.sol#L272
https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L.346

The Walls of the RBS mechanism offer zero slippage swaps at the high and low of the moving
average spread. The capacity to be swapped at these prices is usually very large, so it must make
sure to only be enabled when the prices are guaranteed to be synced. However, there is no such
check. If beat() is not called for some time, meaning we cannot determine if the current spread is
legit, swap() still operates as usual.

https://codedrena.com/reports/2022-08-olympus/ 58/87

https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Heart.sol#L92
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Heart.sol#L103
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Heart.sol#L103
https://github.com/code-423n4/2022-08-olympus-findings/issues/79#issuecomment-1239882530
https://github.com/code-423n4/2022-08-olympus-findings/issues/405#issuecomment-1239878294
https://github.com/code-423n4/2022-08-olympus-findings/issues/79#issuecomment-1251018524
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L188-L191
https://github.com/code-423n4/2022-08-olympus/blob/main/src/policies/Operator.sol#L272
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L346
https://github.com/code-423n4/2022-08-olympus-findings/issues/89

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

Impact

The worst case scenario is that the wall is swapping at a losing price, meaning they can be
immediately drained via arbitrage bot.

Proof of concept

. Price is X at the start

. Oracle stops updating for some reason / no one calls beat()

Price drops to Y , where Y < low wall centered around X

Attacker can perform arbitrage by buying Ohm at external markets at Y and selling Ohr

S W N R
..

Recommended mitigation steps:

Change modifier onlyWhileActive to add a check for beat out of sync:

if (block.timestamp > lastBeat + SYNC_THRESHOLD * frequency())

Oighty (Olympus) confirmed and commented:

This is an interesting unintended consequence of a bad price feed or other issue.
Your suggested update makes sense, but we will probably adjust slightly to only manage
the bad data threshold in one place.

After originally looking at it, | thought a try/catch block on the external call to
[PRICE.getLastPrice()] in [Operator.operate ()]would work, but it doesn’t handle cases

where isn't reached by the function.

[M-32] ADMIN CANNOT BE CHANGED TO EOA AFTER DEPLOYMENT

Submitted by Jeiwan, also found by datapunk

After contracts are deployed and initialized, the admin address in contract can only be set
to a contract. Granting and revoking roles will be possible to do only via a contract, which looks like
an unintended behavior since these operations cannot be performed via governance (the
governance contract is designed to be the only executor).

Proof of Concept

https://codedrena.com/reports/2022-08-olympus/ 59/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/89#issuecomment-1238784898
https://github.com/code-423n4/2022-08-olympus-findings/issues/94

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

Admin address can be changed to any address (EOA or contract) in the [executeAction] function in

==

https://github.com/code-423n4/2022-08-olympus/blob/main/src/Kernel.sol#L252-1.253

This piece explicitly allows EOA addresses since the other actions in the function (besides
| changerxecutor |) are checked to have only a contract as the target (see | ensurecontract | function

calls in the other actions). This, and the fact that roles cannot be managed via governance, leads to
the conclusion that an admin is designed to be an EOA.

However, in the function in (nstr), action target can only be a contract:

https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/INSTR.sol#L52

After the contracts are deployed, will be the only contract that's allowed to call
[Kernel.executeAction]I

https://github.com/code-423n4/2022-08-olympus/blob/main/src/scripts/Deploy.sol#L220

Thus, there will be no way to change admin to an EOA. If admin needs to be an EOA, the
contract needs to be patched and re-deployed to allow non-contract targets.

Recommended Mitigation Steps
Allow EOA addresses as instruction targets or disallow non-contract admin addresses.
fullyallocated (Olympus) confirmed and commented:

Nice find + writeup.

Low Risk and Non-Critical Issues

For this contest, 114 reports were submitted by wardens detailing low risk and non-critical issues.
The report highlighted below by zzzitron received the top score from the judge.

The following wardens also submitted reports: c3phas, hyh, OxNazgul, OxNineDec, Jeiwan, Deivitto,
Bahurum, cccz, rbserver, mics, Aymen0909, Rolezn, reassor, ignacio, oyc_109, 0xDjango,
OxSmartContract, shenwilly, rvierdiiev, Sm4rty, ReyAdmirado, BnkeOx0, Tomo, gogo, robee,
fatherOfBlocks, ladboy233, erictee, EIKu, cRat1st0s, GalloDaSballo, Lambda, lukris02, tonisives,
Ruhum, durianSausage, dipp, sikorico, lllllll, 0xSky, pfapostol, Rohan16, DimSon, RaymondFam,
Waze, devtooligan, 0x1f8b, nxrblsrpr, brgltd, delfin454000, BipinSah, bobirichman, datapunk, TomJ,
martin, Ch_301, Chandr, ajtra, prasantgupta52, tnevler, rokinot, Guardian, wOLfrum, Certoralnc,
aviggiano, rajatbeladiya, yixxas, __141345__, csanuragjain, ak1, cryptphi, The_GUILD, 0x52,
carlitox477, ch13fd357r0y3r, sorrynotsorry, PPrieditis, PwnPatrol, Chom, eierina, CodingNameKiki,
StevenlL, bin2chen, ret2basic, hansfriese, Funen, PaludoX0, Picodes, grGred, okkothejawa, Trust,
natzuu, itsmeSTYJ, 0x040, d3e4, p_crypt0, Oxkatana, Margaret, 8olidity, LeoS, medikko, ne0On,

