Security Review Report
NM-0410 Cooler V2

NETHERMIND

{J} SECURITY

(April 4, 2025)

NETHERMIND

{J} SECURITY

Contents

Executive Summary
Audited Files
Summary of Issues

System Overview

41 MonoCooler
4.2 CoolerTreasuryBorrower
43 CoolerLtvOracle
4.4 Delegationsystem L.

Risk Rating Methodology

Issues

6.1 [Low] Users may receive slightly more tokens than intended due to rounding in borrow
6.2 [Info] Borrowing doesn’t always increase debt
6.3 [Info] Debt with Treasury is not updated on liquidation
6.4 [Info] Liquidation can be delayed by front running call to

applyUnhealthyDelegations(...)
6.5 [Info] Olympus Treasury may lose value due to rounding in SUSDS.deposit(...)

Documentation Evaluation

Complementary Checks

8.1 CompilationQutput
82 TestsOutput
8.3 AutomatedTools.

8.3.1 AuditAgent. L.

About Nethermind

” NETHERMIND
NM-0410 - COOLER V2 - SECURITY REVIEW .7 SECURITY

1 Executive Summary

This document presents the security review performed by Nethermind Security for Cooler V2 contracts. Cooler V2 is a lending system that
allows users to borrow USDS against gOHM collateral without losing the voting capabilities from gOHM.

Cooler V2 main features include: a) perpetual positions, b) single unified position per user, c) governance-controlled LTV growth
through a drip system, and d) delegation of the deposited collateral’s voting power.

The audit comprises 1851 lines of solidity code. The audit was performed using (a) manual analysis of the codebase, (b) automated
analysis tools, and (c) creation of test cases. Along this document, we report five points of attention, where one is classified as Low
and four are classified as Informational. The issues are summarized in Fig. 1.

This document is organized as follows. Section 2 presents the files in the scope. Section 3 summarizes the issues. Section 4 presents
the system overview. Section 5 discusses the risk rating methodology. Section 6 details the issues. Section 7 discusses the documentation
provided by the client for this audit. Section 8 presents the compilation, tests, and automated tests. Section 9 concludes the document.

Severity Status

Low Acknowledged
20.0% 20.0%

(@ (b)

Fig. 1: Distribution of issues: Critical (0), High (0), Medium (0), Low (1), Undetermined (0), Informational (4), Best Practices (0).
Distribution of status: Fixed (4), Acknowledged (1), Mitigated (0), Unresolved (0)

Summary of the Audit

Audit Type Security Review

Final Report April 4, 2025

Repository olympus-v3

Commit ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e
Final Commit a2ba2de9f17e9901b4510e4f1984c65f114c3a02
Documentation Docs

Documentation Assessment High

Test Suite Assessment High

https://www.nethermind.io/smart-contract-audits
https://github.com/OlympusDAO/olympus-v3
https://github.com/OlympusDAO/olympus-v3
https://github.com/OlympusDAO/olympus-v3/tree/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e
https://github.com/OlympusDAO/olympus-v3/tree/a2ba2de9f17e9901b4510e4f1984c65f114c3a02
https://ag0.gitbook.io/cooler-v2-docs

NETHERMIND

{7} SECURITY

2 Audited Files

Contract LoC Comments | Ratio Blank Total
1 src/libraries/Compoundedinterest.sol 17 6 35.3% 4 27
2 src/libraries/SafeCast.sol 16 1 6.2% 3 20
3 src/policies/utils/PolicyEnabler.sol 29 63 217.2% | 19 111
4 src/policies/utils/RoleDefinitions.sol 4 4 100.0% | 1 9
5 src/policies/utils/PolicyAdmin.sol 25 12 48.0% 7 44
6 src/policies/cooler/MonoCooler.sol 683 235 34.4% 167 1085
7 src/policies/cooler/CoolerTreasuryBorrower.sol 88 32 36.4% 23 143
8 src/policies/cooler/CoolerLtvOracle.sol 159 54 34.0% 40 253
9 src/policies/interfaces/cooler/ICoolerLtvOracle.sol 53 46 86.8% 21 120
10 src/policies/interfaces/cooler/ICoolerTreasuryBorrower.sol 16 25 156.2% | 8 49
11 src/policies/interfaces/cooler/IMonoCooler.sol 192 241 125.5% | 56 489
12 src/external/cooler/DelegateEscrow.sol 55 25 45.5% 18 98
13 src/external/cooler/DelegateEscrowFactory.sol 49 20 40.8% 14 83
14 src/modules/DLGTE/IDLGTE.v1.sol 64 72 112.5% | 23 159
15 src/modules/DLGTE/OlympusGovDelegation.sol 339 86 25.4% 65 490
16 src/modules/DLGTE/DLGTE.v1.sol 62 25 40.3% 17 104

Total 1851 947 51.2% 486 3284

3 Summary of Issues
Finding Severity Update

1 Users may receive slightly more tokens than intended due to rounding in borrow Low Fixed
2 Borrowing doesn’t always increase debt Info Fixed
3 Debt with Treasury is not updated on liquidation Info Fixed
4 Liquidation can be delayed by front running call to applyUnhealthyDelegations(. . .) Info Fixed
5 Olympus Treasury may lose value due to rounding in SUSDS.deposit(. ..) Info Acknowledged

https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/libraries/CompoundedInterest.sol
https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/libraries/SafeCast.sol
https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/policies/utils/PolicyEnabler.sol
https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/policies/utils/RoleDefinitions.sol
https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/policies/utils/PolicyAdmin.sol
https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/policies/cooler/MonoCooler.sol
https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/policies/cooler/CoolerTreasuryBorrower.sol
https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/policies/cooler/CoolerLtvOracle.sol
https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/policies/interfaces/cooler/ICoolerLtvOracle.sol
https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/policies/interfaces/cooler/ICoolerTreasuryBorrower.sol
https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/policies/interfaces/cooler/IMonoCooler.sol
https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/external/cooler/DelegateEscrow.sol
https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/external/cooler/DelegateEscrowFactory.sol
https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/modules/DLGTE/IDLGTE.v1.sol
https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/modules/DLGTE/OlympusGovDelegation.sol
https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/modules/DLGTE/DLGTE.v1.sol

NETHERMIND

{7} SECURITY

4 System Overview

The Cooler V2 is a lending system that allows users to borrow USDS against gOHM collateral without losing gOHM'’s voting power. It
allows gOHM holders to maximize their earnings on gOHM by applying their own strategies. The system is composed by four main
components:

4.1

MonoCooler
CoolerTreasuryBorrower
CoolerLtvOracle

Delegation System

1
1
1
u—u Delegation Escrows

DLGTE OlympusTreasury

applyDelegations borrow/repay

Liquidations

Loan Management: MonoCooler borrow/repay CoolerTreasuryBorrower

Users Collateral Management
Delegation Management:

fetch current Ltvs (loan-
to-values)

