
Review Resources:

Bond Protocol Documentation

The repository

Auditors:

Jackson

Invader-tak

yAudit Olympus Emission Manager

Review

Table of Contents

Review Summary1

Scope2

Code Evaluation Matrix3

Findings Explanation4

Critical Findings5

1. Critical - EmissionManager::getSupply() unexpectedly returns the supply in gOHM

denomination

a

High Findings6

Medium Findings7

1. Medium - Current market still active after EmissionManager::shutdown()a

Low Findings8

1. Low - backing can inadvertently be set to 0a

2. Low - Unsafe transfer() and approve() used in ReserveMigratorb

https://dev.bondprotocol.finance/

Olympus Emission Manager

The Olympus Emission Manager is intended to issue new Ohm in exchange for a reserve

token at a given minimum price premium, emission rate, and price. These variables are set by

Ohm controlled addresses, however a mechanism exists to issue more Ohm if a Chainlink

oracle price of the reserve asset is sufficiently above the governance set minimum price

premium.

A Reserve Migrator contract as also included in the review. The intent of this contract is to

migrate DAI from DAI to USDS using a Maker provided conversion contract.

The contracts of the Olympus Emission Manager pull request were reviewed over 5 days. The

code review was performed by 2 auditors between November 4, 2024 and November 9, 2024.

The repository was under active development during the review, but the review was limited to

the latest commit at the start of the review. This was commit

e367e7977ea58a2fd365296d9c9f620c7cd0512d for the OlympusDAO/bophades repo.

The scope of the review consisted of the following contracts at the specific commit:

└── policies

 ├── EmissionManager.sol

 └── ReserveMigrator.sol

3. Low - No upper-bound is enforced for restartTimeframec

Gas Saving Findings9

1. Gas - Unnecessary OHM burn and reserve deposit in EmissionManager::shutdown()a

Informational Findings10

1. Informational - Unused Import in EmissionManagera

2. Informational - Incorrect variable nameb

Final Remarks11

Review Summary

Scope

https://github.com/OlympusDAO/bophades/pull/424
https://github.com/OlympusDAO/bophades/pull/424/commits/e367e7977ea58a2fd365296d9c9f620c7cd0512d

After the findings were presented to the Olympus team, fixes were made and included in

several PRs.

This review is a code review to identify potential vulnerabilities in the code. The reviewers did

not investigate security practices or operational security and assumed that privileged

accounts could be trusted. The reviewers did not evaluate the security of the code relative to

a standard or specification. The review may not have identified all potential attack vectors or

areas of vulnerability.

yAudit and the auditors make no warranties regarding the security of the code and do not

warrant that the code is free from defects. yAudit and the auditors do not represent nor imply

to third parties that the code has been audited nor that the code is free from defects. By

deploying or using the code, Olympus and users of the contracts agree to use the code at

their own risk.

Category Mark Description

Access Control Good All sensitive functions have appropriate access controls

Mathematics Medium

There is frequent decimal conversion mathematics in the

Emission Manager contract making the logic sometimes

difficult to reason about.

Complexity Medium

There are quite a few moving parts in the contract between

the heart beats, optional rate changes, and variable updates

depending on market conditions.

Libraries Good
The contracts make use of Olympus tooling and standard

libraries like Solmate.

Decentralization Medium

The market is open, however keepers control the cadence of

the system and protected users have the ability to set

sensitive variables.

Code stability Good No changes were made to the PR after the audit began.

Code Evaluation Matrix

Category Mark Description

Documentation Medium

No additional documentation was provided. However much

of the code contains natspec and more complex functions

contain useful comments, providing context.

Monitoring Good Nearly all functions emit events at the end of their execution.

Testing and

verification
Good

Tests were extensive and thorough and include fuzz testing

as well as unit testing.

Findings are broken down into sections by their respective impact:

Critical, High, Medium, Low impact

These are findings that range from attacks that may cause loss of funds, impact

control/ownership of the contracts, or cause any unintended consequences/actions

that are outside the scope of the requirements.

Gas savings

Findings that can improve the gas efficiency of the contracts.

Informational

Findings including recommendations and best practices.

Findings Explanation

Critical Findings

1. Critical - EmissionManager::getSupply() unexpectedly returns the supply in

gOHM denomination

Currently, EmissionManager::getSupply() returns the total supply in gOHM denomination rather

than OHM denomination, as the callers of getSupply() expect. This leads to a supply 10x

larger than expected being emitted.

Critical

Divide gohm.totalSupply() * gohm.index() by 10 ** _gohmDecimals rather than 10 **

_ohmDecimals .

Fixed in commit a2f6602a2913d683902a524b3e7e845509a277ad

None.

When a shutdown occurs, locallyActive is set to false, preventing keepers from creating new

markets. However, this does not close the currently active market, which might be

catastrophic depending on the nature of the emergency that required a shutdown.