https://codedrena.com/reports/2022-08-olympus/ 60/87

https://github.com/code-423n4/2022-08-olympus/blob/main/src/Kernel.sol#L252-L253
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/INSTR.sol#L52
https://github.com/code-423n4/2022-08-olympus/blob/main/src/scripts/Deploy.sol#L220
https://github.com/code-423n4/2022-08-olympus-findings/issues/94#issuecomment-1234801408
https://github.com/code-423n4/2022-08-olympus-findings/issues/415
https://github.com/code-423n4/2022-08-olympus-findings/issues/450
https://github.com/code-423n4/2022-08-olympus-findings/issues/500
https://github.com/code-423n4/2022-08-olympus-findings/issues/440
https://github.com/code-423n4/2022-08-olympus-findings/issues/166
https://github.com/code-423n4/2022-08-olympus-findings/issues/27
https://github.com/code-423n4/2022-08-olympus-findings/issues/472
https://github.com/code-423n4/2022-08-olympus-findings/issues/496
https://github.com/code-423n4/2022-08-olympus-findings/issues/242
https://github.com/code-423n4/2022-08-olympus-findings/issues/457
https://github.com/code-423n4/2022-08-olympus-findings/issues/163
https://github.com/code-423n4/2022-08-olympus-findings/issues/452
https://github.com/code-423n4/2022-08-olympus-findings/issues/195
https://github.com/code-423n4/2022-08-olympus-findings/issues/169
https://github.com/code-423n4/2022-08-olympus-findings/issues/168
https://github.com/code-423n4/2022-08-olympus-findings/issues/7
https://github.com/code-423n4/2022-08-olympus-findings/issues/217
https://github.com/code-423n4/2022-08-olympus-findings/issues/250
https://github.com/code-423n4/2022-08-olympus-findings/issues/199
https://github.com/code-423n4/2022-08-olympus-findings/issues/151
https://github.com/code-423n4/2022-08-olympus-findings/issues/233
https://github.com/code-423n4/2022-08-olympus-findings/issues/45
https://github.com/code-423n4/2022-08-olympus-findings/issues/28
https://github.com/code-423n4/2022-08-olympus-findings/issues/148
https://github.com/code-423n4/2022-08-olympus-findings/issues/155
https://github.com/code-423n4/2022-08-olympus-findings/issues/17
https://github.com/code-423n4/2022-08-olympus-findings/issues/22
https://github.com/code-423n4/2022-08-olympus-findings/issues/34
https://github.com/code-423n4/2022-08-olympus-findings/issues/8
https://github.com/code-423n4/2022-08-olympus-findings/issues/131
https://github.com/code-423n4/2022-08-olympus-findings/issues/47
https://github.com/code-423n4/2022-08-olympus-findings/issues/374
https://github.com/code-423n4/2022-08-olympus-findings/issues/49
https://github.com/code-423n4/2022-08-olympus-findings/issues/316
https://github.com/code-423n4/2022-08-olympus-findings/issues/305
https://github.com/code-423n4/2022-08-olympus-findings/issues/138
https://github.com/code-423n4/2022-08-olympus-findings/issues/30
https://github.com/code-423n4/2022-08-olympus-findings/issues/396
https://github.com/code-423n4/2022-08-olympus-findings/issues/162
https://github.com/code-423n4/2022-08-olympus-findings/issues/268
https://github.com/code-423n4/2022-08-olympus-findings/issues/473
https://github.com/code-423n4/2022-08-olympus-findings/issues/261
https://github.com/code-423n4/2022-08-olympus-findings/issues/360
https://github.com/code-423n4/2022-08-olympus-findings/issues/297
https://github.com/code-423n4/2022-08-olympus-findings/issues/66
https://github.com/code-423n4/2022-08-olympus-findings/issues/311
https://github.com/code-423n4/2022-08-olympus-findings/issues/400
https://github.com/code-423n4/2022-08-olympus-findings/issues/372
https://github.com/code-423n4/2022-08-olympus-findings/issues/357
https://github.com/code-423n4/2022-08-olympus-findings/issues/499
https://github.com/code-423n4/2022-08-olympus-findings/issues/363
https://github.com/code-423n4/2022-08-olympus-findings/issues/356
https://github.com/code-423n4/2022-08-olympus-findings/issues/165
https://github.com/code-423n4/2022-08-olympus-findings/issues/115
https://github.com/code-423n4/2022-08-olympus-findings/issues/321
https://github.com/code-423n4/2022-08-olympus-findings/issues/191
https://github.com/code-423n4/2022-08-olympus-findings/issues/353
https://github.com/code-423n4/2022-08-olympus-findings/issues/284
https://github.com/code-423n4/2022-08-olympus-findings/issues/460
https://github.com/code-423n4/2022-08-olympus-findings/issues/373
https://github.com/code-423n4/2022-08-olympus-findings/issues/387
https://github.com/code-423n4/2022-08-olympus-findings/issues/466
https://github.com/code-423n4/2022-08-olympus-findings/issues/183
https://github.com/code-423n4/2022-08-olympus-findings/issues/72
https://github.com/code-423n4/2022-08-olympus-findings/issues/228
https://github.com/code-423n4/2022-08-olympus-findings/issues/32
https://github.com/code-423n4/2022-08-olympus-findings/issues/216
https://github.com/code-423n4/2022-08-olympus-findings/issues/260
https://github.com/code-423n4/2022-08-olympus-findings/issues/280
https://github.com/code-423n4/2022-08-olympus-findings/issues/326
https://github.com/code-423n4/2022-08-olympus-findings/issues/364
https://github.com/code-423n4/2022-08-olympus-findings/issues/423
https://github.com/code-423n4/2022-08-olympus-findings/issues/320
https://github.com/code-423n4/2022-08-olympus-findings/issues/116
https://github.com/code-423n4/2022-08-olympus-findings/issues/129
https://github.com/code-423n4/2022-08-olympus-findings/issues/14
https://github.com/code-423n4/2022-08-olympus-findings/issues/238
https://github.com/code-423n4/2022-08-olympus-findings/issues/307
https://github.com/code-423n4/2022-08-olympus-findings/issues/389
https://github.com/code-423n4/2022-08-olympus-findings/issues/433
https://github.com/code-423n4/2022-08-olympus-findings/issues/495
https://github.com/code-423n4/2022-08-olympus-findings/issues/197
https://github.com/code-423n4/2022-08-olympus-findings/issues/448
https://github.com/code-423n4/2022-08-olympus-findings/issues/204
https://github.com/code-423n4/2022-08-olympus-findings/issues/325
https://github.com/code-423n4/2022-08-olympus-findings/issues/384
https://github.com/code-423n4/2022-08-olympus-findings/issues/436
https://github.com/code-423n4/2022-08-olympus-findings/issues/198
https://github.com/code-423n4/2022-08-olympus-findings/issues/425
https://github.com/code-423n4/2022-08-olympus-findings/issues/141
https://github.com/code-423n4/2022-08-olympus-findings/issues/444
https://github.com/code-423n4/2022-08-olympus-findings/issues/90
https://github.com/code-423n4/2022-08-olympus-findings/issues/493
https://github.com/code-423n4/2022-08-olympus-findings/issues/121
https://github.com/code-423n4/2022-08-olympus-findings/issues/327
https://github.com/code-423n4/2022-08-olympus-findings/issues/454
https://github.com/code-423n4/2022-08-olympus-findings/issues/463
https://github.com/code-423n4/2022-08-olympus-findings/issues/150
https://github.com/code-423n4/2022-08-olympus-findings/issues/160
https://github.com/code-423n4/2022-08-olympus-findings/issues/37
https://github.com/code-423n4/2022-08-olympus-findings/issues/93
https://github.com/code-423n4/2022-08-olympus-findings/issues/504
https://github.com/code-423n4/2022-08-olympus-findings/issues/154

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

EthLedger, enckrish, Diraco, djxploit, JansenC, indijanc, CRYP70, apostle0x01, cloudjunky,
MasterCookie, and 0x85102.

SUMMARY

Risk Title
L 01 Operator: incorrect accounting for fee-on-transfer reserve token

L-02 BondCallback: incorrect accounting if quoteToken is rebase token

L-03 PRICE: unsafe cast for [numobservations]

L-04 Operator: unsafe cast for decimals

L-05 BondCallback: operator is not set

L-06 Operator: missing check for configParmas[0] (cushionFactor) in the constructor

L-07 Kernel: misplaced zero address check for

L-08 BondCallback, Operator: upon module’s upgrade, the token approval should be revoked
L-09 Heart: if the fails the heart beat will revert

N-01 Kernel: missing zero address check for [executor]and (admin]

N-02 INSTR, Governance: upon module’s upgrade, all instruction data should be carried over to the new modules

N-03 RANGE, PRICE: unused import of

N 04 PRICE: stale price

[L-01] OPERATOR: INCORRECT ACCOUNTING FOR FEE-ON-TRANSFER
RESERVE TOKEN

e https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L330

If the reserve token is fee-to-transfer token and the user is buying ohm, the [Operator: : swap] will
incorrectly assume the value is transferred, which fails to consider the fees. If the fee is

rounded up, the attacker can purchase ohm without giving any assets to the treasury. It may not be
profitable for the attacker, but it may cause devaluing of the ohm. However, the loss will be limited to

the capacity.

// Operator::swap

// if(tokenIn_ == reserve) : buying ohm
329 /// Transfer reserves to treasury
330 reserve.safeTransferFrom(msg.sender, address(TRSRY), amountIn);

[L-02] BONDCALLBACK: INCORRECT ACCOUNTING IF QUOTETOKEN IS
REBASE TOKEN

https://codedrena.com/reports/2022-08-olympus/ 61/87

https://github.com/code-423n4/2022-08-olympus-findings/issues/282
https://github.com/code-423n4/2022-08-olympus-findings/issues/365
https://github.com/code-423n4/2022-08-olympus-findings/issues/430
https://github.com/code-423n4/2022-08-olympus-findings/issues/69
https://github.com/code-423n4/2022-08-olympus-findings/issues/229
https://github.com/code-423n4/2022-08-olympus-findings/issues/424
https://github.com/code-423n4/2022-08-olympus-findings/issues/43
https://github.com/code-423n4/2022-08-olympus-findings/issues/451
https://github.com/code-423n4/2022-08-olympus-findings/issues/153
https://github.com/code-423n4/2022-08-olympus-findings/issues/252
https://github.com/code-423n4/2022-08-olympus-findings/issues/288
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L330

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

« https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/BondCallback.sol#L1

If the quoteToken is rebase token, the priorBalances may change due to rebasing or airdrop. It may
result to an incorrect accounting. However, whether it is exploitable depends on the Bond market’s
logic.