CoolerLtvOracle

MonoCooler

MonoCooler is the main lending contract that manages user positions. This contract handles borrows, repayments, and liquidations. It
keeps track of the user’s collateral and debt. The main actions users can execute through this contract include:

addCollateral(...): Users can add gOHM as collateral through this function. Users can also change the delegations on their
collateral, including the new added value. Any user can add collateral on behalf of another user; however, if delegations are
changed, the user must be authorized.

withdrawCollateral(...): Users can remove their collateral through this function. Only the user or authorized users can withdraw
collateral from an account. Changing the delegation of the remaining collateral through this function is also possible. The remain-
ing collateral for an account must be enough to keep their debt at or below the maxOriginationLtv. Users can only withdraw
undelegated collateral, so they need to adjust delegations in order to withdraw their gOHM.

borrow(...): Users can borrow the debt token through this function. Currently, the debt token is USDS. Only the user or authorized
users can borrow on behalf of an account. Users can borrow until their debt reaches the current maxOriginationLtv.

repay(...): Users pay debt tokens back to reduce their debt through this function. Any user can do a repayment on behalf of any
other user.

applyDelegations(...): Users can call this function to modify the delegations of their collateral. Only the user or authorized users
can modify the delegations.

applyUnhealthyDelegations(...): This function allows any user to undelegate for other accounts that are in unhealthy positions
(can be liquidated). This function exits to execute partial undelegations if an account has delegated to too many addresses.

NETHERMIND

{7} SECURITY

— batchLiquidate(...): This function is used to liquidate positions that are in an unhealthy state. An account will be unhealthy if
its current debt is bigger than its collateral multiplied by the Liquidation LTV, account’s debt will increase over time due to the
borrowing interest applied. When an account is liquidated, its debt is wiped and its collateral is burned. The liquidator will receive
gOHM as an incentive; the greater the user’s debt, the greater the incentive the liquidator will receive. The incentive will be taken
from the position’s collateral before burning.

It is relevant to note that all the amounts for the debt tokens are specified in WAD for this contract. Those amounts are properly scaled
through the CoolerTreasuryBorrower contract.

4.2 CoolerTreasuryBorrower

CoolerTreasuryBorrower connects MonoCooler to the Treasury’s sUSDS reserves. It handles debt management and conversion
between USDS and sUSDS. The conversion is needed because when Treasury holds funds it keeps them in sUSDS for yield, but loans
are provided in USDS.

The contract tracks total debt to Treasury and ensures all USDS operations are properly converted when interacting with Treasury’s
sUSDS holdings.

The contract has two main functions:

— borrow(...): This function will be called by MonoCooler to get funds from the Treasury. MonoCooler will specify the amount in
WAD, and this contract will convert into the needed amount and get the funds from the Treasury.

— repay(...): The function will be called by MonoCooler to repay its debt with the Treasury contract. This contract will take its current
balance of debt token send the funds back to the Treasury, the debt in Treasury will be updated accordingly.

4.3 CoolerLtvOracle

CoolerLtvOracle controls how much USDS can be borrowed against gOHM. Rather than using external market prices, it uses two key
thresholds:

— Origination LTV: Maximum borrow amount for new loans.
— Liquidation LTV: Higher threshold amount that triggers liquidations.

The Origination LTV can only increase over time through a linear "drip" system - this means each increase must specify a target value
and the time period to reach it. The Liquidation LTV is set as a premium above the Origination LTV. Reducing the current Origination
LTV is not possible.

The Origination LTV value is expected to be set conservatively, increasing together with the value of gOHM but not surpassing it.

4.4 Delegation system

DLGTE manages governance power of gOHM while it's being used as collateral in MonoCooler. Each account's gOHM can be split
between multiple delegates through individual escrow contracts, allowing governance participation even while the gOHM is locked.

The module tracks balances per policy (like MonoCooler) and per user, ensuring one policy can’t withdraw gOHM deposited by another.
Users can delegate to up to ten addresses by default (governance can whitelist a contract to delegate to more than this), with each
delegate getting their own escrow contract.

Users cannot interact directly with the DLGTE module; they need to do it through the different policies, like the applyDelegations(...)
function in MonoCooler.

NETHERMIND

{7} SECURITY

5 Risk Rating Methodology

The risk rating methodology used by Nethermind Security follows the principles established by the OWASP Foundation. The severity of
each finding is determined by two factors: Likelihood and Impact.

Likelihood measures how likely the finding is to be uncovered and exploited by an attacker. This factor will be one of the following values:
a) High: The issue is trivial to exploit and has no specific conditions that need to be met;
b) Medium: The issue is moderately complex and may have some conditions that need to be met;
c) Low: The issue is very complex and requires very specific conditions to be met.

When defining the likelihood of a finding, other factors are also considered. These can include but are not limited to motive, opportunity,
exploit accessibility, ease of discovery, and ease of exploit.

Impact is a measure of the damage that may be caused if an attacker exploits the finding. This factor will be one of the following values:
a) High: The issue can cause significant damage, such as loss of funds or the protocol entering an unrecoverable state;

b) Medium: The issue can cause moderate damage, such as impacts that only affect a small group of users or only a particular part
of the protocol;

c) Low: The issue can cause little to no damage, such as bugs that are easily recoverable or cause unexpected interactions that
cause minor inconveniences.

When defining the impact of a finding, other factors are also considered. These can include but are not limited to Data/state integrity, loss
of availability, financial loss, and reputation damage. After defining the likelihood and impact of an issue, the severity can be determined
according to the table below.

Severity Risk
High Medium High Critical
Impact Medium Low Medium High
Low Info/Best Practices | Low Medium
Undetermined Undetermined Undetermined Undetermined
Low Medium High
Likelihood

To address issues that do not fit a High/Medium/Low severity, Nethermind Security also uses three more finding severities: Informational,
Best Practices, and Undetermined.

a) Informational findings do not pose any risk to the application, but they carry some information that the audit team intends to pass
to the client formally;

b) Best Practice findings are used when some piece of code does not conform with smart contract development best practices;

¢) Undetermined findings are used when we cannot predict the impact or likelihood of the issue.

https://www.nethermind.io/smart-contract-audits
https://owasp.org
https://www.nethermind.io/smart-contract-audits

© 0 N O U A W N e

[S =
w N = O

NETHERMIND

{J} SECURITY

6 Issues

6.1 [Low] Users may receive slightly more tokens than intended due to rounding in
borrow

File(s): src/policies/cooler/CoolerTreasuryBorrower.sol

When a user borrows USDS, the MonoCooler contract invokes the borrow(. . .) function in CoolerTreasuryBorrower. To facilitate the transfer
of the requested USDS amount, the contract first calls SUSDS. previewWithdraw(amountInwWad) to calculate the equivalent amount of suUSDS
to withdraw from the treasury’s reserves. This value is rounded up by previewWithdraw(...) to ensure that at least the requested USDS
amount is covered.

After withdrawing the calculated susDS amount, the contract calls SUSDS. redeem(. . .), which transfers the corresponding USDS to the user:

function borrow(
uint256 amountInWad,
address recipient

) external override onlyEnabled onlyRole(COOLER_ROLE) {
// ...