Medium

Close the currently active market when shutdown() is called.

Fixed in commit 3ace544f24adfd3d218ae625b9d1449321f9e184

Technical Detai ls

Impact

Recommendation

Developer Response

High Findings

Medium Findings

1. Medium - Current market still active after EmissionManager::shutdown()

Technical Detai ls

Impact

Recommendation

Developer Response

Low Findings

https://github.com/OlympusDAO/bophades/pull/438/commits/a2f6602a2913d683902a524b3e7e845509a277ad
https://github.com/OlympusDAO/bophades/pull/438/commits/3ace544f24adfd3d218ae625b9d1449321f9e184

In setBacking() there is a check that newBacking < (backing * 9) / 10 . However, there is no

check that newBacking != 0 . backing is used in division in various places in EmissionManager ,

so this value must never be 0.

Low

Check that newBacking != 0 as is done in initialize() .

Fixed in commit a1e708c5d4edf857b5d27db4ccb87d9c41721280

At the moment, the ReserveMigrator is intended to be used with DAI and USDS, so using

transfer() and approve() will not revert or fail silently. However, this may not always be the

case. SafeTransfer() and SafeApprove() should be used in place of transfer() and approve()

to future-proof the contract for other assets.

Low

Use SafeTransfer() and SafeApprove() rather than transfer() and approve() .

Fixed in commit 35943667698bb8fc9290dadafa637f2e2905f338

1. Low - backing can inadvertently be set to 0

Technical Detai ls

Impact

Recommendation

Developer Response

2. Low - Unsafe transfer() and approve() used in ReserveMigrator

Technical Detai ls

Impact

Recommendation

Developer Response

3. Low - No upper-bound is enforced for restartTimeframe

https://github.com/OlympusDAO/bophades/pull/438/commits/a1e708c5d4edf857b5d27db4ccb87d9c41721280
https://github.com/OlympusDAO/bophades/pull/438/commits/35943667698bb8fc9290dadafa637f2e2905f338

Currently, the restartTimeframe variable has no upper bound, meaning if it is set to a large

value, the owner of the emergency_restart role can restart the contract without any

governance feedback.

Informational

Ensure that restartTimeframe is <= the Olympus governance council proposal timeline, after

which time governance could re-initialize the contract.

The intent is to set it to 11 days, which accomplishes this, but I’m not sure we need to

hardcode the specific limit in the contract. The governance timeline can be changed so it

could get to a state where we weren’t able to line them up.

The EmissionManager contract is never intended to hold OHM or the reserve asset therefore it

should not have a balance to burn or deposit.

Gas Savings

Consider moving the fund recovery logic into a separate function such that shutdown() only

controls the locallyActive variable.

Fixed in commit 6255ff18a5829f83ff20a35e9c46ed96b917f470

Technical Detai ls

Impact

Recommendation

Developer Response

Gas Saving Findings

1. Gas - Unnecessary OHM burn and reserve deposit in

EmissionManager::shutdown()

Technical Detai ls

Impact

Recommendation

Developer Response

Informational Findings

https://github.com/OlympusDAO/bophades/pull/438/commits/6255ff18a5829f83ff20a35e9c46ed96b917f470

ReentrancyGuard in EmissionManager is imported but unused and can be removed.

Informational

Removed the unused import

Fixed in commit 96f6a25d916ccae1510117c7a75cbc2c4f213838

The variable beatsLeft in BaseRateChange is incorrect as it is the number of days left in which

to change the base rate, rather than the number of beats left.

Informational

Update the variable name such that it reflects the true nature of the variable.

Fixed in commit fb90f53d52356e78775bab6c7de032cd34cc821d

Olympus uses the point-in-time price for the reserve asset, however, this is not susceptible to

oracle manipulation due to the fact that the price is supplied by Chainlink and the keeper

updates the price in the same transaction in which the price is used.

A gOHM flashloan attack to increase the supply and therefore the OHM emitted by the

Emission Manager was discussed with the team. This was left out of the report because it

was reported in a prior yAudit report and had already been acknowledged by the team.

1. Informational - Unused Import in EmissionManager

Technical Detai ls

Impact

Recommendation

Developer Response

2. Informational - Incorrect variable name

Technical Detai ls

Impact

Recommendation

Developer Response

Final Remarks

https://github.com/OlympusDAO/bophades/pull/438/commits/96f6a25d916ccae1510117c7a75cbc2c4f213838
https://github.com/OlympusDAO/bophades/pull/438/commits/fb90f53d52356e78775bab6c7de032cd34cc821d

In general, the code is extensively unit and fuzz tested. However, the auditors suggest that

fork testing be done prior to deployment as it may have detected the sole critical finding in

the report prior to the audit engagement.