With the current logic, it just checks whether the balance is increased more than the [inputAmount_]

so it is harder to exploit, compare to the alternative logic of using the difference in balances as the
input amount. However, it also introduces the possibility of paying the users less than they deserve.

// Callback::callback

113 // Check that quoteTokens were transferred prior to the call
114 if (quoteToken.balanceOf (address(this)) < priorBalances[quoteToken] + input?
115 revert Callback TokensNotReceived();

[L-03] PRICE: UNSAFE CAST FOR NUMOBSERVATIONS

e https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/PRICE.sol#L97

« https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/PRICE.sol#L.249-

L257

« https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/PRICE.sol#L.281-
L289

The [movingAverageDuration] and [observationFrequency] are uint48. So

[movingAverageDuration / observationFrequency] may overflow when casted to uint32. In the below

snippet, line 281, the array will be set based on the uint256 value, but the | numobservations | is

casted down to uint32. It may result in different [numobservations | and the length of observations |

array. However, given the large numbers, the attempt to set such a large number as the parameters
will likely to fail with “out of gas” error, since the length of the array [observations] is ridiculously

large in this case. Yet, it is probably safe to set some upper limit for the [numObservations] or use

safeCast.

// modules/PRICE::constructor
97 numObservations = uint32(movingAverageDuration / observationFrequency_);

// modules/PRICE::changeObservationFrequency

https://codedrena.com/reports/2022-08-olympus/ 62/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/BondCallback.sol#L114
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/PRICE.sol#L97
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/PRICE.sol#L249-L257
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/PRICE.sol#L281-L289

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

280 // Store blank observations array of new size

281 observations = new uint256[] (newObservations);

282

283 // Set initialized to false and update state variables
284 initialized = false;

285 lastObservationTime = 0;

286 _movingAverage = 0;

287 nextObsIndex = 0;

288 observationFrequency = observationFrequency_ ;

289 numObservations = uint32(newObservations);

[L-04] OPERATOR: UNSAFE CAST FOR DECIMALS

« https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L.372

e https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L427

¢ https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L431-
L434

« https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L375-
L379

In the (operator: :_activate | decimal values were casted to and back and forth.
Since there is no check, those values can potentially overflow/underflow. However, if it happens the
exponent in the line 376 will like to revert due to too large numbers. Besides, if the price decimals are
that big, this may not be the biggest problem to face.

// policies/Operator.sol:: activate

372 int8 scaleAdjustment = int8(ohmDecimals) - int8(reserveDecimals) + (pric
375 uint256 oracleScale = 10**uint8(int8(PRICE.decimals()) - priceDecimals);
376 uint256 bondScale = 10 **

377 uint8(

378 36 + scaleAdjustment + int8(reserveDecimals) - int8(ohmDecimals'
379)i

[L-05] BONDCALLBACK: OPERATOR IS NOT SET CONSTRUCTOR

https://codedrena.com/reports/2022-08-olympus/ 63/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L372
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L427
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L431-L434
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L375-L379

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

¢ https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/BondCallback.sol#L3

L45

If the is not set, the function will revert so, it is crucial to set the

before any operation. However, it was not set in the [constructor), but should be set separately by

clling (Sesoperacer)

[L-06] OPERATOR: MISSING CHECK FOR CONFIGPARMAS[OQ]
(CUSHIONFACTOR) IN THE CONSTRUCTOR

« https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L92-

L150

e https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L516-

L524

The [Operator: : constructor] does not check the condition of the [cushionFactor] Below is the

condition for the [cushionFactor] checked in the [Operator::setCushionFactor].

// Operator::setCushionFactor

516 function setCushionFactor(uint32 cushionFactor) external onlyRole("operator_pol
517 /// Confirm factor is within allowed values

518 if (cushionFactor_ > 10000 || cushionFactor < 100) revert Operator Invalidl
519

520 /// Set factor

521 _config.cushionFactor = cushionFactor_;

522

523 emit CushionFactorChanged(cushionFactor);

524 }

[L-07]) KERNEL: MISPLACED ZERO ADDRESS CHECK FOR CHANGEKERNEL

e https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/Kernel.sol#L76-L78

« https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/Kernel.sol#L.254-L.257

https://codedrena.com/reports/2022-08-olympus/ 64/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/BondCallback.sol#L38-L45
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L92-L150
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L516-L524
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/Kernel.sol#L76-L78
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/Kernel.sol#L254-L257

27/10/2022, 23:03 Olympus DAO contest — Code 423n4
Currently, the check for the to be a contract (also not to be the zero address), is in the
current implementation. However, no modules and policies have the logic to ensure this as
they inherit from [KernelAdapter] which will just set the new kernel without a question. This will

work well as long as the new Kernel has the similar logic to check the next Kernel's integrity.
However, if the logic is forgotten, there is no other safe guard to ensure that the next kernel is not a
zero address and is a contract. Since is absolutely needed for this system'’s functionality,
there is no possible case that the Kernel should be the zero address. Therefore, it is probably safe to
add the checking logic to the [KernelAdapter] so every module and policy will check for the next

Kernel. It costs more gas since the check is done multiple times, but still arguably it is worth the
cost, since Kernel is core part of the system and it will not updated very often.

// KernelAdapter::changeKernel

76 function changeKernel (Kernel newKernel) external onlyKernel ({
77 kernel = newKernel_;
78 }

// Kernel::executeAction

254 } else if (action == Actions.MigrateKernel) {
255 ensureContract(target_);

256 _migrateKernel (Kernel(target));

257 }

[L-08] BONDCALLBACK, OPERATOR: UPON MODULE’S UPGRADE, THE
TOKEN APPROVAL SHOULD BE REVOKED

e https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/BondCallback.sol#L5

« https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L167

The [Bondcallback | and approves ohm to the module in the
[configureDependencies] However, there is no logic to revoke those approvals (e.i. approve to zero).

In the case of the has some bugs, it may be desirable to be able to revoke the approvals.

// Operator::configureDependencies
167 ohm.safeApprove (address (MINTR), type(uint256).max);

https://codedrena.com/reports/2022-08-olympus/ 65/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/BondCallback.sol#L57
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L167

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

[L-09] HEART: IF THE ISSUEREWARD FAILS THE HEART BEAT WILL
REVERT

¢ https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Heart.sol#L106

If the | _issuereward | reverts, for example, because the token balance is too low, the will as
well revert, due to the [safeTransfer] One might consider not to revert even in the case the

[_issueReward] reverts.

[N-01] KERNEL: MISSING ZERO ADDRESS CHECK FOR EXECUTOR AND
ADMIN

e https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/Kernel.sol#L250-L253

The and are not checked for the zero address when set by the

[Kernel: :executeAction]

// Kernel::executeAction

250 } else if (action_ == Actions.ChangeExecutor) {
251 executor = target ;

252 } else if (action == Actions.ChangeAdmin) {
253 admin = target_;

[N-02] INSTR, GOVERNANCE: UPON MODULE'S UPGRADE, ALL
INSTRUCTION DATA SHOULD BE CARRIED OVER TO THE NEW MODULES

e https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L167

o https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L18%

The (Governance J's logic will break if the module is upgraded to a new contract without
having the same instructions data, since the 's the is using are bound to
the module.

https://codedrena.com/reports/2022-08-olympus/ 66/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Heart.sol#L106
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/Kernel.sol#L250-L253
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L167
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L187

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

[N-03] RANGE, PRICE: UNUSED IMPORT OF FULLMATH

¢ https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/RANGE.sol#L.18

« https://github.com/code-423n4/2022-08-
olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/PRICE.sol#L23

The modules | rance | and | przce | imports [Fullmath |, but it is not used.