// Since TRSRY holds sUSDS, a conversion must be done before funding.

// Withdraw that sUSDS amount locally and then redeem to USDS sending to the recipient
uint256 susdsAmount = SUSDS.previewWithdraw(amountInWad);

TRSRY. increaseWithdrawApproval (address(this), SUSDS, susdsAmount);
TRSRY.withdrawReserves(address(this), SUSDS, susdsAmount);

SUSDS. redeem(susdsAmount, recipient, address(this));

The issue arises because redeem(...) returns all USDS corresponding to the rounded-up sUSDS amount, potentially resulting in the user
receiving slightly more than the intended amount of USDS. This excess is not accounted for in MonoCooler’s internal records, introducing
minor discrepancies.

While the dust amount is negligible under normal conditions (as the sUSDS price closely tracks USDS at 1:1), the discrepancy could become
more significant if the sUSDS price deviates from USDS.

Recommendation(s): Consider using sUSDS.withdraw(...) instead of sUSDS.redeem(...) which will transfer the exact amount of USDS
back to the user.

Status: Fixed.

Update from the client: Fixed in commit 66acf6.

https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/policies/cooler/CoolerTreasuryBorrower.sol#L96-L99
https://github.com/OlympusDAO/olympus-v3/commit/66acf658bf04aca8ff609618633d5f2e2c31ffd3

N

© ®w N o o«

10
11
12
13
14
15
16
17
18
19
20
21

NETHERMIND

{J} SECURITY

6.2 [Info] Borrowing doesn’t always increase debt
File(s): src/policies/cooler/MonoCooler.sol

Description: Calculation of debt is always done by rounding up except when borrowed. This results in the scenario where someone can
borrow 1 wei without increasing their debt.

function borrow(
uint128 borrowAmount,
address onBehalfOf,
address recipient
) external override returns (uint128 amountBorrowed) {
/] ...

// Sync global debt state when borrowing

// @audit debt is calculated by rounding down
// don't round up the debt when borrowing.
uint128 currentDebt = _currentAccountDebt(
_accountDebtCheckpoint,
aState.interestAccumulatorRay,
gStateCache.interestAccumulatorRay,
false

/..

Recommendation(s): Consider rounding up when calculating current debt in the borrow(...) function.
Status: Fixed.

Update from the client: Fixed in commit e54b3f.

6.3 [Info] Debt with Treasury is not updated on liquidation
File(s): src/policies/cooler/CoolerTreasuryBorrower.sol

Description: The MonoCooler contract facilitates lending of assets sourced from the Olympus Treasury. The CoolerTreasuryBorrower
contract interacts with the treasury to withdraw assets during borrowing and return them during repayment. In both the borrow and repay
operations, the CoolerTreasuryBorrower updates its recorded debt with the treasury accordingly.

However, when a liquidation occurs, the user’s debt is cleared within MonoCooler, but the corresponding debt recorded in the treasury
remains unchanged. This creates an inconsistency between the actual state of loans and the debt values tracked by the treasury.

Such inconsistencies may lead to accounting discrepancies and could affect any processes or policies that rely on the accuracy of debt
data maintained by the treasury.

Recommendation(s): Consider implementing a mechanism to update the treasury’s debt records when a liquidation occurs.
Status: Fixed.

Update from the client: Fixed in commit a2ba2d.

6.4 [Info] Liquidation can be delayed by front running call to
applyUnhealthyDelegations(...)

File(s): src/policies/cooler/MonoCooler.sol

Description: To liquidate an unhealthy position, the undelegated assets should be enough to cover the collateral to liquidate. The
batchLiquidate(...) calls DLGTE.withdrawUndelegatedGohm(...) with autoRescindDelegations as true which will loop through the
delegations and undelegate assets if required. Although the default value for the maximum number of delegations that can be done at a
time is 10, admin can allow someone to have more than that. This means that if number of delegations is large enough such that looping
through all the delegations and undelegating required assets can’t be done in a single transaction, the applyUnhealthyDelegations(...)
can be used to do this manually in multiple calls before calling batchLiquidate(...). The issue is that if the user front runs the call to
applyUnhealthyDelegations(...) by changing their delegations then the call to applyUnhealthyDelegations(...) would revert. This
allows to delay liquidating the position.

Recommendation(s): Consider adding a mechanism to not allow users with unhealthy positions to change their delegations such that to
avoid getting liquidated.

Status: Fixed.

Update from the client: Fixed in commit 91d0c6.

https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/policies/cooler/MonoCooler.sol#L399-L405
https://github.com/OlympusDAO/olympus-v3/commit/e54b3f1ab8ed9fb325144a587568c61c893cfbd3
https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/policies/cooler/MonoCooler.sol
https://github.com/OlympusDAO/olympus-v3/commit/a2ba2de9f17e9901b4510e4f1984c65f114c3a02
https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/policies/cooler/MonoCooler.sol#L527-L540
https://github.com/OlympusDAO/olympus-v3/commit/91d0c69d16b48e9c8cb163449ed9c33f246f97f7

N

© ®w N o o«

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

NETHERMIND

{J} SECURITY

6.5 [Info] Olympus Treasury may lose value due to rounding in SUSDS.deposit(...)

File(s): src/policies/cooler/CoolerTreasuryBorrower.sol

Description: When a user repays their debt, the CoolerTreasuryBorrower contract deposits the repaid USDS into the SUSDS vault and sends
the resulting SUSDS tokens to the treasury.

function repay() external override onlyEnabled onlyRole(COOLER_ROLE) {
uint256 debtTokenAmount = _USDS.balanceOf (address(this));
if (debtTokenAmount == 0) revert ExpectedNonZero();

// This policy is allowed to overpay TRSRY, in which case it's debt is set to zero
// and any future repayments are just deposited. There are no 'credits' for overpaying
uint256 outstandingDebt = TRSRY.reserveDebt(_USDS, address(this));
uint256 delta;
if (outstandingDebt > debtTokenAmount) {

unchecked {

delta = outstandingDebt - debtTokenAmount;

}
3
TRSRY . setDebt ({

debtor_: address(this),

token_: _USDS,

amount_: delta

DR

_USDS. safeApprove (address(SUSDS), debtTokenAmount);
// @audit - This function will round down the amount of “SUSDS" to deposit
SUSDS. deposit(debtTokenAmount, address(TRSRY));

The SUSDS.deposit(...) function calculates the number of shares based on the deposited amount but rounds down when issuing shares.
This can result in a small loss of value for the receiver (the treasury) when the deposited amount is not perfectly divisible by the share
price.

A malicious user could exploit this behavior by borrowing from MonoCooler and repaying their debt in multiple small transactions, each
causing the treasury to lose up to 1 wei worth of SUSDS per repayment due to rounding. Over a large number of repayments, this could
accumulate to a measurable value loss for the treasury.

However, the attacker does not directly benefit from this behavior. Borrowers must be goHM holders, and diminishing the treasury’s assets
could negatively affect the value of gOHM, harming the attacker’s own position. Additionally, the treasury’s yield-generating strategies are
likely to offset such minor losses.

Consider implementing monitoring or rate-limiting mechanisms on MonoCooler repayments to detect or mitigate repeated small repay-
ments that could exploit rounding behavior.

Recommendation(s): Consider implementing monitoring mechanisms on MonoCooler repayments to detect repeated small repayments
that could exploit rounding behavior.

Status: Acknowledged.

https://github.com/OlympusDAO/olympus-v3/blob/ff0ad35b6bba05ddb3ed0efe912bcc6e651d135e/src/policies/cooler/CoolerTreasuryBorrower.sol#L123

NETHERMIND

{J} SECURITY

7 Documentation Evaluation

Software documentation refers to the written or visual information that describes the functionality, architecture, design, and implementation
of software. It provides a comprehensive overview of the software system and helps users, developers, and stakeholders understand how
the software works, how to use it, and how to maintain it. Software documentation can take different forms, such as user manuals, system
manuals, technical specifications, requirements documents, design documents, and code comments. Software documentation is critical
in software development, enabling effective communication between developers, testers, users, and other stakeholders. It helps to ensure
that everyone involved in the development process has a shared understanding of the software system and its functionality. Moreover,
software documentation can improve software maintenance by providing a clear and complete understanding of the software system,
making it easier for developers to maintain, modify, and update the software over time. Smart contracts can use various types of software
documentation. Some of the most common types include:

— Technical whitepaper: A technical whitepaper is a comprehensive document describing the smart contract’s design and technical
details. It includes information about the purpose of the contract, its architecture, its components, and how they interact with each
other;

— User manual: A user manual is a document that provides information about how to use the smart contract. It includes step-by-step
instructions on how to perform various tasks and explains the different features and functionalities of the contract;

— Code documentation: Code documentation is a document that provides details about the code of the smart contract. It includes
information about the functions, variables, and classes used in the code, as well as explanations of how they work;

— APl documentation: APl documentation is a document that provides information about the API (Application Programming Interface)
of the smart contract. It includes details about the methods, parameters, and responses that can be used to interact with the
contract;

— Testing documentation: Testing documentation is a document that provides information about how the smart contract was tested.
It includes details about the test cases that were used, the results of the tests, and any issues that were identified during testing;

— Audit documentation: Audit documentation includes reports, notes, and other materials related to the security audit of the smart
contract. This type of documentation is critical in ensuring that the smart contract is secure and free from vulnerabilities.

These types of documentation are essential for smart contract development and maintenance. They help ensure that the contract is
properly designed, implemented, and tested, and they provide a reference for developers who need to modify or maintain the contract in
the future.

Remarks about the Cooler V2 documentation

Extensive and thorough documentation was provided for the mechanisms of Cooler V2. In addition to documentation, the code

was properly commented and explained. The Cooler V2 team was available to explain any doubt or question raised by the
Nethermind Security team.

10

NETHERMIND

{J} SECURITY

8 Complementary Checks
8.1 Compilation Output

pnpm run build

> forge-template@1.0.0 build .../olympus-v3
> chmod +x shell/*.sh && ./shell/full_install.sh

**%x Installing dependencies using pnpm

Lockfile is up to date, resolution step is skipped

Packages: +152

B e B B i B B B e o B B B e o

Update available! 10.5.2 =+ 10.7.1.
Changelog: https://github.com/pnpm/pnpm/releases/tag/v10.7.1
Run "corepack use pnpm@10.7.1" to update.

Progress: resolved 152, reused 152, downloaded @, added 152, done

devDependencies:

+ markdownlint-cli 0.42.0

+ prettier 3.3.3
prettier-plugin-sh 0.14.0
prettier-plugin-solidity 1.1.3
prettier-plugin-sort-json 4.0.0
solhint 3.4.1
solidity-code-metrics 0.0.25

+ o+ o+ o+ o+

Done in 891ms using pnpm v10.5.2

x% Setting up submodules

*x% Running forge install

Updating dependencies in .../olympus-v3/lib

*x% Restoring submodule commits

HEAD is now at 5950723 npm package 1.0.0

HEAD is now at 9310e87 Merge pull request #41 from mzhu25/master

HEAD is now at b93cf4b chore: bump to v1.9.5 (#642)

HEAD is now at 49cQe437 4.8.0

HEAD is now at a4954e5 Update README.md

HEAD is now at fadb2e2 Optimize ~SignedWadMath™ edge case check (#381)
HEAD is now at 864b357 Merge pull request #5 from OlympusDAO/feat/incorporate-audit-fixes
x Running forge soldeer update

Running soldeer update

Successfully downloaded surl~1.0.0 the dependency via git
Dependency surl-1.0.0 downloaded!
Writing surl~1.0.0 to the lock file.
Added a new dependency to remappings @surl-1.0.0
x Running forge build
[] Compiling...
[] Compiling 34 files with Solc 0.8.15
[] Solc 0.8.15 finished in 30.19s
Compiler run successful with warnings:
Warning (3628): This contract has a payable fallback function, but no receive ether function. Consider adding a receive
— ether function.
--> src/external/governance/GovernorBravoDelegator.sol:7:1:
|
7 | contract GovernorBravoDelegator is GovernorBravoDelegatorStorage, IGovernorBravoEventsAndErrors {
| ~ (Relevant source part starts here and spans across multiple lines).
Note: The payable fallback function is defined here.
--> src/external/governance/GovernorBravoDelegator.sol:83:5:
|
83 | fallback() external payable {
| * (Relevant source part starts here and spans across multiple lines).

11

NETHERMIND

{J} SECURITY

Warning (3628): This contract has a payable fallback function, but no receive ether function.

- ether function.
--> src/external/governance/Timelock.so0l:8:1:

|
8 | contract Timelock is ITimelock {
| * (Relevant source part starts here and spans across multiple lines).
Note: The payable fallback function is defined here.
--> src/external/governance/Timelock.s0l:89:5:
|
89 | fallback() external payable {}

I AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Warning (2018): Function state mutability can be restricted to pure
--> src/proposals/OIP_170.s01:18:5:
|
18 | function id() public view override returns (uint256) {
| * (Relevant source part starts here and spans across multiple lines).

Warning (2018): Function state mutability can be restricted to view
--> src/proposals/0IP_170.s01:108:5:
|
108 | function _validate(Addresses addresses, address) internal override {
| * (Relevant source part starts here and spans across multiple lines).

Warning (2018): Function state mutability can be restricted to view
--> src/proposals/OIP_XXX.sol:137:5:
|
137 | function _validate(Addresses addresses, address) internal override {
| * (Relevant source part starts here and spans across multiple lines).

Warning (2018): Function state mutability can be restricted to view
--> src/test/modules/RANGE.t.s0l:474:5:
|
474 | function testCorrectness_viewRange() public {
| * (Relevant source part starts here and spans across multiple lines).

Warning (2018): Function state mutability can be restricted to view
--> src/test/modules/RANGE.t.s0l:502:5:
|
502 | function testCorrectness_viewCapacity() public {
| * (Relevant source part starts here and spans across multiple lines).