// modules/PRICE.sol
22 contract OlympusPrice is Module {
23 using FullMath for uint256;

[N-04] PRICE: STALE PRICE

There is no indicator whether the price information is up-to-date. If the price information is not
properly updated, the other contracts will keep using the data resulting in incorrect prices for swap.

Gas Optimizations

For this contest, 91 reports were submitted by wardens detailing gas optimizations. The report
highlighted below by pfapostol received the top score from the judge.

The following wardens also submitted reports: OxSmartContract, 0x1f8b, LeoS, Tomo, OxNazgul,
m_Rassska, Aymen0909, ReyAdmirado, gogo, llllllI, ret2basic, c3phas, ajtra, JC, __141345__, TomJ,
ignacio, Deivitto, grGred, Rolezn, Oxkatana, SmArty, brgltd, oyc_109, robee, 0x040, Bnke0x0,
exolorkistis, ladboy233, durianSausage, erictee, martin, carlitox477, zishansami, Rohan16, rbserver,
Dionysus, tnevler, GalloDaSballo, StevenL, fatherOfBlocks, Certoralnc, chObu, jag, EIKu, lukris02,
OxDjango, medikko, Noah306, Saintcode_, CodingNameKiki, Ruhum, chrisdior4, Amithuddar, cccz,
bobirichman, cRat1st0s, Guardian, 0x85102, Shishigami, Metatron, RaymondFam, OxNineDec, Waze,
RoiEvenHaim, Chandr, apostle0x01, Funen, d3e4, natzuu, aviggiano, djxploit, peiw, JansenC, karanctf,
kris, simon135, Tagir2003, Diraco, delfin454000, SooYa, rokinot, ne0n, rvierdiiev, The_GUILD,
newfork01, Jeiwan, sikorico, Fitraldys, and hyh.

SUMMARY

https://codedrena.com/reports/2022-08-olympus/ 67/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/RANGE.sol#L18
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/PRICE.sol#L23
https://github.com/code-423n4/2022-08-olympus-findings/issues/39
https://github.com/code-423n4/2022-08-olympus-findings/issues/249
https://github.com/code-423n4/2022-08-olympus-findings/issues/135
https://github.com/code-423n4/2022-08-olympus-findings/issues/46
https://github.com/code-423n4/2022-08-olympus-findings/issues/146
https://github.com/code-423n4/2022-08-olympus-findings/issues/438
https://github.com/code-423n4/2022-08-olympus-findings/issues/471
https://github.com/code-423n4/2022-08-olympus-findings/issues/453
https://github.com/code-423n4/2022-08-olympus-findings/issues/44
https://github.com/code-423n4/2022-08-olympus-findings/issues/156
https://github.com/code-423n4/2022-08-olympus-findings/issues/269
https://github.com/code-423n4/2022-08-olympus-findings/issues/324
https://github.com/code-423n4/2022-08-olympus-findings/issues/449
https://github.com/code-423n4/2022-08-olympus-findings/issues/437
https://github.com/code-423n4/2022-08-olympus-findings/issues/498
https://github.com/code-423n4/2022-08-olympus-findings/issues/263
https://github.com/code-423n4/2022-08-olympus-findings/issues/296
https://github.com/code-423n4/2022-08-olympus-findings/issues/167
https://github.com/code-423n4/2022-08-olympus-findings/issues/462
https://github.com/code-423n4/2022-08-olympus-findings/issues/140
https://github.com/code-423n4/2022-08-olympus-findings/issues/196
https://github.com/code-423n4/2022-08-olympus-findings/issues/4
https://github.com/code-423n4/2022-08-olympus-findings/issues/232
https://github.com/code-423n4/2022-08-olympus-findings/issues/501
https://github.com/code-423n4/2022-08-olympus-findings/issues/6
https://github.com/code-423n4/2022-08-olympus-findings/issues/16
https://github.com/code-423n4/2022-08-olympus-findings/issues/319
https://github.com/code-423n4/2022-08-olympus-findings/issues/19
https://github.com/code-423n4/2022-08-olympus-findings/issues/312
https://github.com/code-423n4/2022-08-olympus-findings/issues/60
https://github.com/code-423n4/2022-08-olympus-findings/issues/29
https://github.com/code-423n4/2022-08-olympus-findings/issues/5
https://github.com/code-423n4/2022-08-olympus-findings/issues/190
https://github.com/code-423n4/2022-08-olympus-findings/issues/128
https://github.com/code-423n4/2022-08-olympus-findings/issues/96
https://github.com/code-423n4/2022-08-olympus-findings/issues/361
https://github.com/code-423n4/2022-08-olympus-findings/issues/491
https://github.com/code-423n4/2022-08-olympus-findings/issues/59
https://github.com/code-423n4/2022-08-olympus-findings/issues/385
https://github.com/code-423n4/2022-08-olympus-findings/issues/377
https://github.com/code-423n4/2022-08-olympus-findings/issues/432
https://github.com/code-423n4/2022-08-olympus-findings/issues/21
https://github.com/code-423n4/2022-08-olympus-findings/issues/237
https://github.com/code-423n4/2022-08-olympus-findings/issues/58
https://github.com/code-423n4/2022-08-olympus-findings/issues/119
https://github.com/code-423n4/2022-08-olympus-findings/issues/133
https://github.com/code-423n4/2022-08-olympus-findings/issues/354
https://github.com/code-423n4/2022-08-olympus-findings/issues/218
https://github.com/code-423n4/2022-08-olympus-findings/issues/481
https://github.com/code-423n4/2022-08-olympus-findings/issues/24
https://github.com/code-423n4/2022-08-olympus-findings/issues/147
https://github.com/code-423n4/2022-08-olympus-findings/issues/241
https://github.com/code-423n4/2022-08-olympus-findings/issues/139
https://github.com/code-423n4/2022-08-olympus-findings/issues/291
https://github.com/code-423n4/2022-08-olympus-findings/issues/398
https://github.com/code-423n4/2022-08-olympus-findings/issues/251
https://github.com/code-423n4/2022-08-olympus-findings/issues/164
https://github.com/code-423n4/2022-08-olympus-findings/issues/48
https://github.com/code-423n4/2022-08-olympus-findings/issues/182
https://github.com/code-423n4/2022-08-olympus-findings/issues/289
https://github.com/code-423n4/2022-08-olympus-findings/issues/174
https://github.com/code-423n4/2022-08-olympus-findings/issues/145
https://github.com/code-423n4/2022-08-olympus-findings/issues/181
https://github.com/code-423n4/2022-08-olympus-findings/issues/108
https://github.com/code-423n4/2022-08-olympus-findings/issues/306
https://github.com/code-423n4/2022-08-olympus-findings/issues/10
https://github.com/code-423n4/2022-08-olympus-findings/issues/294
https://github.com/code-423n4/2022-08-olympus-findings/issues/459
https://github.com/code-423n4/2022-08-olympus-findings/issues/435
https://github.com/code-423n4/2022-08-olympus-findings/issues/478
https://github.com/code-423n4/2022-08-olympus-findings/issues/480
https://github.com/code-423n4/2022-08-olympus-findings/issues/31
https://github.com/code-423n4/2022-08-olympus-findings/issues/68
https://github.com/code-423n4/2022-08-olympus-findings/issues/417
https://github.com/code-423n4/2022-08-olympus-findings/issues/230
https://github.com/code-423n4/2022-08-olympus-findings/issues/310
https://github.com/code-423n4/2022-08-olympus-findings/issues/330
https://github.com/code-423n4/2022-08-olympus-findings/issues/41
https://github.com/code-423n4/2022-08-olympus-findings/issues/158
https://github.com/code-423n4/2022-08-olympus-findings/issues/443
https://github.com/code-423n4/2022-08-olympus-findings/issues/359
https://github.com/code-423n4/2022-08-olympus-findings/issues/401
https://github.com/code-423n4/2022-08-olympus-findings/issues/455
https://github.com/code-423n4/2022-08-olympus-findings/issues/73
https://github.com/code-423n4/2022-08-olympus-findings/issues/152
https://github.com/code-423n4/2022-08-olympus-findings/issues/323
https://github.com/code-423n4/2022-08-olympus-findings/issues/3
https://github.com/code-423n4/2022-08-olympus-findings/issues/26
https://github.com/code-423n4/2022-08-olympus-findings/issues/161
https://github.com/code-423n4/2022-08-olympus-findings/issues/456
https://github.com/code-423n4/2022-08-olympus-findings/issues/488