Warning (2018): Function state mutability can be restricted to view
--> src/test/modules/RANGE.t.s0l:511:5:
|
511 | function testCorrectness_viewActive() public {
| * (Relevant source part starts here and spans across multiple lines).

Warning (2018): Function state mutability can be restricted to view
-=> src/test/modules/RANGE.t.s0l1:520:5:
|
520 | function testCorrectness_viewPrice() public {
| * (Relevant source part starts here and spans across multiple lines).

Warning (2018): Function state mutability can be restricted to view
--> src/test/modules/RANGE.t.s0l:531:5:
|
531 | function testCorrectness_viewSpread() public {
| * (Relevant source part starts here and spans across multiple lines).

Warning (2018): Function state mutability can be restricted to view
--> src/test/modules/RANGE.t.s0l:542:5:
|
542 | function testCorrectness_viewMarket() public {
| * (Relevant source part starts here and spans across multiple lines).

Warning (2018): Function state mutability can be restricted to view
--> src/test/modules/RANGE.t.s0l:551:5:
|
551 | function testCorrectness_viewLastActive() public {
| * (Relevant source part starts here and spans across multiple lines).

Consider adding a receive

12

© 0w N e U A W N =

=R e
N o= O

NM-0410 - COOLER V2 - SECURITY REVIEW

%

NETHERMIND

SECURITY

Warning (2018): Function state mutability can be
--> src/test/proposals/ProposalTest.so0l:73:5:
|
73 | function testProposal_simulate() public
| * (Relevant source part starts here and

Warning (2018): Function state mutability can be
--> src/test/proposals/OIP_170.t.sol:74:5:
|
74 | function testProposal_simulate() public
| * (Relevant source part starts here and

restricted to pure

{

spans across multiple lines).

restricted to pure

{

spans across multiple lines).

13

%

NETHERMIND

SECURITY

8.2 Tests Output

forge test --match-path "**/src/test/policies/cooler/*"
[] Compiling...
No files changed, compilation skipped

Ran 6 tests for src/test/policies/cooler/CoolerLtvOracle.t.sol:CoolerLtvOracleTestAccess
[PASS] test_access_setlLiquidationLtvPremiumBps() (gas: 17001)

[PASS] test_access_setMaxLiquidationLtvPremiumBps() (gas: 16976)

[PASS] test_access_setMaxOriginationLtvDelta() (gas: 17025)

[PASS] test_access_setMaxOriginationLtvRateOfChange() (gas: 17095)

[PASS] test_access_setMinOriginationLtvTargetTimeDelta() (gas: 17478)

[PASS] test_access_setOriginationLtvAt() (gas: 17557)

Suite result: ok. 6 passed; 0 failed; © skipped; finished in 161.04ms (17.39ms CPU time)

Ran 6 tests for src/test/policies/cooler/MonoCoolerAccess.t.sol:MonoCoolerAccessTest
[PASS] test_access_setBorrowPaused() (gas: 20591)

[PASS] test_access_setInterestRateWad() (gas: 17512)

[PASS] test_access_setlLiquidationsPaused() (gas: 20621)

[PASS] test_access_setLtvOracle() (gas: 17469)

[PASS] test_access_setMaxDelegateAddresses() (gas: 17561)

[PASS] test_access_setTreasuryBorrower() (gas: 19646)

Suite result: ok. 6 passed; 0 failed; © skipped; finished in 1671.15ms (17.49ms CPU time)

Ran 1 test for src/test/policies/cooler/MonoCoolerChangedDebt.t.sol:MonoCoolerChangeDebtToken6dpTest
[PASS] test_changeDebt_existingPosition() (gas: 1057075)
Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 161.55ms (17.91ms CPU time)

Ran 10 tests for src/test/policies/cooler/MonoCoolerLiquidations.t.sol:MonoCoolerComputeLiquidityTest
[PASS] test_computeLiquidity_afterRepayAll() (gas: 743579)

[PASS] test_computeLiquidity_noBorrowsNoCollateral() (gas: 41445)

[PASS] test_computeLiquidity_noBorrowsWithCollateral() (gas: 216529)

[PASS] test_computeLiquidity_overLLTV_cappedToCollateral() (gas: 451164)

[PASS] test_computeLiquidity_withBorrowAbovelLLTV() (gas: 425354)

[PASS] test_computeLiquidity_withBorrowAtOLTV() (gas: 418417)

[PASS] test_computeLiquidity_withBorrowOverOLTV() (gas: 420911)

[PASS] test_computeLiquidity_withBorrowUnderOLTV() (gas: 413727)

[PASS] test_computeLiquidity_withBorrow_ltvDrip_overLLTV() (gas: 443475)

[PASS] test_computeLiquidity_withBorrow_ltvDrip_underLLTV() (gas: 443223)

Suite result: ok. 10 passed; 0 failed; 0 skipped; finished in 163.4@ms (19.79ms CPU time)

Ran 15 tests for src/test/policies/cooler/CoolerLtvOracle.t.sol:CoolerLtvOracleTestAdmin
[PASS] test_configureDependencies_fail() (gas: 26118)

[PASS] test_configureDependencies_success() (gas: 23599)

[PASS] test_construction_failDecimalsCollateral() (gas: 1056916)

[PASS] test_construction_failDecimalsDebt() (gas: 874725)

[PASS] test_construction_faillLLTVPremiumTooHigh() (gas: 145298)

[PASS] test_construction_failMaxLLTVPremiumTooHigh() (gas: 145236)

[PASS] test_construction_success() (gas: 41190)

[PASS] test_requestPermissions() (gas: 8815)

[PASS] test_setlLiquidationLtvPremiumBps_failDecrease() (gas: 19238)

[PASS] test_setlLiquidationLtvPremiumBps_failMax() (gas: 19112)

[PASS] test_setlLiquidationLtvPremiumBps_success() (gas: 33361)

[PASS] test_setMaxLiquidationLtvPremiumBps() (gas: 33880)

[PASS] test_setMaxOriginationLtvDelta() (gas: 25127)

[PASS] test_setMaxOriginationLtvRateOfChange() (gas: 25432)

[PASS] test_setMinOriginationLtvTargetTimeDelta() (gas: 22225)

Suite result: ok. 15 passed; 0 failed; 0 skipped; finished in 165.25ms (21.94ms CPU time)

Ran 9 tests for src/test/policies/cooler/CoolerLtvOracle.t.sol:CoolerLtvOracleTestOLTV
[PASS] test_setOriginationLtvAt_breachDeltaUp() (gas: 47298)

[PASS] test_setOriginationLtvAt_breachMaxOltvRateOfChange() (gas: 50936)

[PASS] test_setOriginationLtvAt_breachMinDateDelta() (gas: 70940)

[PASS] test_setOriginationLtvAt_cannotDecreaseOLTV() (gas: 21852)

[PASS] test_setOriginationLtvAt_flatAtTargetTime() (gas: 46254)

[PASS] test_setOriginationLtvAt_immediate_successUp() (gas: 55655)

[PASS] test_setOriginationLtvAt_increasesAtExpectedRateSecs() (gas: 63552)

[PASS] test_setOriginationLtvAt_increasesAtExpectedRateYear() (gas: 1631957)

[PASS] test_setOriginationLtvAt_keepTheSame() (gas: 39432)

Suite result: ok. 9 passed; 0 failed; 0 skipped; finished in 165.28ms (21.61ms CPU time)

14

© 0 N O U A W N e

N R N R T e T
AW N R, O ©® N O T A W N O

25

57

%

NETHERMIND

SECURITY

Ran 18
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]

tests for src/test/policies/cooler/MonoCoolerAdmin.t.sol:MonoCoolerAdminTest
test_changingDependencies() (gas: 3327898)
test_configureDependencies_failVersions() (gas: 40580)
test_configureDependencies_success() (gas: 64254)
test_construction_failDecimalsCollateral() (gas: 1064919)
test_construction_faillLtv() (gas: 177735)
test_construction_success() (gas: 129304)
test_requestPermissions() (gas: 19959)
test_setBorrowPaused() (gas: 34694)
test_setInterestRateWad_fail_max() (gas: 51555)
test_setInterestRateWad_success() (gas: 66732)
test_setLiquidationsPaused() (gas: 34645)
test_setlLtvOracle_fail_newLLTV_1t_oldLLTV() (gas: 108341)
test_setLtvOracle_fail_newOLTV_gt_newLLTV() (gas: 91206)
test_setLtvOracle_fail_newOLTV_1t_oldOLTV() (gas: 108395)
test_setLtvOracle_success() (gas: 118301)
test_setMaxDelegateAddresses() (gas: 564467)
test_setTreasuryBorrower_failDecimals() (gas: 1693127)
test_setTreasuryBorrower_success() (gas: 1689485)

Suite result: ok. 18 passed; 0 failed; 0 skipped; finished in 167.09ms (23.38ms CPU time)

Ran 4 tests for src/test/policies/cooler/MonoCoolerCollateral.t.sol:MonoCoolerCollateralApplyDelegationsTest

[PASS]
[PASS]
[PASS]
[PASS]

test_applyDelegations_fail_notAuthorized() (gas: 196068)
test_applyDelegations_fail_zeroDelegate() (gas: 197974)
test_applyDelegations_success_onBehalfOf () (gas: 795977)
test_applyDelegations_success_self() (gas: 768154)

Suite result: ok. 4 passed; 0 failed; 0 skipped; finished in 167.43ms (23.83ms CPU time)

Ran 1 test for src/test/policies/cooler/MonoCoolerCollateral.t.sol:MonoCoolerCollateralViewTest

[PASS]

test_debtDeltaForMaxOriginationLtv() (gas: 542683)

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 2.65ms (538.@4ps CPU time)

Ran 20
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]

tests for src/test/policies/cooler/CoolerTreasuryBorrower.t.sol:CoolerTreasuryBorrowerTestBase

test_access_borrow() (gas: 17865)
test_access_repay() (gas: 17738)
test_access_setDebt() (gas: 17693)
test_borrow_failZeroAmount() (gas: 16924)
test_borrow_failZeroReceiver() (gas: 16928)
test_borrow_once() (gas: 192004)
test_borrow_twice() (gas: 249315)
test_configureDependencies_fail() (gas: 35642)
test_configureDependencies_success() (gas: 33683)
test_construction_failDecimalsDebt() (gas: 2254462)
test_construction_success() (gas: 27933)
test_disabled_borrow() (gas: 26725)
test_disabled_repay() (gas: 26532)
test_disabled_setDebt() (gas: 26566)
test_repay_failZeroAmount() (gas: 22165)
test_repay_noDebt() (gas: 110265)
test_repay_overRepay() (gas: 245379)
test_repay_underRepay () (gas: 245347)
test_requestPermissions() (gas: 15538)
test_setDebt() (gas: 82252)

Suite result: ok. 20 passed; 0 failed; 0 skipped; finished in 2.77ms (1.51ms CPU time)

Ran 14
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]

tests for src/test/policies/cooler/MonoCoolerBorrow.t.sol:MonoCoolerBorrowTest
test_borrow_failBadRecipient() (gas: 11433)
test_borrow_failPaused() (gas: 28020)
test_borrow_failZeroAmount() (gas: 11360)
test_borrow_fail_maxBorrow_overOriginationLtv() (gas: 442429)
test_borrow_fail_originationLtv() (gas: 229397)
test_borrow_notEnoughDebt_single() (gas: 210137)
test_borrow_onBehalfOf_fail_noAuthorization() (gas: 14253)
test_borrow_onBehalfOf_withAuthorization() (gas: 539547)
test_borrow_success_maxBorrow() (gas: 498648)
test_borrow_success_maxBorrow_twice() (gas: 406319)
test_borrow_success_newBorrow_diffRecipient() (gas: 472518)
test_borrow_success_newBorrow_sameRecipient() (gas: 616304)
test_borrow_twice_ldayLater() (gas: 660847)
test_borrow_twice_immediately() (gas: 655646)

Suite result: ok. 14 passed; 0 failed; 0 skipped; finished in 169.66ms (26.96ms CPU time)

15

© 0 N O U A W N e

R T S =R
ST SRS}

15
16
17
18
19
20
21
22
23
24

25

57

%

NETHERMIND

SECURITY

Ran 1 test for src/test/policies/cooler/MonoCoolerChangedDebt.t.sol:MonoCoolerChangeDebtToken18dpTest

[PASS]

test_changeDebt_existingPosition() (gas: 1052971)

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 4.40ms (1.50ms CPU time)

Ran 14
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]

tests for src/test/policies/cooler/MonoCoolerCollateral.t.sol:MonoCoolerWithdrawCollateralTest
test_withdrawCollateral_failNoCollateral_noGohm() (gas: 34008)
test_withdrawCollateral_failNoCollateral_withGohm() (gas: 208075)
test_withdrawCollateral_failNotEnoughCollateral() (gas: 210255)
test_withdrawCollateral_failZeroAmount() (gas: 9776)
test_withdrawCollateral_failZeroRecipient() (gas: 9883)
test_withdrawCollateral_fail_max() (gas: 425042)
test_withdrawCollateral_fail_notEnoughUndelgated() (gas: 500275)
test_withdrawCollateral_fail_originationLtv() (gas: 461420)
test_withdrawCollateral_onBehalfOf_notAuthorized() (gas: 12633)
test_withdrawCollateral_onBehalfOf_withAuthorization() (gas: 292807)
test_withdrawCollateral_successDifferentRecipient() (gas: 319848)
test_withdrawCollateral_successSameRecipient() (gas: 306924)
test_withdrawCollateral_success_maxOriginationLtv() (gas: 506314)
test_withdrawCollateral_success_withDelegations() (gas: 611631)

Suite result: ok. 14 passed; 0 failed; 0 skipped; finished in 170.71ms (27.98ms CPU time)