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

Gas savings are estimated using the gas report of existing [FORGE_GAS REPORT=true forge test]

tests (the sum of all deployment costs and the sum of the costs of calling all methods) and may
vary depending on the implementation of the fix. | keep my version of the fix for each finding and can
provide them if you need.

Some optimizations (mostly logical) cannot be scored with a exact gas quantity.

. Estimated
Estimated
Issue Instances gas(method
gas(deployments)
call)
G 01 Replace with 6 460 154 -
pointer to a structure is cheaper than copying each value of
G-02 . - 7 188 639 5032
the structure into , same for { array] and (mapping |
G-03 Using rather than for constants, saves gas 8 45 857 308
G-04 Use elementary types or a user-defined instead of a i 30714 1037
that has only one member
G-05 State.: variables should be cached in stack variables rather than re- 7 24021 614
reading them from storage
G-06 Using bools for storage incurs overhead 6 23 611 4 485
G-07 State variables can be packed into fewer storage slots 3 23292 1711
G-08 Expressions that cannot be overflowed can be unchecked 5 23016 -
G-09 Increment optimization 18 ! !
G-09 1 Pfehx 1n<j‘rements are cheaper than postfix increments, especially when 3 400 .
it’s used in for-loops
G 092 [<x> = <x> + 1] even more efficient than pre increment 18 14217 B
G-10 Use named for local variables where it is possible 3 5400 -
G-11 is cheaper than 6 5 000 -
G-12 Deleting a struct is cheaper than creating a new struct with null values. 1 4207 -
G-13 Don’t compare boolean expressions to boolean literals 2 1 607 -
G 14 operator should be in the code as early as reasonably 3 200 1 550+
possible
G Duplicated require()/revert() checks should be refactored to a modifier 4 2 111

or function

Total: 83 instances over 15 issues

[G-01] REPLACE mopIFIER WITH runction (6 INSTANCES)

Modifiers make code more elegant, but cost more than normal functions.

Deployment Gas Saved: 460 154

All modifiers except [permissioned] due to unresolved error flow.

e src/Kernel.sol:70-73, 119-123, 223-232

70

modifier onlyKernel() {

https://codedrena.com/reports/2022-08-olympus/ 68/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/Kernel.sol#L70-L73
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/Kernel.sol#L119-L123
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/Kernel.sol#L223-L232

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

71 if (msg.sender != address(kernel)) revert KernelAdapter OnlyKernel(msg.sendei
72 o
73 }

119 modifier onlyRole(bytes32 role) {

120 Role role = toRole(role);

121 if (!kernel.hasRole(msg.sender, role)) revert Policy OnlyRole(role);
122 o

123 }

223 modifier onlyExecutor() {

224 if (msg.sender != executor) revert Kernel OnlyExecutor(msg.sender);
225 i

226 }

227

228 /// @notice Modifier to check if caller is the roles admin.

229 modifier onlyAdmin() {

230 if (msg.sender != admin) revert Kernel OnlyAdmin(msg.sender);

231 .

232 }

e src/policies/Operator.sol:188-191

188 modifier onlyWhileActive() {

189 if (lactive) revert Operator Inactive();
190 7

191 }

e src/modules/PRICE.sol

if (!initialized) revert Price NotInitialized(); // @note 4 instances

[G-02] sTorage POINTER TO A STRUCTURE IS CHEAPER THAN
COPYING EACH VALUE OF THE STRUCTURE INTO wmemory, SAME FOR
ARRAY AND mappIne (7 INSTANCES)

Deployment Gas Saved: 188 639
Method Call Gas Saved: 5 032

It may not be obvious, but every time you copy a storage [struct]/[array |/[mapping | t0 @ [memory |
variable, you are literally copying each member by reading it from [storage), which is expensive. And

https://codedrena.com/reports/2022-08-olympus/ 69/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L188-L191
https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/PRICE.sol

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

when you use the keyword, you are just storing a pointer to the storage, which is much

cheaper.

e src/Kernel.sol:379

379 Policy[] memory dependents = moduleDependents[keycode];

fix(the same for others):

Policy[] storage dependents = moduleDependents[keycode];

e src/policies/BondCallback.sol:179

179 uint256[2] memory marketAmounts = _amountsPerMarket[id];

e src/policies/Governance.sol:206

206 ProposalMetadata memory proposal = getProposalMetadata[proposalld];

e src/policies/Operator.sol:205-206, 384-385, 439-440, 666

205 /// Cache config in memory

206 Config memory config = _config;

384 /// Cache config struct to avoid multiple SLOADs
385 Config memory config = _config;

439 /// Cache config struct to avoid multiple SLOADs
440 Config memory config = _config;

666 Regen memory regen = _status.low;

https://codedrena.com/reports/2022-08-olympus/

70/87

https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/Kernel.sol#L379
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/BondCallback.sol#L179
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L206
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Operator.sol#L205-L206
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Operator.sol#L384-L385
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Operator.sol#L439-L440
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Operator.sol#L666

27/10/2022, 23:03 Olympus DAO contest — Code 423n4
[G-03]) USING PRIVATE RATHER THAN puLIC FOR CONSTANTS, SAVES
GAS (8 INSTANCES)

If needed, the value can be read from the verified contract source code. Savings are due to the
compiler not having to create non-payable getter functions for deployment calldata, and not adding
another entry to the method ID table

Deployment Gas Saved: 45 857
Method Call Gas Saved: 308

e src/policies/Governance.sol:119-137

119 /// @notice The amount of votes a proposer needs in order to submit a proposal as
120 /// @dev This is set to 1% of the total supply.

121 uint256 public constant SUBMISSION_REQUIREMENT = 100;

122

123 /// @notice Amount of time a submitted proposal has to activate before it expires
124 uint256 public constant ACTIVATION DEADLINE = 2 weeks;

125

126 /// @notice Amount of time an activated proposal must stay up before it can be re
127 uint256 public constant GRACE_PERIOD = 1 weeks;

128

129 /// @notice Endorsements required to activate a proposal as percentage of total ¢
130 uint256 public constant ENDORSEMENT THRESHOLD = 20;

131

132 /// @notice Net votes required to execute a proposal on chain as a percentage of
133 uint256 public constant EXECUTION_THRESHOLD = 33;

134

135 /// @notice Required time for a proposal to be active before it can be executed.
136 /// @dev This amount should be greater than 0 to prevent flash loan attacks.
137 uint256 public constant EXECUTION_ TIMELOCK = 3 days;

e src/policies/Operator.sol:89

89 uint32 public constant FACTOR_SCALE = le4;

e src/modules/RANGE.sol:65

65 uint256 public constant FACTOR_SCALE = le4;

https://codedrena.com/reports/2022-08-olympus/ 71/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L119-L137
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L89
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/RANGE.sol#L65