Ran 12
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]

tests for src/test/policies/cooler/MonoCoolerLiquidations.t.sol:MonoCoolerApplyUnhealthyDelegations

test_applyUnhealthyDelegations_fail_canOnlyUndelegatel() (gas: 705576)
test_applyUnhealthyDelegations_fail_canOnlyUndelegate2() (gas: 976648)
test_applyUnhealthyDelegations_fail_cannotLiquidate() (gas: 210150)
test_applyUnhealthyDelegations_fail_noUndelegations() (gas: 705416)
test_applyUnhealthyDelegations_fail_paused() (gas: 27842)
test_applyUnhealthyDelegations_fail_tooMuch() (gas: 711479)
test_applyUnhealthyDelegations_fromOtherPolicy_alreadyHasEnoughUndelegated() (gas: 6271358)
test_applyUnhealthyDelegations_fromOtherPolicy_empty() (gas: 6283948)
test_applyUnhealthyDelegations_fromOtherPolicy_lessThanEnough() (gas: 6380484)
test_applyUnhealthyDelegations_fromOtherPolicy_undelegateJustEnough() (gas: 6334382)
test_applyUnhealthyDelegations_success_oneUndelegation() (gas: 743239)
test_applyUnhealthyDelegations_success_twoUndelegations() (gas: 1016182)

Suite result: ok. 12 passed; 0 failed; 0 skipped; finished in 171.56ms (31.78ms CPU time)

Ran 12
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]

tests for src/test/policies/cooler/MonoCoolerRepay.t.sol:MonoCoolerRepayTest
test_repay_failBadOnBehalfOf () (gas: 9164)
test_repay_failNoApproval() (gas: 411512)
test_repay_failNoDebt() (gas: 32949)
test_repay_failUnderMinRequired() (gas: 405606)
test_repay_failZeroAmount() (gas: 9107)
test_repay_success_afterUnhealthy() (gas: 609520)
test_repay_success_evenWhenPaused() (gas: 501049)
test_repay_success_full() (gas: 547408)
test_repay_success_overFull() (gas: 546384)
test_repay_success_partialNotEnoughDebt() (gas: 440883)
test_repay_success_partialWithDelay() (gas: 552961)
test_repay_success_partial_onBehalfOf() (gas: 837977)

Suite result: ok. 12 passed; 0 failed; 0 skipped; finished in 6.14ms (6.37ms CPU time)

Ran 12
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]

tests for src/test/policies/cooler/MonoCoolerCollateral.t.sol:MonoCoolerAddCollateralTest
test_addCollateral_complexDelegations() (gas: 900413)
test_addCollateral_failTooMuchDelegation() (gas: 214691)
test_addCollateral_failZeroAmount() (gas: 9604)
test_addCollateral_failZeroOnBehalfOf() (gas: 9623)
test_addCollateral_onBehalfOfNoDelegations() (gas: 278305)
test_addCollateral_simple() (gas: 264665)
test_addCollateral_thenApplyDelegations_onBehalfOf_noAuthorization() (gas: 627447)
test_addCollateral_thenApplyDelegations_onBehalfOf_withAuthorization() (gas: 614422)
test_addCollateral_thenApplyDelegations_sameUser() (gas: 576300)
test_addCollateral_withDelegations_direct() (gas: 573180)
test_addCollateral_withDelegations_onBehalfOf_failUnauthorized() (gas: 192920)
test_addCollateral_withDelegations_onBehalfOf_withAuthorization() (gas: 647092)

Suite result: ok. 12 passed; 0 failed; 0 skipped; finished in 9.85ms (9.39ms CPU time)

Ran 12
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]

tests for src/test/policies/cooler/MonoCoolerLiquidations.t.sol:MonoCoolerLiquidationsTest
test_batchLiquidate_cappedIncentive() (gas: 473616)
test_batchLiquidate_emptyDelegationRequests() (gas: 776144)
test_batchLiquidate_fail_paused() (gas: 28148)

test_batchLiquidate_noAccounts() (gas: 452016)

test_batchLiquidate_noOhmToBurn() (gas: 476511)

16

© 0 N O U A W N e

R T S =R
ST SRS}

15

16

NETHERMIND

{J} SECURITY

[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]
[PASS]

[PASS]
[PASS]
[PASS]

test_batchLiquidate_oneAccount_canLiquidateAboveMax() (gas: 580108)
test_batchLiquidate_oneAccount_noLiquidate() (gas: 454764)
test_batchLiquidate_oneAccount_nolLiquidateAtMax() (gas: 441522)
test_batchLiquidate_twoAccounts_bothLiquidate() (gas: 858576)
test_batchLiquidate_twoAccounts_onelLiquidate() (gas: 848302)
test_batchLiquidate_twoAccounts_withUndelegations() (gas: 1459533)
test_batchLiquidate_twoCoolers_withUndelegations() (gas: 6305852)

Suite result: ok. 12 passed; 0 failed; 0 skipped; finished in 8.70ms (9.46ms CPU time)

Ran 3 tests for src/test/policies/cooler/MonoCoolerAuthorization.t.sol:MonoCoolerAuthorization

test_isSenderAuthorized_self () (gas: 12605)
test_setAuthorizationWithSig() (gas: 143481)
test_setAuthorization_beforeAtAfterDeadline() (gas: 45708)

Suite result: ok. 3 passed; 0 failed; 0 skipped; finished in 202.14ms (62.20ms CPU time)

Ran 18 test suites in 489.39ms (2.06s CPU time): 170 tests passed, 0 failed, 0 skipped (170 total tests)

8.3 Automated Tools

8.3.1

AuditAgent

All the relevant issues raised by the AuditAgent have been incorporated into this report. The AuditAgent is an Al-powered smart con-
tract auditing tool that analyses code, detects vulnerabilities, and provides actionable fixes. It accelerates the security analysis process,
complementing human expertise with advanced Al models to deliver efficient and comprehensive smart contract audits. Available at
https://app.auditagent.nethermind.io.

17

https://app.auditagent.nethermind.io

NETHERMIND

{7} SECURITY

9 About Nethermind

Nethermind is a Blockchain Research and Software Engineering company. Our work touches every part of the web3 ecosystem - from
layer 1 and layer 2 engineering, cryptography research, and security to application-layer protocol development. We offer strategic support
to our institutional and enterprise partners across the blockchain, digital assets, and DeFi sectors, guiding them through all stages of the
research and development process, from initial concepts to successful implementation.

We offer security audits of projects built on EVM-compatible chains and Starknet. We are active builders of the Starknet ecosystem,
delivering a node implementation, a block explorer, a Solidity-to-Cairo transpiler, and formal verification tooling. Nethermind also provides
strategic support to our institutional and enterprise partners in blockchain, digital assets, and decentralized finance (DeFi). In the next
paragraphs, we introduce the company in more detail.