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

[G-04] USE ELEMENTARY TYPES OR A USER-DEFINED T1vPE INSTEAD
OF A sTRucT THAT HAS ONLY ONE MEMBER (1 INSTANCES)

Deployment Gas Saved: 30 714
Method Call Gas Saved: 1 037

e src/modules/RANGE.sol:33-35

33 struct Line {
34 uint256 price; // Price for the specified level
35 }

[G-05] STATE VARIABLES SHOULD BE CACHED IN STACK VARIABLES
RATHER THAN RE-READING THEM FROM STORAGE

Deployment Gas Saved: 24 021
Method Call Gas Saved: 614

SLOADs are expensive (100 gas after the 1st one) compared to MLOADs/MSTOREs (3 gas each).
Storage values read multiple times should instead be cached in memory the first time (costing 1
SLOAD) and then read from this cache to avoid multiple SLOADs.

e src/policies/Heart.sol:112-113

112 rewardToken.safeTransfer(to , reward);
113 emit RewardIssued(to_, reward);

fix:

uint256 reward = reward;
rewardToken.safeTransfer(to_, reward);
emit RewardIssued(to , reward);

¢ src/policies/BondCallback.sol:68-75

https://codedrena.com/reports/2022-08-olympus/

72/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/RANGE.sol#L33-L35
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Heart.sol#L112-L113
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/BondCallback.sol#L68-L75

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

68 Keycode TRSRY KEYCODE = TRSRY.KEYCODE();

69 Keycode MINTR KEYCODE = MINTR.KEYCODE();

70

71 requests = new Permissions[](4);

72 requests[0] = Permissions(TRSRY KEYCODE, TRSRY.setApprovalFor.selector);
73 requests[1l] = Permissions(TRSRY KEYCODE, TRSRY.withdrawReserves.selector);
74 requests[2] = Permissions(MINTR KEYCODE, MINTR.mintOhm.selector);

75 requests[3] = Permissions(MINTR KEYCODE, MINTR.burnOhm.selector);

fix(similar for other policies):

OlympusTreasury ltrsry = TRSRY;
OlympusMinter lmintr = MINTR;

Keycode TRSRY KEYCODE = ltrsry.KEYCODE();
Keycode MINTR KEYCODE Imintr.KEYCODE();

requests = new Permissions[](4);

requests[0] Permissions (TRSRY KEYCODE, ltrsry.setApprovalFor.selector);

requests[1l]
requests[2]

Permissions (TRSRY KEYCODE, ltrsry.withdrawReserves.selector);
Permissions (MINTR KEYCODE, lmintr.mintOhm.selector);
requests[3] = Permissions(MINTR _KEYCODE, lmintr.burnOhm.selector);

e src/policies/Governance.sol:77-79

77 requests = new Permissions[](2);
Permissions (INSTR.KEYCODE(), INSTR.store.selector);
Permissions (VOTES.KEYCODE(), VOTES.transferFrom.selector);

78 requests[0]

79 requests[1l]

e src/policies/Operator.sol:172-185

172 Keycode RANGE KEYCODE = RANGE.KEYCODE();

173 Keycode TRSRY KEYCODE = TRSRY.KEYCODE();

174 Keycode MINTR _KEYCODE = MINTR.KEYCODE();

175

176 requests = new Permissions[](9);

177 requests[0] = Permissions(RANGE_KEYCODE, RANGE.updateCapacity.selector);
178 requests[l] = Permissions(RANGE KEYCODE, RANGE.updateMarket.selector);
179 requests[2] = Permissions(RANGE KEYCODE, RANGE.updatePrices.selector);
180 requests[3] = Permissions(RANGE_KEYCODE, RANGE.regenerate.selector);

181 requests[4] = Permissions(RANGE_KEYCODE, RANGE.setSpreads.selector);

182 requests[5] = Permissions(RANGE KEYCODE, RANGE.setThresholdFactor.selector);
183 requests[6] = Permissions(TRSRY KEYCODE, TRSRY.setApprovalFor.selector);
184 requests[7] = Permissions(MINTR _KEYCODE, MINTR.mintOhm.selector);

185 requests[8] = Permissions(MINTR KEYCODE, MINTR.burnOhm.selector);

https://codedrena.com/reports/2022-08-olympus/ 73/87

https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L77-L79
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Operator.sol#L172-L185

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

e src/policies/PriceConfig.sol:32-34

32 permissions[0] = Permissions(PRICE.KEYCODE(), PRICE.initialize.selector);
Permissions (PRICE.KEYCODE(), PRICE.changeMovingAverageDuratic

33 permissions[1l]
34 permissions[2] = Permissions(PRICE.KEYCODE(), PRICE.changeObservationFrequency

e src/policies/TreasuryCustodian.sol:35-39

35 Keycode TRSRY KEYCODE = TRSRY.KEYCODE();

36

37 requests = new Permissions[](2);

38 requests[0] = Permissions(TRSRY KEYCODE, TRSRY.setApprovalFor.selector);
39 requests[l] = Permissions(TRSRY KEYCODE, TRSRY.setDebt.selector);

o src/policies/VoterRegistration.sol:33-35

33 permissions = new Permissions[](2);
34 permissions[0] = Permissions(VOTES.KEYCODE(), VOTES.mintTo.selector);
35 permissions[1l] = Permissions(VOTES.KEYCODE(), VOTES.burnFrom.selector);

[G-06] USING BOOLS FOR STORAGE INCURS OVERHEAD (6
INSTANCES)

Deployment Gas Saved: 23 611
Method Call Gas Saved: 4 485

// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and

// pointer aliasing, and it cannot be disabled.

https://codedrena.com/reports/2022-08-olympus/

74/87

https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/PriceConfig.sol#L32-L34
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/TreasuryCustodian.sol#L35-L39
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/VoterRegistration.sol#L34-L35

27/10/2022, 23:03

Olympus DAO contest — Code 423n4

Use uint256(1) and uint256(2) for true/false to avoid a Gwarmaccess (100 gas) for the extra SLOAD,
and to avoid Gsset (20000 gas) when changing from ‘false’ to ‘true’, after having been ‘true’ in the

past.

Important: This rule doesn’t always work, sometimes a bool is packed with another variable in the
same slot, sometimes it's packed into a struct, sometimes the optimizer makes bool more efficient.
You can see the @note in the code for each case.

e src/Kernel.sol:181, 194, 197

181 mapping(Keycode
194 mapping(address

197 mapping(Role =>

=> mapping(Policy => mapping(bytes4 => bool))) public modulePerm:

=> mapping(Role => bool)) public hasRole; //@note D:-3016 M:2298

bool) public isRole; //@note D:2407

e src/policies/Governance.sol:105, 117,

105 mapping(uint256

117 mapping(uint256

=> bool) public proposalHasBeenActivated; //@note D:3007

=> mapping(address => bool)) public tokenClaimsForProposal; //@nc

e src/modules/PRICE.sol:62

62 bool public initialized; //@note D:11813

Expensive method calls:

It's just to show which bool is better left in the code

¢ src/policies/Operator.sol

63 bool public initialized; //@note D:5808 M:-22036

66 bool public active; //@note D:-32775 M:-48896

e src/policies/Heart.sol

https://codedrena.com/reports/2022-08-olympus/

75/87

https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/Kernel.sol#L181
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/Kernel.sol#L194
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/Kernel.sol#L197
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L105
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L117
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/PRICE.sol#L62

27/10/2022, 23:03

33

Olympus DAO contest — Code 423n4

bool public active; //@note D:-382

e src/policies/BondCallback.sol

24

mapping(address => mapping(uint256 => bool)) public approvedMarkets;

e src/Kernel.sol

113

bool public isActive; //@note D:20923 M:-247184

//@note D:-¢

[G-07]) STATE VARIABLES CAN BE PACKED INTO FEWER STORAGE
SLOTS (3 INSTANCES)

If variables occupying the same slot are both written the same function or by the constructor, avoids
a separate Gsset (20000 gas). Reads of the variables can also be cheaper.

NOTE: one slot = 32 bytes

Deployment Gas Saved: 23 292
Method Call Gas Saved: 1 711

e src/policies/Heart.sol:32-48

uint256(32), address(20), bool(1)

32
33
34
35
36
37
38
39
40
41
42
43
44

/// @notice Status of the Heart, false = stopped, true = beating
bool public active; // @note put below _operator

/// @notice Timestamp of the last beat (UTC, in seconds)
uint256 public lastBeat;

/// @notice Reward for beating the Heart (in reward token decimals)
uint256 public reward;

/// @notice Reward token address that users are sent for beating the Heart

ERC20 public rewardToken;

// Modules

https://codedrena.com/reports/2022-08-olympus/

76/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Heart.sol#L32-L48

27/10/2022,23:03 Olympus DAO contest — Code 423n4

45 OlympusPrice internal PRICE;
46

47 // Policies

48 IOperator internal operator;

uint256 public lastBeat;
uint256 public reward;

ERC20 public rewardToken;
OlympusPrice internal PRICE;
IOperator internal _operator;
bool public active;

31-65

NOTE

inherit Kernel public kernel;

31 /// @dev Price feeds. Chainlink typically provides price feeds for an asset ir
32 AggregatorV2vV3Interface internal immutable ohmEthPriceFeed;

33 AggregatorV2vV3Interface internal immutable _reserveEthPriceFeed;

34

35 /// @dev Moving average data

36 uint256 internal movingAverage; /// See getMovingAverage()

37

38 /// @notice Array of price observations. Check nextObsIndex to determine latest ¢
39 /// @dev Observations are stored in a ring buffer where the moving average is
40 /77 Observations can be cleared by changing the movingAverageDuration or
41 uint256[] public observations;

42

43 /// @notice Index of the next observation to make. The current value at this inde
44 uint32 public nextObsIndex;

45

46 /// @notice Number of observations used in the moving average calculation. Comput
47 uint32 public numObservations;

48

49 /// @notice Frequency (in seconds) that observations should be stored.

50 uint48 public observationFrequency;

51

52 /// @notice Duration (in seconds) over which the moving average is calculated.

53 uint48 public movingAverageDuration;

54

55 /// @notice Unix timestamp of last observation (in seconds).

56 uint48 public lastObservationTime;

57

58 /// @notice Number of decimals in the price values provided by the contract.

https://code4rena.com/reports/2022-08-olympus/ 77/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/PRICE.sol#L31-L65

27/10/2022, 23:03
59
60
61
62
63
64
65

Olympus DAO contest — Code 423n4

uint8 public constant decimals = 18;

/// @notice Whether the price module is initialized (and therefore active).
bool public initialized;

// Scale factor for converting prices, calculated from decimal values.
uint256 internal immutable _scaleFactor;

uint48 public observationFrequency;

uint48 public movingAverageDuration;

AggregatorV2vV3Interface internal immutable ohmEthPriceFeed;

AggregatorV2v3Interface internal immutable _reserveEthPriceFeed;

uint256 internal movingAverage; /// See getMovingAverage()

uint256[] public observations;

uint32 public nextObsIndex;

uint32 public numObservations;

uint48 public lastObservationTime;

uint8 public constant decimals = 18;

bool public initialized;

uint256 internal immutable _scaleFactor;

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

58-89

/// Operator variables, defined in the interface on the external getter functions
Status internal _status;
Config internal _config;

/// @notice Whether the Operator has been initialized
bool public initialized;

/// @notice Whether the Operator is active
bool public active;

/// Modules

OlympusPrice internal PRICE;
OlympusRange internal RANGE;
OlympusTreasury internal TRSRY;
OlympusMinter internal MINTR;

/// External contracts

/// @notice Auctioneer contract used for cushion bond market deployments
IBondAuctioneer public auctioneer;

/// @notice Callback contract used for cushion bond market payouts
IBondCallback public callback;

/// Tokens
/// @notice OHM token contract

https://code4rena.com/reports/2022-08-olympus/ 78/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Operator.sol#L58-L89

27/10/2022, 23:03

Olympus DAO contest — Code 423n4

82 ERC20 public immutable ohm;

83 uint8 public immutable ohmDecimals;

84 /// @notice Reserve token contract

85 ERC20 public immutable reserve;

86 uint8 public immutable reserveDecimals;

87

88 /// Constants

89 uint32 public constant FACTOR_SCALE = le4;

fix:

Status internal status;

Config internal config;

OlympusPrice internal PRICE;

OlympusRange internal RANGE;

OlympusTreasury internal TRSRY;

OlympusMinter internal MINTR;

IBondAuctioneer public auctioneer;
IBondCallback public callback;
bool public initialized;

bool public active;

ERC20 public
uint8 public
ERC20 public
uint8 public

immutable
immutable
immutable
immutable

uint32 public constant

ohm;

ohmDecimals;
reserve;
reserveDecimals;
FACTOR_SCALE = le4;

[G-08] EXPRESSIONS THAT CANNOT BE OVERFLOWED CAN BE
UNCHECKED (5 INSTANCES)

Deployment Gas Saved: 23 016

e src/Kernel.sol:299-300, 309-310

299 activePolicies.push(policy);
300 getPolicyIndex[policy] = activePolicies.length - 1; // @note cannot be overi
309 moduleDependents[keycode].push(policy);

310

getDependentIndex[keycode][policy] = moduleDependents[keycode].length -

e src/modules/PRICE.sol:89, 144, 171

https://codedrena.com/reports/2022-08-olympus/

79/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/Kernel.sol#L299-L300
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/Kernel.sol#L309-L310
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/PRICE.sol#L89
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/PRICE.sol#L144
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/modules/PRICE.sol#L171

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

89 uint256 exponent = decimals + reserveEthDecimals - ohmEthDecimals; //@note ox
144 nextObsIndex = (nextObsIndex + 1) % numObs; //@note numObs can not be equal (
171 if (updatedAt < block.timestamp - uint256(observationFrequency)) // @note

[G-09] INCREMENT OPTIMIZATION (18 INSTANCES)

For a uint256 i variable, the following is true with the Optimizer enabled at 10k:
Increment:

i += 1 is the most expensive form
i++ costs 6 gas less thani += 1
++i costs 5 gas less than i++ (11 gas less than i += 1)

Decrement:

i -= 1 is the most expensive form
i— costs 11 gas less than i -=
—i costs 5 gas less than i— (16 gas less thani-= 1)

[6G-09.1] Prefix increments are cheaper than postfix increments,
especially when it’s used in for-loops (3 instances).