Blockchain Security: At Nethermind, we believe security is vital to the health and longevity of the entire Web3 ecosystem. We pro-
vide security services related to Smart Contract Audits, Formal Verification, and Real-Time Monitoring. Our Security Team comprises
blockchain security experts in each field, often collaborating to produce comprehensive and robust security solutions. The team has a
strong academic background, can apply state-of-the-art techniques, and is experienced in analyzing cutting-edge Solidity and Cairo smart
contracts, such as ArgentX and StarkGate (the bridge connecting Ethereum and StarkNet). Most team members hold a Ph.D. degree and
actively participate in the research community, accounting for 240+ articles published and 1,450+ citations in Google Scholar. The security
team adopts customer-oriented and interactive processes where clients are involved in all stages of the work.

Blockchain Core Development: Our core engineering team, consisting of over 20 developers, maintains, improves, and upgrades our
flagship product - the Nethermind Ethereum Execution Client. The client has been successfully operating for several years, supporting both
the Ethereum Mainnet and its testnets, and now accounts for nearly a quarter of all synced Mainnet nodes. Our unwavering commitment
to Ethereum’s growth and stability extends to sidechains and layer 2 solutions. Notably, we were the sole execution layer client to facilitate
Gnosis Chain’s Merge, transitioning from Aura to Proof of Stake (PoS), and we are actively developing a full-node client to bolster Starknet’s
decentralization efforts. Our core team equips partners with tools for seamless node set-up, using generated docker-compose scripts
tailored to their chosen execution client and preferred configurations for various network types.

DevOps and Infrastructure Management: Our infrastructure team ensures our partners’ systems operate securely, reliably, and effi-
ciently. We provide infrastructure design, deployment, monitoring, maintenance, and troubleshooting support, allowing you to focus on
your core business operations. Boasting extensive expertise in Blockchain as a Service, private blockchain implementations, and node
management, our infrastructure and DevOps engineers are proficient with major cloud solution providers and can host applications in-
house or on clients’ premises. Our global in-house SRE teams offer 24/7 monitoring and alerts for both infrastructure and application
levels. We manage over 5,000 public and private validators and maintain nodes on major public blockchains such as Polygon, Gnosis,
Solana, Cosmos, Near, Avalanche, Polkadot, Aptos, and StarkWare L2. Sedge is an open-source tool developed by our infrastructure
experts, designed to simplify the complex process of setting up a proof-of-stake (PoS) network or chain validator. Sedge generates docker-
compose scripts for the entire validator set-up based on the chosen client, making the process easier and quicker while following best
practices to avoid downtime and being slashed.

Cryptography Research: At Nethermind, our Cryptography Research team is dedicated to continuous internal research while fostering
close collaboration with external partners. The team has expertise across a wide range of domains, including cryptography protocols,
consensus design, decentralized identity, verifiable credentials, Sybil resistance, oracles, and credentials, distributed validator technology
(DVT), and Zero-knowledge proofs. This diverse skill set, combined with strong collaboration between our engineering teams, enables us
to deliver cutting-edge solutions to our partners and clients.

Smart Contract Development & DeFi Research: Our smart contract development and DeFi research team comprises 40+ world-class
engineers who collaborate closely with partners to identify needs and work on value-adding projects. The team specializes in Solidity
and Cairo development, architecture design, and DeFi solutions, including DEXs, AMMs, structured products, derivatives, and money
market protocols, as well as ERC20, 721, and 1155 token design. Our research and data analytics focuses on three key areas: technical
due diligence, market research, and DeFi research. Utilizing a data-driven approach, we offer in-depth insights and outlooks on various
industry themes.

Our suite of L2 tooling: Warp is Starknet's approach to EVM compatibility. It allows developers to take their Solidity smart contracts
and transpile them to Cairo, Starknet’s smart contract language. In the short time since its inception, the project has accomplished many
achievements, including successfully transpiling Uniswap v3 onto Starknet using Warp.

— Voyager is a user-friendly Starknet block explorer that offers comprehensive insights into the Starknet network. With its intuitive
interface and powerful features, Voyager allows users to easily search for and examine transactions, addresses, and contract
details. As an essential tool for navigating the Starknet ecosystem, Voyager is the go-to solution for users seeking in-depth
information and analysis;

— Horus is an open-source formal verification tool for StarkNet smart contracts. It simplifies the process of formally verifying Starknet
smart contracts, allowing developers to express various assertions about the behavior of their code using a simple assertion
language;

— Juno is a full-node client implementation for Starknet, drawing on the expertise gained from developing the Nethermind Client.
Written in Golang and open-sourced from the outset, Juno verifies the validity of the data received from Starknet by comparing it to
proofs retrieved from Ethereum, thus maintaining the integrity and security of the entire ecosystem.

Learn more about us at nethermind.io.

18

nethermind.io

NETHERMIND

{7} SECURITY

General Advisory to Clients

As auditors, we recommend that any changes or updates made to the audited codebase undergo a re-audit or security review to address
potential vulnerabilities or risks introduced by the modifications. By conducting a re-audit or security review of the modified codebase,
you can significantly enhance the overall security of your system and reduce the likelihood of exploitation. However, we do not possess
the authority or right to impose obligations or restrictions on our clients regarding codebase updates, modifications, or subsequent audits.
Accordingly, the decision to seek a re-audit or security review lies solely with you.

Disclaimer

This report is based on the scope of materials and documentation provided by you to Nethermind in order that Nethermind could conduct
the security review outlined in 1. Executive Summary and 2. Audited Files. The results set out in this report may not be complete nor
inclusive of all vulnerabilities. Nethermind has provided the review and this report on an as-is, where-is, and as-available basis. You agree
that your access and/or use, including but not limited to any associated services, products, protocols, platforms, content, and materials,
will be at your sole risk. Blockchain technology remains under development and is subject to unknown risks and flaws. The review does
not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that could present
security risks. This report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party
should rely on this report in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset.
To the fullest extent permitted by law, Nethermind disclaims any liability in connection with this report, its content, and any related services
and products and your use thereof, including, without limitation, the implied warranties of merchantability, fithess for a particular purpose,
and non-infringement. Nethermind does not warrant, endorse, guarantee, or assume responsibility for any product or service advertised
or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,
called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and Nethermind will not be a party to or in any way be responsible for
monitoring any transaction between you and any third-party providers of products or services. As with the purchase or use of a product
or service through any medium or in any environment, you should use your best judgment and exercise caution where appropriate.
FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED
SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX,
LEGAL, REGULATORY, OR OTHER ADVICE.

19

https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io

	Executive Summary
	Audited Files
	Summary of Issues
	System Overview
	MonoCooler
	CoolerTreasuryBorrower
	CoolerLtvOracle
	Delegation system

	Risk Rating Methodology
	Issues
	[Low] Users may receive slightly more tokens than intended due to rounding in borrow
	[Info] Borrowing doesn't always increase debt
	[Info] Debt with Treasury is not updated on liquidation
	[Info] Liquidation can be delayed by front running call to applyUnhealthyDelegations(...)
	[Info] Olympus Treasury may lose value due to rounding in SUSDS.deposit(...)

	Documentation Evaluation
	Complementary Checks
	Compilation Output
	Tests Output
	Automated Tools
	AuditAgent

	About Nethermind