Deployment Gas Saved: 400

e src/utils/KernelUtils.sol:49, 64

49 i++;

64 it+;

e src/policies/Operator.sol:488

NOTE: in case of 670 675 686 691 not applicable and gas will be lost

488 decimals++;

https://codedrena.com/reports/2022-08-olympus/ 80/87

https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/utils/KernelUtils.sol#L49
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/utils/KernelUtils.sol#L64
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Operator.sol#L488

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

[G-09.2] [<x> = <x> + 1] even more efficient than pre increment. (18
instances)

Deployment Gas Saved: 14 217

e src/utils/KernelUtils.sol:49, 64

49 it++;

64 i++;

e src/policies/Operator.sol:488, 670, 675, 686, 691

o *
488 decimals++;
é;é _status.low.count++;
é;; _status.low.count--;
ééé _status.high.count++;
ééi _status.high.count--;

e src/Kernel.sol:313, 357, 369, 386, 404, 429

313 ++1i;
357 w4ig
369 ey
;éé ++1;
;64 ++i;
éé; ++1i;

e src/modules/INSTR.sol:72

72 ++1;

https://codedrena.com/reports/2022-08-olympus/ 81/87

https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/utils/KernelUtils.sol#L49
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/utils/KernelUtils.sol#L64
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Operator.sol#L488
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Operator.sol#L670
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Operator.sol#L675
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Operator.sol#L686
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Operator.sol#L691
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/Kernel.sol#L313
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/Kernel.sol#L357
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/Kernel.sol#L369
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/Kernel.sol#L386
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/Kernel.sol#L404
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/Kernel.sol#L429
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/INSTR.sol#L72

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

e src/modules/PRICE.sol:225

225 ++i;

e src/policies/BondCallback.sol:163

163 ++1;

e src/policies/Governance.sol:281

281 ++step;

o src/policies/TreasuryCustodian.sol:62

62 ++5;

[G-10] USE NAMED RETURNS FOR LOCAL VARIABLES WHERE IT IS
POSSIBLE (3 INSTANCES)

Deployment Gas Saved: 5 400

e src/Kernel.sol:130-135

130 /// @notice Function to grab module address from a given keycode.

131 function getModuleAddress(Keycode keycode) internal view returns (address) {
132 address moduleForKeycode = address(kernel.getModuleForKeycode(keycode));

133 if (moduleForKeycode == address(0)) revert Policy ModuleDoesNotExist (keycode_
134 return moduleForKeycode;

135 }

https://codedrena.com/reports/2022-08-olympus/ 82/87

https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/PRICE.sol#L225
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/BondCallback.sol#L163
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L281
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/TreasuryCustodian.sol#L62
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/Kernel.sol#L130-L135

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

fix:

function getModuleAddress(Keycode keycode) internal view returns (address moduleFo:
moduleForKeycode = address(kernel.getModuleForKeycode (keycode));
if (moduleForKeycode == address(0)) revert Policy ModuleDoesNotExist (keycode);

e src/modules/INSTR.sol:41-79

41 /// @notice Store a list of Instructions to be executed in the future.

42 function store(Instruction[] calldata instructions) external permissioned returns
43 uint256 length = instructions_.length;

44 uint256 instructionsId = ++totallInstructions;

45

46 Instruction[] storage instructions = storedInstructions[instructionsId];

76 emit InstructionsStored(instructionsId);

77

78 return instructionsId;

79 }

e src/modules/PRICE.sol:153-180

153 /// @notice Get the current price of OHM in the Reserve asset from the price feec
154 function getCurrentPrice() public view returns (uint256) {

177 uint256 currentPrice = (ohmEthPrice * scaleFactor) / reserveEthPrice;

178

179 return currentPrice;

180 }

[6-11] % = x + v IS CHEAPER THAN x += v; (6 INSTANCES)

Deployment Gas Saved: 5 000
Usually does not work with struct and mappings.

e src/modules/PRICE.sol:136, 138, 222

https://codedrena.com/reports/2022-08-olympus/ 83/87

https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/INSTR.sol#L41-L79
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/PRICE.sol#L153-L180
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/PRICE.sol#L136
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/PRICE.sol#L138
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/PRICE.sol#L222

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

136 _movingAverage += (currentPrice - earliestPrice) / numObs;
138 _movingAverage -= (earliestPrice - currentPrice) / numObs;
222 total += startObservations [i];

e src/modules/VOTES.sol:56, 58

56 balanceOf[from] -= amount_;

58 balanceOf[to] += amount ;

e src/policies/Heart.sol:103

103 lastBeat += frequency();

[G-12] DELETING A STRUCT IS CHEAPER THAN CREATING A NEW
STRUCT WITH NULL VALUES. (1 INSTANCES)

Deployment Gas Saved: 4 207
Method Call Gas Saved: 40

e src/policies/Governance.sol:288

288 activeProposal = ActivatedProposal(0, 0);

fix:

delete activeProposal;

https://codedrena.com/reports/2022-08-olympus/ 84/87

https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/VOTES.sol#L56
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/VOTES.sol#L58
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Heart.sol#L103
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L288

27/10/2022, 23:03 Olympus DAO contest — Code 423n4
[G-13]) DON’T COMPARE BOOLEAN EXPRESSIONS TO BOOLEAN
LITERALS (2 INSTANCES)

Deployment Gas Saved: 1 607

e src/policies/Governance.sol:223, 306

223 if (proposalHasBeenActivated[proposalld] == true) {

306 if (tokenClaimsForProposal[proposalIld][msg.sender] == true) ({

[G-14] ReverT OPERATOR SHOULD BE IN THE CODE AS EARLY AS
REASONABLY POSSIBLE (3 INSTANCES)

Deployment Gas Saved: 200
Method Call Gas Saved: 1 559+

e src/modules/INSTR.sol:43-48

43 uint256 length = instructions .length;

44 uint256 instructionsId = ++totalInstructions;

45

46 Instruction[] storage instructions = storedInstructions[instructionsId];

47

48 if (length == 0) revert INSTR InstructionsCannotBeEmpty(); // @note after 43

e src/policies/Governance.sol:180-191, 241-249

180 function endorseProposal(uint256 proposalId) external {

181 uint256 userVotes = VOTES.balanceOf (msg.sender); // @note put after revert
182

183 if (proposalld == 0) {

184 revert CannotEndorseNullProposal();

185 }

186

187 Instruction[] memory instructions = INSTR.getInstructions(proposalld);
188 if (instructions.length == 0) {

189 revert CannotEndorseInvalidProposal();

190 }

191

https://codedrena.com/reports/2022-08-olympus/ 85/87

https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L223
https://github.com/code-423n4/2022-08-olympus/blob/b5e139d732eb4c07102f149fb9426d356af617aa/src/policies/Governance.sol#L306
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/modules/INSTR.sol#L43-L48
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L180-L191
https://github.com/code-423n4/2022-08-olympus/blob/2a0b515012b4a40076f6eac487f7816aafb8724a/src/policies/Governance.sol#L241-L249

27/10/2022, 23:03 Olympus DAO contest — Code 423n4

241 uint256 userVotes = VOTES.balanceOf (msg.sender); // @note put after revert
242

243 if (activeProposal.proposalld == 0) {

244 revert NoActiveProposalDetected();

245 }

246

247 if (userVotesForProposal[activeProposal.proposalId][msg.sender] > 0) {

248 revert UserAlreadyVoted();

249 }

[6-15] DUPLICATED REQUIRE()/REVERT() CHECKS SHOULD BE
REFACTORED TO A MODIFIER OR FUNCTION

Method Call Gas Saved: 8 111

e src/modules/PRICE.sol

if (!initialized) revert Price NotInitialized(); // @note 4 instances

OxLienid (Olympus) confirmed

Disclosures

C4 is an open organization governed by participants in the community.

C4 Contests incentivize the discovery of exploits, vulnerabilities, and bugs in smart contracts.
Security researchers are rewarded at an increasing rate for finding higher-risk issues. Contest
submissions are judged by a knowledgeable security researcher and solidity developer and
disclosed to sponsoring developers. C4 does not conduct formal verification regarding the provided
code but instead provides final verification.

C4 does not provide any guarantee or warranty regarding the security of this project. All smart
contract software should be used at the sole risk and responsibility of users.

https://codedrena.com/reports/2022-08-olympus/ 86/87

https://github.com/code-423n4/2022-08-olympus/blob/main/src/modules/PRICE.sol
https://github.com/code-423n4/2022-08-olympus-findings/issues/39

27/10/2022,23:03 Olympus DAO contest — Code 423n4

https://code4rena.com/reports/2022-08-olympus/ 87/87

https://twitter.com/code4rena
https://discord.gg/code4rena
https://github.com/code-423n4/
https://etherscan.io/address/0xC2BC2F890067C511215F9463A064221577A53E10

